Computational Chemistry:
A DFT crash course
Useful Material
Books
 A chemist’s guide to density-functional theory
Wolfram Koch and Max C. Holthausen (second edition,
Wiley)
 The theory of the cohesive energies of solids
G. P. Srivastava and D. Weaire
Advances in Physics 36 (1987) 463-517
 Gulliver among the atoms
Mike Gillan, New Scientist 138 (1993) 34
Web
 www.nobel.se/chemistry/laureates/1998/
 www.abinit.org
Version 4.2.3 compiled for windows, install and good
tutorial
Outline: Part 1,
The Framework of DFT
DFT: the theory
 Schroedinger’s equation
 Hohenberg-Kohn Theorem
 Kohn-Sham Theorem
 Simplifying Schroedinger’s
 LDA, GGA
Elements of Solid State Physics
 Reciprocal space
 Band structure
 Plane waves
And then ?
 Forces (Hellmann-Feynman theorem)
 E.O., M.D., M.C. …
Outline: Part2
Using DFT
Practical Issues
 Input File(s)
 Output files
 Configuration
 K-points mesh
 Pseudopotentials
 Control Parameters
 LDA/GGA
 ‘Diagonalisation’
Applications
 Isolated molecule
 Bulk
 Surface
The Basic Problem
Dangerously
classical
representation
Cores
Electrons
Schroedinger’s Equation
   
i
i
i
i r
R
r
R
V
m
,
.
,
2
2











 

Hamiltonian operator
Kinetic Energy
Potential Energy
Coulombic interaction
External Fields
Very Complex many body Problem !!
(Because everything interacts)
Wave function
Energy levels
First approximations
Adiabatic (or Born-Openheimer)
 Electrons are much lighter, and faster
 Decoupling in the wave function
Nuclei are treated classically
 They go in the external potential
     
i
i
i
i r
R
r
R 
 .
, 

H.K. Theorem
The ground state is unequivocally
defined by the electronic density
        r
r
r d
v
F
Ev 

 


Universal functional
•Functional ?? Function of a function
•No more wave functions here
•But still too complex
K.S. Formulation
Use an auxiliary system
 Non interacting electrons
 Same Density
 => Back to wave functions, but simpler this time
(a lot more though)
   
r
r
V
m
i
i
i
eff 

 .
2
2











        
r
r
r
r
r
r
r 


XC
eff d
V
V 





 
   


i
i
2
r
r 

N K.S. equations
(ONE particle in a box really)
(KS3)
(KS2)
(KS1)
Exchange correlation potential
Self consistent loop
Solve the independents K.S.
=>wave functions
From density, work out
Effective potential
New density ‘=‘
input density ??
Deduce new density from w.f.
Initial density
Finita la musica
YES
NO
DFT energy functional
           




 XC
NI E
d
d
d
v
T
E 






 
 r
r
r
r
r
r
r
r
2
1
Exchange correlation funtional
Contains:
Exchange
Correlation
Interacting part of K.E.
Electrons are fermions
(antisymmetric wave function)
Exchange correlation functional
At this stage, the only thing we need is:  

XC
E
Still a functional (way too many variables)
#1 approximation, Local Density Approximation:
Homogeneous electron gas
Functional becomes function !! (see KS3)
Very good parameterisation for  

XC
E
Generalised Gradient Approximation:
 

 
,
XC
E
GGA
LDA
DFT: Summary
The ground state energy depends only on
the electronic density (H.K.)
One can formally replace the SE for the
system by a set of SE for non-interacting
electrons (K.S.)
Everything hard is dumped into Exc
Simplistic approximations of Exc work !
LDA or GGA
And now, for something completely different:
A little bit of Solid State Physics
Crystal structure Periodicity
Reciprocal space
Real Space
ai
ij
j
i b
a 
.
2


Reciprocal Space
bi
Brillouin Zone
(Inverting effect)
k-vector (or k-point)
sin(k.r)
See X-Ray diffraction for instance
Also, Fourier transform and Bloch theorem
Band structure
Molecule
E
Crystal
Energy levels
(eigenvalues of SE)
The k-point mesh
Brillouin Zone
(6x6) mesh
Corresponds to a supercell
36 time bigger than the
primitive cell
Question:
Which require a finer mesh,
Metals or Insulators ??
Plane waves
Project the wave functions on a basis set
Tricky integrals become linear algebra
Plane Wave for Solid State
Could be localised (ex: Gaussians)
+ + =
Sum of plane waves of increasing
frequency (or energy)
One has to stop: Ecut
Solid State: Summary
Quantities can be calculated in the
direct or reciprocal space
k-point Mesh
Plane wave basis set, Ecut
Now what ?
We have access to the energy of a system,
without any empirical input
With little efforts, the forces can be computed,
Hellman-Feynman theorem
Then, the methodologies discussed for atomistic potential
can be used
Energy Optimisation
Monte Carlo
Molecular dynamics
   
 



 r
r
r
F d
v i
i
i 

More Related Content

PPT
Computational Chemistry: A DFT crash course
PDF
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
PDF
Electronic structure of strongly correlated materials
PPTX
MAR_Comprehensive exam on density functional theorypptx
PDF
Band theory
PPTX
Basics of Density functional theory.pptx
PDF
slides_cedric_weber_1.pdf
PPTX
Atomic structure
Computational Chemistry: A DFT crash course
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Electronic structure of strongly correlated materials
MAR_Comprehensive exam on density functional theorypptx
Band theory
Basics of Density functional theory.pptx
slides_cedric_weber_1.pdf
Atomic structure

Similar to lecture1-230501075743-146580ac computational chemistry .ppt (20)

PPTX
Quantum Chemistry II
PPTX
Dft presentation
PPTX
ZnCdS using DFT technique calculation.pptx
PPTX
Calculation of optical and electronic properties of ZnCdS thin film using DFT...
PPT
Quantum course
 
PDF
NANO266 - Lecture 4 - Introduction to DFT
PPT
Strongly Interacting Atoms in Optical Lattices
PDF
final_report
PPT
finland.ppt
PDF
Quantum Electronic Transport : TranSiesta
PDF
Gnp ch103-lecture notes
PDF
Photonics Intro
PPT
semiconductors with physical science.ppt
PPT
semiconductors physical science ltd.ppt
PPTX
Binping xiao superconducting surface impedance under radiofrequency field
PDF
4 b5lecture62008
PDF
PART VII.1 - Quantum Electrodynamics
PPTX
PRESENT PRESENT PRESENT PRESENT PRESENTPRESENT
PPTX
Bp219 04-13-2011
PDF
1310.1421v3
Quantum Chemistry II
Dft presentation
ZnCdS using DFT technique calculation.pptx
Calculation of optical and electronic properties of ZnCdS thin film using DFT...
Quantum course
 
NANO266 - Lecture 4 - Introduction to DFT
Strongly Interacting Atoms in Optical Lattices
final_report
finland.ppt
Quantum Electronic Transport : TranSiesta
Gnp ch103-lecture notes
Photonics Intro
semiconductors with physical science.ppt
semiconductors physical science ltd.ppt
Binping xiao superconducting surface impedance under radiofrequency field
4 b5lecture62008
PART VII.1 - Quantum Electrodynamics
PRESENT PRESENT PRESENT PRESENT PRESENTPRESENT
Bp219 04-13-2011
1310.1421v3
Ad

More from DrSyedZulqarnainHaid (6)

PDF
nearly free electron model and Bloch theorem.pdf
PDF
VASP-lecture-Hybrids functionals LDA GFGA.pdf
PPTX
COVID-19 Information Powerpoint DPH Standard Size.pptx
PPT
IntroductiontoCompChem_2009 computational chemistry .ppt
PPT
Pseudo potential DFT numerical approximation methods
PPTX
Consequences of non-appearance and setting aside of ex-parte proceedings/dec...
nearly free electron model and Bloch theorem.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdf
COVID-19 Information Powerpoint DPH Standard Size.pptx
IntroductiontoCompChem_2009 computational chemistry .ppt
Pseudo potential DFT numerical approximation methods
Consequences of non-appearance and setting aside of ex-parte proceedings/dec...
Ad

Recently uploaded (20)

PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
IGGE1 Understanding the Self1234567891011
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
20th Century Theater, Methods, History.pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Chinmaya Tiranga quiz Grand Finale.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
Computer Architecture Input Output Memory.pptx
Uderstanding digital marketing and marketing stratergie for engaging the digi...
IGGE1 Understanding the Self1234567891011
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
20th Century Theater, Methods, History.pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Introduction to pro and eukaryotes and differences.pptx
International_Financial_Reporting_Standa.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
AI-driven educational solutions for real-life interventions in the Philippine...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf

lecture1-230501075743-146580ac computational chemistry .ppt

  • 2. Useful Material Books  A chemist’s guide to density-functional theory Wolfram Koch and Max C. Holthausen (second edition, Wiley)  The theory of the cohesive energies of solids G. P. Srivastava and D. Weaire Advances in Physics 36 (1987) 463-517  Gulliver among the atoms Mike Gillan, New Scientist 138 (1993) 34 Web  www.nobel.se/chemistry/laureates/1998/  www.abinit.org Version 4.2.3 compiled for windows, install and good tutorial
  • 3. Outline: Part 1, The Framework of DFT DFT: the theory  Schroedinger’s equation  Hohenberg-Kohn Theorem  Kohn-Sham Theorem  Simplifying Schroedinger’s  LDA, GGA Elements of Solid State Physics  Reciprocal space  Band structure  Plane waves And then ?  Forces (Hellmann-Feynman theorem)  E.O., M.D., M.C. …
  • 4. Outline: Part2 Using DFT Practical Issues  Input File(s)  Output files  Configuration  K-points mesh  Pseudopotentials  Control Parameters  LDA/GGA  ‘Diagonalisation’ Applications  Isolated molecule  Bulk  Surface
  • 6. Schroedinger’s Equation     i i i i r R r R V m , . , 2 2               Hamiltonian operator Kinetic Energy Potential Energy Coulombic interaction External Fields Very Complex many body Problem !! (Because everything interacts) Wave function Energy levels
  • 7. First approximations Adiabatic (or Born-Openheimer)  Electrons are much lighter, and faster  Decoupling in the wave function Nuclei are treated classically  They go in the external potential       i i i i r R r R   . ,  
  • 8. H.K. Theorem The ground state is unequivocally defined by the electronic density         r r r d v F Ev       Universal functional •Functional ?? Function of a function •No more wave functions here •But still too complex
  • 9. K.S. Formulation Use an auxiliary system  Non interacting electrons  Same Density  => Back to wave functions, but simpler this time (a lot more though)     r r V m i i i eff    . 2 2                     r r r r r r r    XC eff d V V               i i 2 r r   N K.S. equations (ONE particle in a box really) (KS3) (KS2) (KS1) Exchange correlation potential
  • 10. Self consistent loop Solve the independents K.S. =>wave functions From density, work out Effective potential New density ‘=‘ input density ?? Deduce new density from w.f. Initial density Finita la musica YES NO
  • 11. DFT energy functional                  XC NI E d d d v T E           r r r r r r r r 2 1 Exchange correlation funtional Contains: Exchange Correlation Interacting part of K.E. Electrons are fermions (antisymmetric wave function)
  • 12. Exchange correlation functional At this stage, the only thing we need is:    XC E Still a functional (way too many variables) #1 approximation, Local Density Approximation: Homogeneous electron gas Functional becomes function !! (see KS3) Very good parameterisation for    XC E Generalised Gradient Approximation:      , XC E GGA LDA
  • 13. DFT: Summary The ground state energy depends only on the electronic density (H.K.) One can formally replace the SE for the system by a set of SE for non-interacting electrons (K.S.) Everything hard is dumped into Exc Simplistic approximations of Exc work ! LDA or GGA
  • 14. And now, for something completely different: A little bit of Solid State Physics Crystal structure Periodicity
  • 15. Reciprocal space Real Space ai ij j i b a  . 2   Reciprocal Space bi Brillouin Zone (Inverting effect) k-vector (or k-point) sin(k.r) See X-Ray diffraction for instance Also, Fourier transform and Bloch theorem
  • 17. The k-point mesh Brillouin Zone (6x6) mesh Corresponds to a supercell 36 time bigger than the primitive cell Question: Which require a finer mesh, Metals or Insulators ??
  • 18. Plane waves Project the wave functions on a basis set Tricky integrals become linear algebra Plane Wave for Solid State Could be localised (ex: Gaussians) + + = Sum of plane waves of increasing frequency (or energy) One has to stop: Ecut
  • 19. Solid State: Summary Quantities can be calculated in the direct or reciprocal space k-point Mesh Plane wave basis set, Ecut
  • 20. Now what ? We have access to the energy of a system, without any empirical input With little efforts, the forces can be computed, Hellman-Feynman theorem Then, the methodologies discussed for atomistic potential can be used Energy Optimisation Monte Carlo Molecular dynamics           r r r F d v i i i 