Visions of the Future
of learning analytics
Dr Doug Clow
Institute of Educational Technology, The Open University, UK
@dougclow
dougclow.org
doug.clow@open.ac.uk
#laepanalytics
visions of the future
3
LAEP Visions of the Future of Learning Analytics
5
Photo CC BY-NC-ND J Sibiga Photography https://flic.kr/p/8jkiNi
6
Photo CC BY-NC-ND J Sibiga Photography https://flic.kr/p/8jkiNi
Policy Delphi
Process
• Iterative development of
Visions
• Online survey (N=133)
– individually-invited experts
– open call
• Live events feedback
– SoLAR Flare, Milton Keynes, UK
– Institutional Readiness Day,
Amsterdam, NL
– Dé Onderwijsdagen,
Rotterdam, NL
– Bett, London, UK
• Analysis
7
Photo CC BY Wietse van Bruggen for LACE
the visions
1: Monitored by the physical environment
9
Photo CC BY-ND SMI Eye Tracking https://flic.kr/p/droxkC
• Tools fitted with sensors
• Cameras (face, movement)
• Alerts for boredom,
confusion, off-task
• Social monitoring
2: Personal data tracking supports learning
• Sensors for posture,
attention, rest, stress,
blood sugar, metabolic
rate, …
• Swimming, driving, and
passing examinations
• Optimise for ages and
courses
• Self-monitoring
3: Analytics are rarely used
11
Photo CC BY-SA Andrew3000 https://flic.kr/p/Sc5VK
• Automated = inferior
• Gaming the system
• Leaks and misuse of data
• Permission from learner
and inspectorates
• Move away from analytics
4. Learners control their own data
Photo CC BY-ND Stuart Conner https://flic.kr/p/7jR8xf
• Learners control
data sharing
• Can limit access
• No permission =
no data
• Awareness
campaigns about
risks and benefits
5. Open systems widely adopted
Photo CC BY connectors distribution box https://flic.kr/p/ddkbR3
• Open Learning
Analytics
• Joined-up approach
• Agreed set of
standards
• Interoperability
• Work with many
providers
6: Analytics are essential tools
14
• Lots of data about learner behaviour
• Good predictions of study success
• Recommendations
• Live, reliable, personalised
• Rapid funding changes
Photo CC BY-SA Beau Considine https://flic.kr/p/m6Vqih
Photo (CC)-BY-SA Lauren Macdonald https://www.flickr.com/photos/42386632@N00/8528725328
7: Analytics help learners make the right choice
• Enormous datasets
• Reliable evidence-based
recommendations about
most successful routes
• Better than the best humans
8: Teaching delegated to computers
16
Photo CC BY-SA Iriss Photo Collection https://flic.kr/p/a4Qv3e
• No curricula
• Learners decide learning goals
• Group collaboration, mentors
• Individualised formative assessment
• Engaged, autonomous
themes in responses
Some themes in responses
• Pedagogy – appropriate analytics, how teaching & learning needs
to change
• Power – who needs to change, who has control
• Privacy and Ethics
• Complexity – and subtlety
• Validity – generalisability, meaningful, worthwhile
• Alienation – need to keep humans involved
• Regulations – guidelines, policy, laws
• Standards – interoperability
18
headline findings
20
Photo CC BY-NC Martin LaBar https://flic.kr/p/tPmZo
Great potential
Will it be reached?
Policies and infrastructure
21Oosterscheldekering surge barrier CC BY Vladimír Šiman
https://en.wikipedia.org/wiki/File:Oosterscheldekering-pohled.jpg
• Data use
• Privacy and ethics
• Standards
22
Photo CC BY Michael 1952 https://flic.kr/p/88bgji
PEDAGOGY
23
Prinses Amaliawindpark, photo by Ad Meskens, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15727511
• Ownership
• Power
• Ethics
24
Photo CC BY-NC-ND Antonio Bustamente https://flic.kr/p/6FDa3Q
Sector differences exist ...
... but are small.
25
Photo (C) Lee Jin-man/AP
Technological capability: large & growing
Thanks to:
People:
• All the experts who’ve engaged with this work
• LACE collaborators on this work: Dai Griffiths, Andrew
Brasher, Rebecca Ferguson, Li Yuan
• LACE at the OU: Bart Rientes, Simon Cross, Linda
Norwood, Michelle Bailey, Rebecca Wilson, Evaghn De
Souza, Natalie Eggleston, Oliver Millard, Gary Elliot-
Citigottis.
• LACE project partners: CETIS (Bolton), OUNL,
Skolverket, HIOA, Kennisnet, ITS, ATiT
Funders:
• LACE: European Commission 619424-FP7-ICT-2013-11
“Visions of the Future of Learning Analyics” by Doug Clow,
Institute of Educational Technology, The Open University,
was presented at “Implications and opportunities for
learning analytics for European educational policy
(LAEP/LACE)”, Amsterdam, on 15 March 2016.
@dougclow
dougclow.org
doug.clow@open.ac.uk
This work was undertaken as part of the LACE Project, supported by the European Commission Seventh
Framework Programme, grant 619424.
These slides are provided under the Creative Commons Attribution Licence:
http://creativecommons.org/licenses/by/4.0/. Some images used may have different licence terms.
www.laceproject.eu
@laceproject
27
cc licensed ( BY ) flickr photo by David Goehring: http://flickr.com/photos/carbonnyc/33413040/

More Related Content

PPTX
Scaling Up Learning Analytics
PPTX
Creating an action plan for learning analytics
PPTX
Visions of the Future of Learning Analytics
PPTX
Learning Analytics: Balloons and Trains
PPTX
Challenges for Learning Analytics
PPTX
New Directions in Technology Enhanced Learning
PPTX
Ten lessons in digital scholarship
PDF
The university as a hackerspace - Joss Winn - Jisc Digital Festival 2014
Scaling Up Learning Analytics
Creating an action plan for learning analytics
Visions of the Future of Learning Analytics
Learning Analytics: Balloons and Trains
Challenges for Learning Analytics
New Directions in Technology Enhanced Learning
Ten lessons in digital scholarship
The university as a hackerspace - Joss Winn - Jisc Digital Festival 2014

What's hot (20)

PPTX
IWMW 2013: Conclusions
PPTX
Working with Wikimedia Serbia
PPT
Are learning technologies fit for purpose?
PPTX
Open Education: what, why, where, who, when
PPTX
Developing literacies of open: across an institution and beyond
PPTX
IWMW 2013: Welcome
PPTX
Nazlin Bhimani - DARTS5 presentation
PPTX
Jisc/Surf Knowledge exchange
PPTX
Positioning the values and practices of open education at the core of Univers...
PDF
The University in a Bind
PPT
Learning the Hard Way: Lessons in Designing OER in, for and through Partnership
PPTX
What is Learning Analytics?
PPT
iwmw_supporting_research
PPTX
Copyright user presentation
PPTX
Presentation about TeL to Academic Development & Support staff
PDF
page36 ARCHITECT VICTORIA
PPTX
MakerSpace for Open Practice DeL 2015
PPTX
Into the Open – a critical overview of open education policy and practice in ...
PPTX
Conole dl forum
PPTX
E1 Scenario Planning
IWMW 2013: Conclusions
Working with Wikimedia Serbia
Are learning technologies fit for purpose?
Open Education: what, why, where, who, when
Developing literacies of open: across an institution and beyond
IWMW 2013: Welcome
Nazlin Bhimani - DARTS5 presentation
Jisc/Surf Knowledge exchange
Positioning the values and practices of open education at the core of Univers...
The University in a Bind
Learning the Hard Way: Lessons in Designing OER in, for and through Partnership
What is Learning Analytics?
iwmw_supporting_research
Copyright user presentation
Presentation about TeL to Academic Development & Support staff
page36 ARCHITECT VICTORIA
MakerSpace for Open Practice DeL 2015
Into the Open – a critical overview of open education policy and practice in ...
Conole dl forum
E1 Scenario Planning
Ad

Viewers also liked (7)

PPTX
Learning Analytics Community Exchange
PPTX
A Whistestop Tour of Theories for TEL Research
PPTX
Moocs: what the research tells us
PPTX
Learning analytics action plan
PPTX
Moving through MOOCs
PPT
Learning analytics and evidence-based teaching and learning
PPTX
An elephant in the learning analytics room – the obligation to act
Learning Analytics Community Exchange
A Whistestop Tour of Theories for TEL Research
Moocs: what the research tells us
Learning analytics action plan
Moving through MOOCs
Learning analytics and evidence-based teaching and learning
An elephant in the learning analytics room – the obligation to act
Ad

Similar to LAEP Visions of the Future of Learning Analytics (20)

PPTX
De toekomst van Learning Analytics - wat is haalbaar en wat is wenselijk?
PDF
The Future of Learning Analytics
PPTX
Learning Analytics - Vision of the Future
PPTX
Looking to the Future – LASI Europe 2024
PPTX
Introduction to Learning Analytics - Framework and Implementation Concerns
PPTX
Learning analytics: the state of the art and the future
PPTX
Preparing for the future
PPTX
Learning analytics futures: a teaching perspective
PPTX
Learning analytics: developing an action plan ... developing a vision
PPTX
2015-05-13 research-seminar
PPTX
Big data in education
PPTX
Learning analytics: the way forward
PPTX
Learning analytics visions: e-learning Korea
PPTX
On the horizon for learning analytics
PDF
Griffiths lace workshop-eden-2016
PPTX
Learning analytics: planning for the future
PDF
Learning Analytics and libraries
PPTX
The future of learning analytics: LASI16 Bilbao
PPT
International trends in learning analytics (SAHELA conference)
PPTX
Requirements for Learning Analytics
De toekomst van Learning Analytics - wat is haalbaar en wat is wenselijk?
The Future of Learning Analytics
Learning Analytics - Vision of the Future
Looking to the Future – LASI Europe 2024
Introduction to Learning Analytics - Framework and Implementation Concerns
Learning analytics: the state of the art and the future
Preparing for the future
Learning analytics futures: a teaching perspective
Learning analytics: developing an action plan ... developing a vision
2015-05-13 research-seminar
Big data in education
Learning analytics: the way forward
Learning analytics visions: e-learning Korea
On the horizon for learning analytics
Griffiths lace workshop-eden-2016
Learning analytics: planning for the future
Learning Analytics and libraries
The future of learning analytics: LASI16 Bilbao
International trends in learning analytics (SAHELA conference)
Requirements for Learning Analytics

More from Doug Clow (20)

PPTX
What Actually Is Artificial Intelligence?
PPTX
How to get to Runter End: Generating English placenames with a neural network
PPTX
A partial history of Educational Technology at the Open University
PPTX
Where is the evidence? A call to action for learning analytics
PPTX
Trains and Balloons: An Introduction to Learning Analytics
PPTX
Learning Analytics: Making learning better?
PPTX
Learning Analytics Examples from the UK, Australia and North America
PPTX
LACE SoLAR Flare Lightning Presentations
PPTX
Summary and Next Steps for the LACE SoLAR Flare
PPTX
Evidence Hub Activity
PPTX
Welcome to the LACE SoLAR Flare
PPTX
Learning Analytics: A General Introduction and Perspectives from the UK
PPT
LASI2014 Learning Analytics Strategy and Policy
PPTX
LACE: Learning Analytics Community Exchange (for LASI 2014)
PPT
Social media for academic purposes (MCT ST event)
PPT
Data Wranglers: Human data interpreters to close the feedback loop
PPT
The funnel of participation: beyond dropout in MOOCs, informal learning and u...
PPT
Social learning: iSpot lessons for Futurelearn
PPT
Quick Introduction to Social Media (blogs and Twitter)
PPT
Learning Analytics: What it is, where we are, and where we could go
What Actually Is Artificial Intelligence?
How to get to Runter End: Generating English placenames with a neural network
A partial history of Educational Technology at the Open University
Where is the evidence? A call to action for learning analytics
Trains and Balloons: An Introduction to Learning Analytics
Learning Analytics: Making learning better?
Learning Analytics Examples from the UK, Australia and North America
LACE SoLAR Flare Lightning Presentations
Summary and Next Steps for the LACE SoLAR Flare
Evidence Hub Activity
Welcome to the LACE SoLAR Flare
Learning Analytics: A General Introduction and Perspectives from the UK
LASI2014 Learning Analytics Strategy and Policy
LACE: Learning Analytics Community Exchange (for LASI 2014)
Social media for academic purposes (MCT ST event)
Data Wranglers: Human data interpreters to close the feedback loop
The funnel of participation: beyond dropout in MOOCs, informal learning and u...
Social learning: iSpot lessons for Futurelearn
Quick Introduction to Social Media (blogs and Twitter)
Learning Analytics: What it is, where we are, and where we could go

Recently uploaded (20)

PDF
Fun with Grammar (Communicative Activities for the Azar Grammar Series)
PDF
African Communication Research: A review
DOCX
Ibrahim Suliman Mukhtar CV5AUG2025.docx
PDF
Farming Based Livelihood Systems English Notes
PDF
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI Syllabus.pdf
PPTX
Thinking Routines and Learning Engagements.pptx
PPTX
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
PDF
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2015).pdf
PDF
Controlled Drug Delivery System-NDDS UNIT-1 B.Pharm 7th sem
PDF
Literature_Review_methods_ BRACU_MKT426 course material
PPTX
Reproductive system-Human anatomy and physiology
PPTX
2025 High Blood Pressure Guideline Slide Set.pptx
PDF
faiz-khans about Radiotherapy Physics-02.pdf
PDF
Everyday Spelling and Grammar by Kathi Wyldeck
PPTX
CAPACITY BUILDING PROGRAMME IN ADOLESCENT EDUCATION
PDF
Laparoscopic Colorectal Surgery at WLH Hospital
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
1.Salivary gland disease.pdf 3.Bleeding and Clotting Disorders.pdf important
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
Horaris_Grups_25-26_Definitiu_15_07_25.pdf
Fun with Grammar (Communicative Activities for the Azar Grammar Series)
African Communication Research: A review
Ibrahim Suliman Mukhtar CV5AUG2025.docx
Farming Based Livelihood Systems English Notes
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI Syllabus.pdf
Thinking Routines and Learning Engagements.pptx
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2015).pdf
Controlled Drug Delivery System-NDDS UNIT-1 B.Pharm 7th sem
Literature_Review_methods_ BRACU_MKT426 course material
Reproductive system-Human anatomy and physiology
2025 High Blood Pressure Guideline Slide Set.pptx
faiz-khans about Radiotherapy Physics-02.pdf
Everyday Spelling and Grammar by Kathi Wyldeck
CAPACITY BUILDING PROGRAMME IN ADOLESCENT EDUCATION
Laparoscopic Colorectal Surgery at WLH Hospital
Environmental Education MCQ BD2EE - Share Source.pdf
1.Salivary gland disease.pdf 3.Bleeding and Clotting Disorders.pdf important
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
Horaris_Grups_25-26_Definitiu_15_07_25.pdf

LAEP Visions of the Future of Learning Analytics

  • 1. Visions of the Future of learning analytics Dr Doug Clow Institute of Educational Technology, The Open University, UK @dougclow dougclow.org [email protected] #laepanalytics
  • 2. visions of the future
  • 3. 3
  • 5. 5 Photo CC BY-NC-ND J Sibiga Photography https://flic.kr/p/8jkiNi
  • 6. 6 Photo CC BY-NC-ND J Sibiga Photography https://flic.kr/p/8jkiNi Policy Delphi
  • 7. Process • Iterative development of Visions • Online survey (N=133) – individually-invited experts – open call • Live events feedback – SoLAR Flare, Milton Keynes, UK – Institutional Readiness Day, Amsterdam, NL – Dé Onderwijsdagen, Rotterdam, NL – Bett, London, UK • Analysis 7 Photo CC BY Wietse van Bruggen for LACE
  • 9. 1: Monitored by the physical environment 9 Photo CC BY-ND SMI Eye Tracking https://flic.kr/p/droxkC • Tools fitted with sensors • Cameras (face, movement) • Alerts for boredom, confusion, off-task • Social monitoring
  • 10. 2: Personal data tracking supports learning • Sensors for posture, attention, rest, stress, blood sugar, metabolic rate, … • Swimming, driving, and passing examinations • Optimise for ages and courses • Self-monitoring
  • 11. 3: Analytics are rarely used 11 Photo CC BY-SA Andrew3000 https://flic.kr/p/Sc5VK • Automated = inferior • Gaming the system • Leaks and misuse of data • Permission from learner and inspectorates • Move away from analytics
  • 12. 4. Learners control their own data Photo CC BY-ND Stuart Conner https://flic.kr/p/7jR8xf • Learners control data sharing • Can limit access • No permission = no data • Awareness campaigns about risks and benefits
  • 13. 5. Open systems widely adopted Photo CC BY connectors distribution box https://flic.kr/p/ddkbR3 • Open Learning Analytics • Joined-up approach • Agreed set of standards • Interoperability • Work with many providers
  • 14. 6: Analytics are essential tools 14 • Lots of data about learner behaviour • Good predictions of study success • Recommendations • Live, reliable, personalised • Rapid funding changes Photo CC BY-SA Beau Considine https://flic.kr/p/m6Vqih
  • 15. Photo (CC)-BY-SA Lauren Macdonald https://www.flickr.com/photos/42386632@N00/8528725328 7: Analytics help learners make the right choice • Enormous datasets • Reliable evidence-based recommendations about most successful routes • Better than the best humans
  • 16. 8: Teaching delegated to computers 16 Photo CC BY-SA Iriss Photo Collection https://flic.kr/p/a4Qv3e • No curricula • Learners decide learning goals • Group collaboration, mentors • Individualised formative assessment • Engaged, autonomous
  • 18. Some themes in responses • Pedagogy – appropriate analytics, how teaching & learning needs to change • Power – who needs to change, who has control • Privacy and Ethics • Complexity – and subtlety • Validity – generalisability, meaningful, worthwhile • Alienation – need to keep humans involved • Regulations – guidelines, policy, laws • Standards – interoperability 18
  • 20. 20 Photo CC BY-NC Martin LaBar https://flic.kr/p/tPmZo Great potential Will it be reached?
  • 21. Policies and infrastructure 21Oosterscheldekering surge barrier CC BY Vladimír Šiman https://en.wikipedia.org/wiki/File:Oosterscheldekering-pohled.jpg • Data use • Privacy and ethics • Standards
  • 22. 22 Photo CC BY Michael 1952 https://flic.kr/p/88bgji PEDAGOGY
  • 23. 23 Prinses Amaliawindpark, photo by Ad Meskens, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15727511 • Ownership • Power • Ethics
  • 24. 24 Photo CC BY-NC-ND Antonio Bustamente https://flic.kr/p/6FDa3Q Sector differences exist ... ... but are small.
  • 25. 25 Photo (C) Lee Jin-man/AP Technological capability: large & growing
  • 26. Thanks to: People: • All the experts who’ve engaged with this work • LACE collaborators on this work: Dai Griffiths, Andrew Brasher, Rebecca Ferguson, Li Yuan • LACE at the OU: Bart Rientes, Simon Cross, Linda Norwood, Michelle Bailey, Rebecca Wilson, Evaghn De Souza, Natalie Eggleston, Oliver Millard, Gary Elliot- Citigottis. • LACE project partners: CETIS (Bolton), OUNL, Skolverket, HIOA, Kennisnet, ITS, ATiT Funders: • LACE: European Commission 619424-FP7-ICT-2013-11
  • 27. “Visions of the Future of Learning Analyics” by Doug Clow, Institute of Educational Technology, The Open University, was presented at “Implications and opportunities for learning analytics for European educational policy (LAEP/LACE)”, Amsterdam, on 15 March 2016. @dougclow dougclow.org [email protected] This work was undertaken as part of the LACE Project, supported by the European Commission Seventh Framework Programme, grant 619424. These slides are provided under the Creative Commons Attribution Licence: http://creativecommons.org/licenses/by/4.0/. Some images used may have different licence terms. www.laceproject.eu @laceproject 27
  • 28. cc licensed ( BY ) flickr photo by David Goehring: http://flickr.com/photos/carbonnyc/33413040/

Editor's Notes

  • #4: Educause
  • #5: Better than Horizon Report or your money back. Educause are smart and launch theirs in Feb, vs Dec.
  • #6: Policy Delphi – not consensus, but options
  • #7: Policy Delphi – not consensus, but options
  • #9: Developed iteratively We are not saying this will happen We are not saying these are good
  • #10: In 2015, learning analytics were mainly used to support online learning. By 2025, they can be used to support most teaching and learning activities, wherever these take place. Furniture, pens, writing pads – almost any tool used during learning – can be fitted with sensors. These can record many sorts of information, including tilt, force and position. Video cameras using facial recognition are able to track individuals as they learn. These cameras monitor movements, and record exactly how learners work with and manipulate objects. All this information is used to monitor learners’ progress. Individuals are supported in learning a wide range of physical skills. Teachers are alerted to signs of individual learner’s boredom, confusion, and deviation from task. Teachers and managers are able to monitor social interactions, and to identify where they should nurture socialisation and cooperative behaviour.
  • #11: In 2015, people were beginning to wear devices such as heart-rate monitors and run-trackers as they went about their daily lives. By 2025, sophisticated sensors can gather personal information about factors such as posture, attention, rest, stress, blood sugar, and metabolic rate. People collect this information about their activities, and feed it into programmes of their choice which provide recommendations on how to act in ways that improve their learning.  Learners can download the statistics and data that are associated with successful learning in a certain area. Aligning personal data with these ‘ideal’ sets is claimed to help people to master skills as diverse as swimming, driving, carrying out surgery and passing examinations. Academic stars sell programmes using this data to optimise learning for different ages and courses. Business gurus market similar programmes for topics such as presentation skills and workload management. Some learners create and share their own data analysis programmes, which provide recommendations that often include the consumption of high energy foods and stimulants. The majority of high school and university students follow self-monitoring programmes, and avidly discuss the merits of these on social media.
  • #12: In 2015, many people hoped that analytics would be able to improve teaching and learning and the environments where these take place. However, in 2025, it is clear that there are many problems. Courses that are automated by analytics are seen as inferior, and learners have realised that they can game the system. There have been major leaks of sensitive personal data, and it is clear that, even where this has not happened, many companies have misused the data generated by their analytics. Many governments have ruled that individuals are the sole owners of the data they generate. All use of data for educational purposes now has to be approved not only by the learner but also by new inspectorates. In practice this has meant that use of analytics is restricted to summative assessment carried out by government agencies. A consensus has emerged in educational policy that the move away from learning analytics is not only ethically desirable, it is also educationally effective.
  • #13: In 2015, it was not clear who owned educational data, and it was often used without learners' knowledge. By 2025, most people are aware of the importance and value of their data. Learners control the type and quantity of personal data that they share, and with whom they share it. This includes information about progress, attendance and exam results, as well as data collected by cameras and sensors. Learners can choose to limit the time for which access is allowed, or they can restrict access to specific organisations and individuals. The tools for making these choices are clearly laid out and easy to use. In the case of children, data decisions are made in consultation with parents or carers. If they do not engage with these tools, then no data is shared and no benefits gained. Most educational institutions recognise this as a potential problem, and run campaigns to raise awareness of the both the risks of thoughtless exposure of data, and the benefits to learners of informed sharing of selected educational data.
  • #14: In 2015, companies produced a range of learning analytics tools, using different approaches and standards. The algorithms and models which companies use are often protected as intellectual property. By 2025, the ‘open learning analytics’ established by the Open Learning Analytics Foundation has made a more joined-up approach possible. Educational organisations see learning analytics as a central element of their IT provision. They demand control over these tools, how they run and what they are used for. The tools they select, although they come from different providers, use open algorithms and share data according to an agreed set of standards which facilitate transparency and independent validation. A set of well-tested, accessible and standardised visualisation methods is commonly used, so that learners and teachers can confidently use a range of tools. Institutions can easily work with a range of providers to design learning analytics systems which support their strategic vision.
  • #15: In 2015, companies were beginning to develop systems to recommend resources and to predict outcomes. By 2025, these systems are highly developed. A wide range of data about learner behaviour is used to generate good quality, real-time predictions about likely success. Learners, teachers, managers and policymakers all have access to live and accurate information about how well a learner is likely to do. Learners and teachers plan their work on the basis of reliable tools that can produce detailed and personalised recommendations about what should be done to achieve the best learning outcomes. A growing industry offers services to institutions and individuals, advising on how to respond to predictions generated by analytics, and how to take appropriate action in the light of recommendations. Accurate predictive information enables managers and policymakers to expand or contract learning provision before success or failure is evident: you don’t have to wait to see if a course is booming or failing, with funding changes happening quickly.
  • #16: In 2015, people were beginning to assemble datasets that could represent learner’s activities. By 2025, these are used on a large scale in teaching, and this has led to the development of enormous datasets containing information about hundreds of thousands of learners. Analysing in detail the progress of such a wide variety of learners has made it possible to provide reliable evidence-based recommendations about the most successful routes to learning, as well as identifying the learning materials and approaches that are most suitable for each individual at each point in their progress. These recommendations are better informed and more reliable than those that can be produced by even the best-trained humans. Learners now spend most of their time working with analytics-driven systems, and the role of teachers has been reduced. Education policy is driven by the evidence generated by the use of these systems.
  • #17: In 2015, learners in educational institutions and in businesses had to follow a curriculum developed by others. In 2025, they create groups that work together to decide their learning goals and how to achieve these. A ‘Learning Trajectory System’ uses analytics to support information exchange and group collaborations, and learners receive support from mentors, rather than teachers. Activity towards a learning goal is monitored, and analytics provide individuals with feedback on their learning process. This includes suggestions, including peer learners to contact, experts to approach, relevant content, and ways of developing and demonstrating new skills. Formative assessment is used to guide future progress, taking into account individuals’ characteristics, experience and context, replacing exams that show only what students have achieved. Texts and other learning materials are adapted to suit the cultural characteristics of learners, revealed by analysis of their interactions
As a result, learners are personally engaged with their topics, and are motivated by their highly autonomous learning. The competences that they develop are valuable in a society in which collection and analysis of data are the norm. There is also convergence between the learning activities of the education system and the methods used by employees to develop their knowledge and skills.
  • #27: Big thanks in small fonts
  • #28: )