LIMITS
OF
FUNCTIONS
LIMITS OF FUNCTIONS
OBJECTIVES:
•define limits;
•illustrate limits and its theorems; and
•evaluate limits applying the given
theorems.
• define one-sided limits
• illustrate one-sided limits
• investigate the limit if it exist or not using
the concept of one-sided limits.
•define limits at infinity;
•illustrate the limits at infinity; and
•determine the horizontal asymptote.
DEFINITION: LIMITS
The most basic use of limits is to describe how a
function behaves as the independent variable
approaches a given value. For example let us
examine the behavior of the function
for x-values closer and closer to 2. It is evident from
the graph and the table in the next slide that the
values of f(x) get closer and closer to 3 as the values
of x are selected closer and closer to 2 on either the
left or right side of 2. We describe this by saying
that the “limit of is 3 as x
approaches 2 from either side,” we write
1
x
x
)
x
(
f 2



1
x
x
)
x
(
f 2



  3
1
x
x
lim 2
2
x




2
3
f(x)
f(x)
x
y
1
x
x
y 2



x 1.9 1.95 1.99 1.995 1.999 2 2.001 2.005 2.01 2.05 2.1
F(x) 2.71 2.852 2.97 2.985 2.997 3.003 3.015 3.031 3.152 3.31
left side right side
O
1.1.1 (p. 70) Limits (An Informal View)
This leads us to the following general idea.
EXAMPLE
Use numerical evidence to make a conjecture about
the value of .
1
x
1
x
lim
1
x 


Although the function is undefined at
x=1, this has no bearing on the limit.
The table shows sample x-values approaching 1 from
the left side and from the right side. In both cases the
corresponding values of f(x) appear to get closer and
closer to 2, and hence we conjecture that
and is consistent with the graph of f.
1
x
1
x
)
x
(
f



2
1
x
1
x
lim
1
x




Figure 1.1.9 (p. 71)
x .99 .999 .9999 .99999 1 1.00001 1.0001 1.001 1.01
F(x) 1.9949 1.9995 1.99995 1.999995 2.000005 2.00005 2.0005 2.004915
THEOREMS ON LIMITS
Our strategy for finding limits algebraically has two
parts:
•First we will obtain the limits of some simpler
function
•Then we will develop a list of theorems that will
enable us to use the limits of simple functions as
building blocks for finding limits of more
complicated functions.
We start with the following basic theorems,
which are illustrated in Fig 1.2.1
Theorem 1.2.1 (p. 80)
    a
x
lim
b
k
k
lim
a
numbers.
real
be
k
and
a
Let
Theorem
1
.
2
.
1
a
x
a
x




Figure 1.2.1 (p. 80)
 
3
3
lim
3
3
lim
3
3
lim
example,
For
a.
of
values
all
for
a
x
as
k
f(x)
why
explains
which
varies,
x
as
k
at
fixed
remain
f(x)
of
values
the
then
function,
constant
a
is
k
x
f
If
x
0
x
-25
x








 
Example 1.
   












x
lim
2
x
lim
0
x
lim
example,
For
.
a
x
f
that
true
be
also
must
it
a
x
then
x,
x
f
If
x
-2
x
0
x
Example 2.
Theorem 1.2.2 (p. 81)
The following theorem will be our basic tool for
finding limits algebraically.
This theorem can be stated informally as follows:
a) The limit of a sum is the sum of the limits.
b) The limit of a difference is the difference of the limits.
c) The limits of a product is the product of the limits.
d)The limits of a quotient is the quotient of the limits,
provided the limit of the denominator is not zero.
e) The limit of the nth
root is the nth
root of the limit.
•A constant factor can be moved through a limit symbol.
 
5
x
2
lim
.
1
4
x


 
12
x
6
lim
.
2
3
x


  )
2
x
5
(
x
4
lim
.
3
3
x



EXAMPLE : Evaluate the following limits.
3
1
5
8
5
)
4
(
2
5
lim
x
lim
2
5
lim
x
2
lim
4
x
4
x
4
x
4
x













 
6
12
-
18
12
)
3
(
6
12
lim
x
6
lim
3
x
3
x








   
   
   
  
  
13
13
1
2
)
3
(
5
3
4
2
lim
x
lim
5
x
lim
4
lim
2
lim
x
5
lim
x
lim
4
lim
2
x
5
lim
x
4
lim
3
x
3
x
3
x
3
x
3
x
3
x
3
x
3
x
3
x
3
x



























4
x
5
x
2
lim
.
4
5
x 

 3
3
x
6
x
3
lim
.
5 

3
x
1
x
8
lim
.
6
1
x 


 
21
10
4
25
5
2



       
4
lim
x
lim
5
x
lim
2
4
lim
x
5
lim
x
2
lim
5
x
5
x
5
x
5
x
5
x
5
x










 
 
 
 
 
   
3375
15
6
3
3
6
lim
x
lim
3
6
lim
x
3
lim
6
x
3
lim
3
3
3
3
x
3
x
3
3
x
3
x
3
3
x
















2
3
4
9
3
x
1
x
8
lim
1
x






OR
When evaluating the limit of a function at a
given value, simply replace the variable by
the indicated limit then solve for the value of
the function:
     
2
2
3
lim 3 4 1 3 3 4 3 1
27 12 1
38
x
x x

    
  

EXAMPLE: Evaluate the following limits.
2
x
8
x
lim
.
1
3
2
x 



Solution:
 
0
0
0
8
8
2
2
8
2
2
x
8
x
lim
3
3
2
x













Equivalent function:
(indeterminate)
  
2
x
4
x
2
x
2
x
lim
2
2
x 






 
   
12
4
4
4
4
2
2
2
4
x
2
x
lim
2
2
2
x














12
2
x
8
x
lim
3
2
x






Note: In evaluating a limit of a quotient which
reduces to , simplify the fraction. Just remove
the common factor in the numerator and
denominator which makes the quotient .
To do this use factoring or rationalizing the
numerator or denominator, wherever the radical is.
0
0
0
0
x
2
2
x
lim
.
2
0
x



Solution:
Rationalizing the numerator:
(indeterminate)
0
0
0
2
2
0
x
2
2
x
lim
0
x







 
2
2
x
x
2
2
x
lim
2
2
x
2
2
x
x
2
2
x
lim
0
x
0
x 














  4
2
2
2
1
2
2
1
2
2
x
1
lim
2
2
x
x
x
lim
0
x
0
x












4
2
x
2
2
x
lim
0
x





9
x
4
27
x
8
lim
.
3 2
3
2
3
x 


Solution:
By Factoring:
(indeterminate)
3
2
3
3
2
2
3
8 27
8 27 27 27 0
2
lim
4 9 9 9 0
3
4 9
2
x
x
x

 

 
 
 
  
 
 

 
 
  
    








































3
2
3
2
9
2
3
6
2
3
4
3
x
2
9
x
6
x
4
lim
3
x
2
3
x
2
9
x
6
x
4
3
x
2
lim
2
2
2
3
x
2
2
3
x
2
2
3
2
3
2
9
6
27
3
3
9
9
9








2
2
3
9
x
4
27
x
8
lim 2
3
2
3
x





5
x
3
x
2
x
lim
.
4 2
3
2
x 



Solution:
   
 
3
3
2
2
2
2 2 2 3
2 3
lim
5 2 5
8 4 3
4 5
15
9
15
3
x
x x
x

 
 

 
 




3
15
5
x
3
x
2
x
lim 2
3
2
x






DEFINITION: One-Sided Limits
The limit of a function is called two-sided limit if
it requires the values of f(x) to get closer and closer
to a number as the values of x are taken from
either side of x=a. However some functions exhibit
different behaviors on the two sides of an x-value a
in which case it is necessary to distinguish whether
the values of x near a are on the left side or on the
right side of a for purposes of investigating limiting
behavior.
Consider the function








0
x
,
1
0
x
,
1
x
x
)
x
(
f


1
-1
As x approaches 0 from the right, the
values of f(x) approach a limit of 1, and
similarly , as x approaches 0 from the
left, the values of f(x) approach a
limit of -1.
1
x
x
lim
and
1
x
x
lim
,
symbols
In
o
x
o
x


 



1.1.2 (p. 72) One-Sided Limits (An Informal View)
This leads to the general idea of a one-sided limit
1.1.3 (p. 73) The Relationship Between One-Sided and Two-Sided Limits
EXAMPLE:
x
x
)
x
(
f 
1. Find if the two sided limits exist given


1
-1
exist.
not
does
x
x
lim
or
exist
not
does
it
lim
sided
two
the
then
x
x
lim
x
x
lim
the
ce
sin
1
x
x
lim
and
1
x
x
lim
o
x
o
x
o
x
o
x
o
x













SOLUTION
EXAMPLE:
2. For the functions in Fig 1.1.13, find the one-sided
limit and the two-sided limits at x=a if they exists.
The functions in all three figures have the same
one-sided limits as , since the functions are
Identical, except at x=a.
a
x 
1
)
x
(
f
lim
and
3
)
x
(
f
lim
are
its
lim
These
a
x
a
x

 



In all three cases the two-sided limit does not exist as
because the one sided limits are not equal.
a
x 
SOLUTION
Figure 1.1.13 (p. 73)
3. Find if the two-sided limit exists and sketch the graph of
2
6+x if x < -2
( ) =
x if x -2
g x
 
 

 
 
4
2
6
x
6
lim
)
x
(
g
lim
.
a
2
x
2
x




 





 
4
2
-
x
lim
)
x
(
g
lim
.
b
2
2
2
x
2
x


 





4
)
x
(
g
lim
or
4
to
equal
is
and
exist
it
lim
sided
two
the
then
)
x
(
g
lim
)
x
(
g
lim
the
ce
sin
2
x
2
x
2
x







 

SOLUTION
EXAMPLE:
x
-2
-6 4
y
4
4. Find if the two-sided limit exists and sketch the graph
of and sketch the graph.
2
2
3 + x if x < -2
( ) = 0 if x = -2
11 - x if x > -2
f x
 
 
 
 
 
SOLUTION
 
 
7
2
3
x
3
lim
)
x
(
f
lim
.
a
2
2
2
x
2
x





 





 
 
7
2
-
11
x
11
lim
)
x
(
f
lim
.
b
2
2
2
x
2
x




 





7
)
x
(
f
lim
or
7
to
equal
is
and
exist
it
lim
sided
two
the
then
)
x
(
f
lim
)
x
(
f
lim
the
ce
sin
2
x
2
x
2
x







 

EXAMPLE:
graph.
the
sketch
and
,
exist
f(x)
lim
if
e
min
er
det
,
4
x
2
3
)
x
(
f
If
.
5
2
x



 
3
4
2
2
3
4
x
2
3
lim
)
x
(
f
lim
.
a
2
x
2
x






 



 
3
4
2
2
3
4
x
2
3
lim
)
x
(
f
lim
.
b
2
x
2
x






 



3
)
x
(
f
lim
or
3
to
equal
is
and
exist
it
lim
sided
two
the
then
)
x
(
f
lim
)
x
(
f
lim
the
ce
sin
2
x
2
x
2
x




 

SOLUTION
EXAMPLE:
f(x)
x
(2,3)
2
DEFINITION: LIMITS AT INFINITY
The behavior of a function as x increases or
decreases without bound is sometimes called the
end behavior of the function.
)
x
(
f
If the values of the variable x increase without
bound, then we write , and if the values of
x decrease without bound, then we write .


x


x
For example ,
0
x
1
lim
and
0
x
1
lim
x
x






x
x
0
x
1
lim
x



0
x
1
lim
x



1.3.1 (p. 89) Limits at Infinity (An Informal View)
In general, we will use the following notation.
Figure 1.3.2 (p. 89)
Fig.1.3.2 illustrates the end behavior of the function f when
L
)
x
(
f
lim
or
L
)
x
(
f
lim
x
x






Figure 1.3.4 (p. 90)
EXAMPLE
Fig.1.3.2 illustrates the graph of . As suggested by
this graph,
x
x
1
1
y 







e
x
1
1
lim
and
e
x
1
1
lim
x
x
x
x




















EXAMPLE ( Examples 7-11 from pages 92-95)
6
x
3
2
x
lim
.
4
x
3
1
1
x
2
x
5
lim
.
3
5
x
2
x
x
4
lim
.
2
8
x
6
5
x
3
lim
.
1
2
x
2
3
x
3
2
x
x

















 
 
3
3
6
x
3
6
x
x
x
5
x
lim
.
6
x
5
x
lim
.
5








EXERCISES:
 
  
 
5
w
4
w
7
w
7
w
lim
10.
2
x
8
x
lim
.
5
19
x
9
x
2
lim
9.
4
y
y
8
y
4
lim
.
4
1
y
2
y
3
y
2
y
1
y
lim
8.
1
x
4
x
3
x
lim
.
3
1
x
3
x
2
x
3
x
2
lim
7.
4
x
3
x
1
x
2
lim
.
2
1
x
9
1
x
3
lim
6.
2
x
5
x
4
lim
.
1
2
2
1
w
3
2
x
2
1
3
4
5
x
3
1
3
2
y
2
2
1
y
3
2
1
x
2
2
3
1
x
2
1
x
2
3
1
x
2
3
x



















































A. Evaluate the following limits.
EXERCISES:
B. Sketch the graph of the following functions
and the indicated limit if it exists. find
.
)
x
(
g
lim
.
c
g(x)
lim
.
b
g(x)
lim
.
a
1
x
if
2x
-
7
1
x
if
2
1
x
if
3
x
2
)
x
(
g
.
2
)
x
(
f
lim
.
c
f(x)
lim
.
b
f(x)
lim
.
a
4
-
x
if
4
x
-4
x
if
x
4
)
x
(
f
.
1
1
x
1
x
1
x
4
x
4
x
4
x































.
)
x
(
f
lim
.
c
f(x)
lim
.
b
f(x)
lim
.
a
1
x
2
)
x
(
g
.
5
)
x
(
f
lim
.
c
f(x)
lim
.
b
f(x)
lim
.
a
x
4
)
x
(
g
.
4
)
x
(
f
lim
.
c
f(x)
lim
.
b
f(x)
lim
.
a
0
x
if
3
0
x
if
x
)
x
(
f
.
3
2
1
x
2
1
x
2
1
x
4
x
4
x
4
x
0
x
0
x
0
x


























More Related Content

PPTX
Basic Calculussssssssssssssssssssss.pptx
PPT
L4 one sided limits limits at infinity
PPTX
One-Sided-Lbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbimits.pptx
PPT
Presentacion calculo1
PDF
Mat 121-Limits education tutorial 22 I.pdf
PDF
The Limit of a Function , maths, calculas
PDF
Limit 140929031133-phpapp01
PPT
Lecture 4 for master students lecture.ppt
Basic Calculussssssssssssssssssssss.pptx
L4 one sided limits limits at infinity
One-Sided-Lbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbimits.pptx
Presentacion calculo1
Mat 121-Limits education tutorial 22 I.pdf
The Limit of a Function , maths, calculas
Limit 140929031133-phpapp01
Lecture 4 for master students lecture.ppt

Similar to L4 One-sided limits limits at infinity.ppt (20)

PPTX
CAL 11 Q3 0101 PF FINAL.pptx212233445666
PPTX
EBS30145678CALCULUS - Units 1 and 2.pptx
DOCX
Basic%20Cal%20Final.docx.docx
PDF
Limits of a function: Introductory to Calculus
PPTX
Introduction to Limits and Continuity for Basic Calculus-WEEK2.pptx
PDF
Limit
PPTX
Basic Cal - Quarter 1 Week 1-2.pptx
DOCX
PPTX
Presentacion calculo jan
PDF
Limits, Continuity & Differentiation (Theory)
PDF
3 handouts section2-2
PPTX
1.5 all notes
PPTX
Limit presentation pptx
PPTX
PreCalculusChapter4Limits.........................
PPTX
SCalcET9_LecturePPTs_02_03.pptx SCalcET9_LecturePPTs_02_03.pptx
PPT
Functions limits and continuity
PPTX
BASIC-CALCULUS-LESSON-Gr11 2024-2025.pptx
PPT
functions limits and continuity
PPT
Chap2_Sec2Autocad design chapter 2 for .ppt
PPTX
CALCULUS chapter number one presentation
CAL 11 Q3 0101 PF FINAL.pptx212233445666
EBS30145678CALCULUS - Units 1 and 2.pptx
Basic%20Cal%20Final.docx.docx
Limits of a function: Introductory to Calculus
Introduction to Limits and Continuity for Basic Calculus-WEEK2.pptx
Limit
Basic Cal - Quarter 1 Week 1-2.pptx
Presentacion calculo jan
Limits, Continuity & Differentiation (Theory)
3 handouts section2-2
1.5 all notes
Limit presentation pptx
PreCalculusChapter4Limits.........................
SCalcET9_LecturePPTs_02_03.pptx SCalcET9_LecturePPTs_02_03.pptx
Functions limits and continuity
BASIC-CALCULUS-LESSON-Gr11 2024-2025.pptx
functions limits and continuity
Chap2_Sec2Autocad design chapter 2 for .ppt
CALCULUS chapter number one presentation
Ad

Recently uploaded (20)

PDF
Cryptography and Network Security-Module-I.pdf
PDF
electrical machines course file-anna university
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PPTX
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
Software Engineering and software moduleing
PPTX
Principal presentation for NAAC (1).pptx
PPTX
Amdahl’s law is explained in the above power point presentations
PDF
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PDF
Principles of operation, construction, theory, advantages and disadvantages, ...
PPT
Programmable Logic Controller PLC and Industrial Automation
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
Cryptography and Network Security-Module-I.pdf
electrical machines course file-anna university
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
Computer System Architecture 3rd Edition-M Morris Mano.pdf
Environmental studies, Moudle 3-Environmental Pollution.pptx
August -2025_Top10 Read_Articles_ijait.pdf
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Software Engineering and software moduleing
Principal presentation for NAAC (1).pptx
Amdahl’s law is explained in the above power point presentations
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
20250617 - IR - Global Guide for HR - 51 pages.pdf
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Principles of operation, construction, theory, advantages and disadvantages, ...
Programmable Logic Controller PLC and Industrial Automation
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
Ad

L4 One-sided limits limits at infinity.ppt

  • 2. LIMITS OF FUNCTIONS OBJECTIVES: •define limits; •illustrate limits and its theorems; and •evaluate limits applying the given theorems. • define one-sided limits • illustrate one-sided limits • investigate the limit if it exist or not using the concept of one-sided limits. •define limits at infinity; •illustrate the limits at infinity; and •determine the horizontal asymptote.
  • 3. DEFINITION: LIMITS The most basic use of limits is to describe how a function behaves as the independent variable approaches a given value. For example let us examine the behavior of the function for x-values closer and closer to 2. It is evident from the graph and the table in the next slide that the values of f(x) get closer and closer to 3 as the values of x are selected closer and closer to 2 on either the left or right side of 2. We describe this by saying that the “limit of is 3 as x approaches 2 from either side,” we write 1 x x ) x ( f 2    1 x x ) x ( f 2      3 1 x x lim 2 2 x    
  • 4. 2 3 f(x) f(x) x y 1 x x y 2    x 1.9 1.95 1.99 1.995 1.999 2 2.001 2.005 2.01 2.05 2.1 F(x) 2.71 2.852 2.97 2.985 2.997 3.003 3.015 3.031 3.152 3.31 left side right side O
  • 5. 1.1.1 (p. 70) Limits (An Informal View) This leads us to the following general idea.
  • 6. EXAMPLE Use numerical evidence to make a conjecture about the value of . 1 x 1 x lim 1 x    Although the function is undefined at x=1, this has no bearing on the limit. The table shows sample x-values approaching 1 from the left side and from the right side. In both cases the corresponding values of f(x) appear to get closer and closer to 2, and hence we conjecture that and is consistent with the graph of f. 1 x 1 x ) x ( f    2 1 x 1 x lim 1 x    
  • 7. Figure 1.1.9 (p. 71) x .99 .999 .9999 .99999 1 1.00001 1.0001 1.001 1.01 F(x) 1.9949 1.9995 1.99995 1.999995 2.000005 2.00005 2.0005 2.004915
  • 8. THEOREMS ON LIMITS Our strategy for finding limits algebraically has two parts: •First we will obtain the limits of some simpler function •Then we will develop a list of theorems that will enable us to use the limits of simple functions as building blocks for finding limits of more complicated functions.
  • 9. We start with the following basic theorems, which are illustrated in Fig 1.2.1 Theorem 1.2.1 (p. 80)     a x lim b k k lim a numbers. real be k and a Let Theorem 1 . 2 . 1 a x a x    
  • 11.   3 3 lim 3 3 lim 3 3 lim example, For a. of values all for a x as k f(x) why explains which varies, x as k at fixed remain f(x) of values the then function, constant a is k x f If x 0 x -25 x           Example 1.                 x lim 2 x lim 0 x lim example, For . a x f that true be also must it a x then x, x f If x -2 x 0 x Example 2.
  • 12. Theorem 1.2.2 (p. 81) The following theorem will be our basic tool for finding limits algebraically.
  • 13. This theorem can be stated informally as follows: a) The limit of a sum is the sum of the limits. b) The limit of a difference is the difference of the limits. c) The limits of a product is the product of the limits. d)The limits of a quotient is the quotient of the limits, provided the limit of the denominator is not zero. e) The limit of the nth root is the nth root of the limit. •A constant factor can be moved through a limit symbol.
  • 14.   5 x 2 lim . 1 4 x     12 x 6 lim . 2 3 x     ) 2 x 5 ( x 4 lim . 3 3 x    EXAMPLE : Evaluate the following limits. 3 1 5 8 5 ) 4 ( 2 5 lim x lim 2 5 lim x 2 lim 4 x 4 x 4 x 4 x                6 12 - 18 12 ) 3 ( 6 12 lim x 6 lim 3 x 3 x                           13 13 1 2 ) 3 ( 5 3 4 2 lim x lim 5 x lim 4 lim 2 lim x 5 lim x lim 4 lim 2 x 5 lim x 4 lim 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x                           
  • 15. 4 x 5 x 2 lim . 4 5 x    3 3 x 6 x 3 lim . 5   3 x 1 x 8 lim . 6 1 x      21 10 4 25 5 2            4 lim x lim 5 x lim 2 4 lim x 5 lim x 2 lim 5 x 5 x 5 x 5 x 5 x 5 x                         3375 15 6 3 3 6 lim x lim 3 6 lim x 3 lim 6 x 3 lim 3 3 3 3 x 3 x 3 3 x 3 x 3 3 x                 2 3 4 9 3 x 1 x 8 lim 1 x      
  • 16. OR When evaluating the limit of a function at a given value, simply replace the variable by the indicated limit then solve for the value of the function:       2 2 3 lim 3 4 1 3 3 4 3 1 27 12 1 38 x x x          
  • 17. EXAMPLE: Evaluate the following limits. 2 x 8 x lim . 1 3 2 x     Solution:   0 0 0 8 8 2 2 8 2 2 x 8 x lim 3 3 2 x              Equivalent function: (indeterminate)    2 x 4 x 2 x 2 x lim 2 2 x              12 4 4 4 4 2 2 2 4 x 2 x lim 2 2 2 x               12 2 x 8 x lim 3 2 x      
  • 18. Note: In evaluating a limit of a quotient which reduces to , simplify the fraction. Just remove the common factor in the numerator and denominator which makes the quotient . To do this use factoring or rationalizing the numerator or denominator, wherever the radical is. 0 0 0 0
  • 19. x 2 2 x lim . 2 0 x    Solution: Rationalizing the numerator: (indeterminate) 0 0 0 2 2 0 x 2 2 x lim 0 x          2 2 x x 2 2 x lim 2 2 x 2 2 x x 2 2 x lim 0 x 0 x                  4 2 2 2 1 2 2 1 2 2 x 1 lim 2 2 x x x lim 0 x 0 x             4 2 x 2 2 x lim 0 x     
  • 20. 9 x 4 27 x 8 lim . 3 2 3 2 3 x    Solution: By Factoring: (indeterminate) 3 2 3 3 2 2 3 8 27 8 27 27 27 0 2 lim 4 9 9 9 0 3 4 9 2 x x x                                                                       3 2 3 2 9 2 3 6 2 3 4 3 x 2 9 x 6 x 4 lim 3 x 2 3 x 2 9 x 6 x 4 3 x 2 lim 2 2 2 3 x 2 2 3 x 2 2 3 2 3 2 9 6 27 3 3 9 9 9         2 2 3 9 x 4 27 x 8 lim 2 3 2 3 x     
  • 21. 5 x 3 x 2 x lim . 4 2 3 2 x     Solution:       3 3 2 2 2 2 2 2 3 2 3 lim 5 2 5 8 4 3 4 5 15 9 15 3 x x x x               3 15 5 x 3 x 2 x lim 2 3 2 x      
  • 22. DEFINITION: One-Sided Limits The limit of a function is called two-sided limit if it requires the values of f(x) to get closer and closer to a number as the values of x are taken from either side of x=a. However some functions exhibit different behaviors on the two sides of an x-value a in which case it is necessary to distinguish whether the values of x near a are on the left side or on the right side of a for purposes of investigating limiting behavior.
  • 23. Consider the function         0 x , 1 0 x , 1 x x ) x ( f   1 -1 As x approaches 0 from the right, the values of f(x) approach a limit of 1, and similarly , as x approaches 0 from the left, the values of f(x) approach a limit of -1. 1 x x lim and 1 x x lim , symbols In o x o x       
  • 24. 1.1.2 (p. 72) One-Sided Limits (An Informal View) This leads to the general idea of a one-sided limit
  • 25. 1.1.3 (p. 73) The Relationship Between One-Sided and Two-Sided Limits
  • 26. EXAMPLE: x x ) x ( f  1. Find if the two sided limits exist given   1 -1 exist. not does x x lim or exist not does it lim sided two the then x x lim x x lim the ce sin 1 x x lim and 1 x x lim o x o x o x o x o x              SOLUTION
  • 27. EXAMPLE: 2. For the functions in Fig 1.1.13, find the one-sided limit and the two-sided limits at x=a if they exists. The functions in all three figures have the same one-sided limits as , since the functions are Identical, except at x=a. a x  1 ) x ( f lim and 3 ) x ( f lim are its lim These a x a x       In all three cases the two-sided limit does not exist as because the one sided limits are not equal. a x  SOLUTION
  • 29. 3. Find if the two-sided limit exists and sketch the graph of 2 6+x if x < -2 ( ) = x if x -2 g x          4 2 6 x 6 lim ) x ( g lim . a 2 x 2 x              4 2 - x lim ) x ( g lim . b 2 2 2 x 2 x          4 ) x ( g lim or 4 to equal is and exist it lim sided two the then ) x ( g lim ) x ( g lim the ce sin 2 x 2 x 2 x           SOLUTION EXAMPLE:
  • 31. 4. Find if the two-sided limit exists and sketch the graph of and sketch the graph. 2 2 3 + x if x < -2 ( ) = 0 if x = -2 11 - x if x > -2 f x           SOLUTION     7 2 3 x 3 lim ) x ( f lim . a 2 2 2 x 2 x                 7 2 - 11 x 11 lim ) x ( f lim . b 2 2 2 x 2 x            7 ) x ( f lim or 7 to equal is and exist it lim sided two the then ) x ( f lim ) x ( f lim the ce sin 2 x 2 x 2 x           EXAMPLE:
  • 32. graph. the sketch and , exist f(x) lim if e min er det , 4 x 2 3 ) x ( f If . 5 2 x      3 4 2 2 3 4 x 2 3 lim ) x ( f lim . a 2 x 2 x              3 4 2 2 3 4 x 2 3 lim ) x ( f lim . b 2 x 2 x            3 ) x ( f lim or 3 to equal is and exist it lim sided two the then ) x ( f lim ) x ( f lim the ce sin 2 x 2 x 2 x        SOLUTION EXAMPLE:
  • 34. DEFINITION: LIMITS AT INFINITY The behavior of a function as x increases or decreases without bound is sometimes called the end behavior of the function. ) x ( f If the values of the variable x increase without bound, then we write , and if the values of x decrease without bound, then we write .   x   x For example , 0 x 1 lim and 0 x 1 lim x x      
  • 36. 1.3.1 (p. 89) Limits at Infinity (An Informal View) In general, we will use the following notation.
  • 37. Figure 1.3.2 (p. 89) Fig.1.3.2 illustrates the end behavior of the function f when L ) x ( f lim or L ) x ( f lim x x      
  • 38. Figure 1.3.4 (p. 90) EXAMPLE Fig.1.3.2 illustrates the graph of . As suggested by this graph, x x 1 1 y         e x 1 1 lim and e x 1 1 lim x x x x                    
  • 39. EXAMPLE ( Examples 7-11 from pages 92-95) 6 x 3 2 x lim . 4 x 3 1 1 x 2 x 5 lim . 3 5 x 2 x x 4 lim . 2 8 x 6 5 x 3 lim . 1 2 x 2 3 x 3 2 x x                      3 3 6 x 3 6 x x x 5 x lim . 6 x 5 x lim . 5        
  • 40. EXERCISES:        5 w 4 w 7 w 7 w lim 10. 2 x 8 x lim . 5 19 x 9 x 2 lim 9. 4 y y 8 y 4 lim . 4 1 y 2 y 3 y 2 y 1 y lim 8. 1 x 4 x 3 x lim . 3 1 x 3 x 2 x 3 x 2 lim 7. 4 x 3 x 1 x 2 lim . 2 1 x 9 1 x 3 lim 6. 2 x 5 x 4 lim . 1 2 2 1 w 3 2 x 2 1 3 4 5 x 3 1 3 2 y 2 2 1 y 3 2 1 x 2 2 3 1 x 2 1 x 2 3 1 x 2 3 x                                                    A. Evaluate the following limits.
  • 41. EXERCISES: B. Sketch the graph of the following functions and the indicated limit if it exists. find . ) x ( g lim . c g(x) lim . b g(x) lim . a 1 x if 2x - 7 1 x if 2 1 x if 3 x 2 ) x ( g . 2 ) x ( f lim . c f(x) lim . b f(x) lim . a 4 - x if 4 x -4 x if x 4 ) x ( f . 1 1 x 1 x 1 x 4 x 4 x 4 x                               