Section	4.4
                  Curve	Sketching

                  V63.0121.027, Calculus	I



                    November	17, 2009


Announcements
   Next	written	assignment	will	be	due	Wednesday, Nov	25
   next	and	last	quiz	will	be	the	week	after	Thanksgiving
   Final	Exam: Friday, December	18, 2:00–3:50pm
                                          .    .   .    .   .   .
Outline


  The	Procedure

  Simple	examples
     A cubic	function
     A quartic	function

  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together
    Logarithmic



                                            .   .   .   .   .   .
Objective




     Given	a	function, graph	it
     completely, indicating
             zeroes
             asymptotes	if	applicable
             critical	points
             local/global	max/min
             inflection	points



        .

.
Image	credit: Image	Of	Surgery
                                        .   .   .   .   .   .
The	Increasing/Decreasing	Test

   Theorem	(The	Increasing/Decreasing	Test)
   If f′ > 0 on (a, b), then f is	increasing	on (a, b). If f′ < 0 on (a, b),
   then f is	decreasing	on (a, b).

   Proof.
   Pick	two	points x and y in (a, b) with x < y. We	must	show
   f(x) < f(y). By	MVT there	exists	a	point c in (x, y) such	that

                           f(y) − f(x)
                                       = f′ (c) > 0.
                              y−x

   So
                       f(y) − f(x) = f′ (c)(y − x) > 0.



                                                    .     .   .    .    .      .
Theorem	(Concavity	Test)
     If f′′ (x) > 0 for	all x in I, then	the	graph	of f is	concave
     upward	on I
     If f′′ (x) < 0 for	all x in I, then	the	graph	of f is	concave
     downward	on I

Proof.
Suppose f′′ (x) > 0 on I. This	means f′ is	increasing	on I. Let a and
x be	in I. The	tangent	line	through (a, f(a)) is	the	graph	of

                        L(x) = f(a) + f′ (a)(x − a)

                                                      f(x) − f(a)
By	MVT,	there	exists	a b between a and x with                     = f′ (b).
                                                         x−a
So

         f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x)

                                                  .    .    .     .    .      .
Graphing	Checklist

To	graph	a	function f, follow	this	plan:
 0. Find	when f is	positive, negative,
    zero, not	defined.
 1. Find f′ and	form	its	sign	chart.
    Conclude	information	about
    increasing/decreasing	and	local
    max/min.
 2. Find f′′ and	form	its	sign	chart.
    Conclude	concave	up/concave	down
    and	inflection.
 3. Put	together	a	big	chart	to	assemble
    monotonicity	and	concavity	data
 4. Graph!


                                           .   .   .   .   .   .
Outline


  The	Procedure

  Simple	examples
     A cubic	function
     A quartic	function

  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together
    Logarithmic



                                            .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.




                                  .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.
  (Step	0)	First, let’s	find	the	zeros. We	can	at	least	factor	out	one
  power	of x:
                          f(x) = x(2x2 − 3x − 12)
  so f(0) = 0. The	other	factor	is	a	quadratic, so	we	the	other	two
  roots	are
                       √
                                                   √
                   3 ± 32 − 4(2)(−12)         3 ± 105
               x=                          =
                              4                    4
  It’s	OK to	skip	this	step	for	now	since	the	roots	are	so
  complicated.


                                                .    .       .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                          .




                                              .    .      .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                          .            .          . −2
                                                  x
                                     2
                                     .
                    .                             x
                                                  . +1
                  −
                  . 1
                                                  .′ (x)
                                                  f
                    .                  .
                  −
                  . 1                2
                                     .            f
                                                  .(x)




                                              .    .       .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                      .                            x
                                                   . +1
                    −
                    . 1
                                                   .′ (x)
                                                   f
                      .                .
                    −
                    . 1              2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                                                   .′ (x)
                                                   f
                      .                .
                    −
                    . 1              2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                . .
                +                                  .′ (x)
                                                   f
                                       .
                  −
                  . 1                2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                . .
                +           −
                            .                      .′ (x)
                                                   f
                                       .
                  −
                  . 1                2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                . .
                +           −
                            .              .
                                           +       .′ (x)
                                                   f
                                       .
                  −
                  . 1                2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                 −
                 . 1
               . .
               +            −
                            .              .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1                 2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                 −
                 . 1
               . .
               +           −
                           .               .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1       ↘
                           .         2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                 −
                 . 1
               . .
               +           −
                           .               .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1       ↘
                           .         2
                                     .     ↗
                                           .       f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
               . .
               +           −
                           .               .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1       ↘
                           .         2
                                     .     ↗
                                           .       f
                                                   .(x)
                 m
                 . ax




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .    .
                                            +
                                                    . −2
                                                    x
                                     2
                                     .
               −
               . .          .
                            +               .
                                            +
                                                    x
                                                    . +1
                  −
                  . 1
               . .
               +           −
                           .                .
                                            +       .′ (x)
                                                    f
                                        .
               ↗−
               . . 1       ↘
                           .          2
                                      .     ↗
                                            .       f
                                                    .(x)
                 m
                 . ax               m
                                    . in




                                                .   .        .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .




                                               .     .   .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                                                     .′′ (x)
                                                     f
                                .
                              .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −                                .′′ (x)
                                                     f
                                .
                              .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −               . +
                                    +                .′′ (x)
                                                     f
                                .
                              .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −               . +
                                    +                .′′ (x)
                                                     f
                                .
                   .
                   ⌢          .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −               . +
                                    +                .′′ (x)
                                                     f
                                .
                   .
                   ⌢          .
                              1/2    .
                                     ⌣               f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −                . +
                                     +               .′′ (x)
                                                     f
                                 .
                   .
                   ⌢          .
                              1/2     .
                                      ⌣              f
                                                     .(x)
                               I
                               .P




                                               .     .      .   .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

                    .




                                       .   .   .   .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

                 −
           . . . .
           +              −
                          .            .
                                       +   .′ (x)
                                           f
                                 .
           ↗− ↘
           . . 1 .        ↘
                          .    2
                               .       ↗
                                       .   m
                                           . onotonicity




                                           .        .   .   .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +        −
                    . .      −
                             .          .
                                        +    .′ (x)
                                             f
                                 .
           ↗−
           . . 1    ↘
                    .        ↘ .
                             .  2       ↗
                                        .    m
                                             .′′ onotonicity
          −
          . −      −
                   . − .    . +
                            +          . +
                                       +     f
                                             . (x)
           .
           ⌢        .
                    ⌢ 1/2
                        .    .
                             ⌣          .
                                        ⌣    c
                                             . oncavity




                                             .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .        −
                              .        .
                                       +    .′ (x)
                                            f
                                    .
           ↗−
           . . 1   ↘
                   .          ↘ .
                              .   2    ↗
                                       .    m
                                            .′′ onotonicity
          −
          . −     −
                  . − . . +  +        . +
                                      +     f
                                            . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1      ⌣        .
                                       ⌣    c
                                            . oncavity
               7
               ..    −
                     . 6  1/2   −.
                                . 20        f
                                            .(x)
                          .
              −
              . 1      .
                       1/2        2
                                  .         . hape	of f
                                            s
             m
             . ax       I
                        .P      m
                                . in




                                            .        .   .    .   .   .
Combinations	of	monotonicity	and	concavity
        .                                .
        increasing,                      decreasing,
        concave                          concave
        down                             down

                      I
                      .I        I
                                .


                            .



                      I
                      .II       I
                                .V

        .                                .
        decreasing,                      increasing,
        concave up                       concave up

                                     .      .    .     .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .        −
                              .        .
                                       +    .′ (x)
                                            f
                                    .
           ↗−
           . . 1   ↘
                   .          ↘ .
                              .   2    ↗
                                       .    m
                                            .′′ onotonicity
          −
          . −     −
                  . − . . +  +        . +
                                      +     f
                                            . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1      ⌣        .
                                       ⌣    c
                                            . oncavity
               7
               ..    −
                     . 6  1/2   −.
                                . 20        f
                                            .(x)
                          .
           . . 1
              −        .
                       1/2        2
                                  .         . hape	of f
                                            s
             m
             . ax       I
                        .P      m
                                . in




                                            .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .       −
                             .        .
                                      +    .′ (x)
                                           f
                                   .
           ↗−
           . . 1   ↘
                   .         ↘ .
                             .   2    ↗
                                      .    m
                                           .′′ onotonicity
          −
          . −     −
                  . − . . + +        . +
                                     +     f
                                           . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1     ⌣        .
                                      ⌣    c
                                           . oncavity
               7
               ..    −
                     . 6 1/2   −.
                               . 20        f
                                           .(x)
                         .
           . . 1 . ./2
              −        1         2
                                 .         . hape	of f
                                           s
             m
             . ax      I
                       .P      m
                               . in




                                           .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .       −
                             .        .
                                      +    .′ (x)
                                           f
                                   .
           ↗−
           . . 1   ↘
                   .         ↘ .
                             .   2    ↗
                                      .    m
                                           .′′ onotonicity
          −
          . −     −
                  . − . . + +        . +
                                     +     f
                                           . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1     ⌣        .
                                      ⌣    c
                                           . oncavity
               7
               ..    −
                     . 6 1/2   −.
                               . 20        f
                                           .(x)
                         .
           . . 1 . ./2 .
              −        1         2
                                 .         . hape	of f
                                           s
             m
             . ax      I
                       .P      m
                               . in




                                           .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .       −
                             .        .
                                      +    .′ (x)
                                           f
                                   .
           ↗−
           . . 1   ↘
                   .         ↘ .
                             .   2    ↗
                                      .    m
                                           .′′ onotonicity
          −
          . −     −
                  . − . . + +        . +
                                     +     f
                                           . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1     ⌣        .
                                      ⌣    c
                                           . oncavity
               7
               ..    −
                     . 6 1/2   −.
                               . 20        f
                                           .(x)
                         .
           . . 1 . ./2 .
              −        1         2
                                 .     .   . hape	of f
                                           s
             m
             . ax      I
                       .P      m
                               . in




                                           .        .   .    .   .   .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10




                                .   .   .   .   .   .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10
   (Step	0)	We	know f(0) = 10 and lim f(x) = +∞. Not	too	many
                                    x→±∞
   other	points	on	the	graph	are	evident.




                                            .   .   .   .   .   .
Step	1: Monotonicity



               f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)




                                           .       .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                      .




                                               .       .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                     0
                     ..
                                                   . x2
                                                   4
                     0
                     .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0
                                                   . x2
                                                   4
                    0
                    .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +
                                                   . x2
                                                   4
                    0
                    .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +             .
                                            +
                                                    . x2
                                                    4
                    0
                    .
                                       0
                                       ..
                                                    . x − 3)
                                                    (
                                       3
                                       .




                                                .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +             .
                                            +
                                                    . x2
                                                    4
                    0
                    .
                  −
                  .                    0
                                       ..
                                                    . x − 3)
                                                    (
                                       3
                                       .




                                                .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +             .
                                            +
                                                    . x2
                                                    4
                    0
                    .
                  −
                  .           −
                              .        0
                                       ..
                                                    . x − 3)
                                                    (
                                       3
                                       .




                                                .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                     0
                     ..                0
                                       ..          .′ (x)
                                                   f
                     0
                     .                 3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                  − 0
                  . ..                 0
                                       ..          .′ (x)
                                                   f
                    0
                    .                  3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                  − 0
                  . ..        −
                              .        0
                                       ..          .′ (x)
                                                   f
                    0
                    .                  3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                  − 0
                  . ..        −
                              .        .. .
                                       0 +         .′ (x)
                                                   f
                    0
                    .                  3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                 − 0
                 . ..         −
                              .        .. .
                                       0 +         .′ (x)
                                                   f
                 ↘ 0
                 . .                   3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                 − 0
                 . ..        −
                             .         .. .
                                       0 +         .′ (x)
                                                   f
                 ↘ 0
                 . .         ↘
                             .         3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                 − 0
                 . ..        −
                             .         .. .
                                       0 +         .′ (x)
                                                   f
                 ↘ 0
                 . .         ↘
                             .         3 ↗
                                       . .         f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .         .. .
                                        0 +
                                                   . x − 3)
                                                   (
                                        3
                                        .
                 − 0
                 . ..        −
                             .          .. .
                                        0 +        .′ (x)
                                                   f
                 ↘ 0
                 . .         ↘
                             .          3 ↗
                                        . .        f
                                                   .(x)
                                      m
                                      . in




                                               .            .   .   .   .   .
Step	2: Concavity



               f′′ (x) = 12x2 − 24x = 12x(x − 2)




                                           .   .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                         .




                                                 .   .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                        0
                        ..
                                                     1
                                                     . 2x
                        0
                        .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..
                                                     1
                                                     . 2x
                      0
                      .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +
                                                     1
                                                     . 2x
                      0
                      .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                                    0
                                    ..
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .               0
                                    ..
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                        0
                        ..          0
                                    ..               .′′ (x)
                                                     f
                        0
                        .           2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0              0
                                    ..               .′′ (x)
                                                     f
                       0
                       .            2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..               .′′ (x)
                                                     f
                       0
                       .            2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                       0
                       .            2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0             2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢     2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢     2
                                    .     .
                                          ⌣          f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢     2
                                    .     .
                                          ⌣          f
                                                     . (x )
                        I
                        .P




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .      0
                                     ..   .
                                          +
                                                     . −2
                                                     x
                                     2
                                     .
                   . + ..
                   + 0       −
                             . −     0
                                     ..   . +
                                          +          .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢      2
                                     .     .
                                           ⌣         f
                                                     . (x )
                        I
                        .P          I
                                    .P




                                                 .        .    .   .   .   .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                   1.
                   .0          −       −.
                               . .6 . 17              f
                                                      .(x)
                    0
                    .            2
                                 .      3
                                        .             s
                                                      . hape
                   I
                   .P           I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0           2
                                 .      3
                                        .             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0    .      2
                                 .      3
                                        .             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0    .      2
                                 .    . .
                                        3             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0    .      2
                                 .    . . .
                                        3             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Outline


  The	Procedure

  Simple	examples
     A cubic	function
     A quartic	function

  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together
    Logarithmic



                                            .   .   .   .   .   .
Example
                   √
Graph f(x) = x +       |x|




                             .   .   .   .   .   .
Example
                   √
Graph f(x) = x +       |x|
This	function	looks	strange	because	of	the	absolute	value. But
whenever	we	become	nervous, we	can	just	take	cases.




                                            .   .    .   .       .   .
Step	0: Finding	Zeroes

                √
   f(x) = x +       |x|
       First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
       f(x) > 0 if x is	positive.




                                                 .    .    .    .       .   .
Step	0: Finding	Zeroes

                √
   f(x) = x +       |x|
       First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
       f(x) > 0 if x is	positive.
       Are	there	negative	numbers	which	are	zeroes	for f?




                                                 .    .    .    .       .   .
Step	0: Finding	Zeroes

                √
   f(x) = x +       |x|
       First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
       f(x) > 0 if x is	positive.
       Are	there	negative	numbers	which	are	zeroes	for f?
                                √
                             x + −x = 0
                                √
                                  −x = −x
                                      −x = x2
                                   x2 + x = 0

       The	only	solutions	are x = 0 and x = −1



                                                 .    .    .    .       .   .
Step	0: Asymptotic	behavior

                √
   f(x) = x +       |x|
        lim f(x) = ∞, because	both	terms	tend	to ∞.
       x→∞




                                             .   .    .   .   .   .
Step	0: Asymptotic	behavior

                √
   f(x) = x +       |x|
        lim f(x) = ∞, because	both	terms	tend	to ∞.
       x→∞
        lim f(x) is	indeterminate	of	the	form −∞ + ∞. It’s	the
       x→−∞                 √
       same	as lim (−y + y)
                    y→+∞




                                             .    .   .    .     .   .
Step	0: Asymptotic	behavior

                √
   f(x) = x +       |x|
        lim f(x) = ∞, because	both	terms	tend	to ∞.
       x→∞
        lim f(x) is	indeterminate	of	the	form −∞ + ∞. It’s	the
       x→−∞                 √
       same	as lim (−y + y)
                    y→+∞

                                                          √
                                  √            √            y+y
                      lim (−y +       y) = lim ( y − y) · √
                    y→+∞                   y→∞              y+y
                                              y − y2
                                        = lim √      = −∞
                                          y→∞   y+y




                                                    .   .   .     .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x

   Notice
       f′ (x) > 0 when x > 0




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x

   Notice
       f′ (x) > 0 when x > 0
        lim f′ (x) = ∞
       x→0+




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x

   Notice
       f′ (x) > 0 when x > 0
        lim f′ (x) = ∞
       x→0+
        lim f′ (x) = 1
       x→∞




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   If x is	negative, we	have

                          d (    √ )          1
                 f′ (x) =     x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0.




                                            .    .   .   .       .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   If x is	negative, we	have

                          d (    √ )          1
                 f′ (x) =     x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0. Notice
        lim f′ (x) = −∞
       x→0−




                                            .    .   .   .       .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   If x is	negative, we	have

                          d (    √ )          1
                 f′ (x) =     x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0. Notice
        lim f′ (x) = −∞
       x→0−
        lim f′ (x) = 1
       x→−∞




                                            .    .   .   .       .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4




                                             .    .    .   .       .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.




                                              .       .   .   .    .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                            0
                            ..   ∓.
                                 . ∞                              . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0
                            ..   ∓.
                                 . ∞                              . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞                              . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . 1. .                                 f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . 1. .             ↗
                                              .                   f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . 1. .             ↗
                                              .                   f
                                                                  .(x)
                       .   max


                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . .1 . .           ↗
                                              .                   f
                                                                  .(x)
                       .   max min


                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . .1 . .           ↗
                                              .                   f
                                                                  .(x)
                       .   max min


                                              .       .   .   .              .   .
Step	2: Concavity
      If x > 0, then
                               (               )
                  ′′      d           1               1
                  f (x) =          1 + x−1/2       = − x−3/2
                          dx          2               4
      This	is	negative	whenever x > 0.




                                                    .   .   .   .   .   .
Step	2: Concavity
      If x > 0, then
                               (               )
                  ′′      d           1               1
                  f (x) =          1 + x−1/2       = − x−3/2
                          dx          2               4
      This	is	negative	whenever x > 0.
      If x < 0, then
                          (               )
                ′′     d       1     −1/2      1
               f (x) =      1 − (−x)        = − (−x)−3/2
                       dx      2               4
      which	is	also	always	negative	for	negative x.




                                                    .   .   .   .   .   .
Step	2: Concavity
      If x > 0, then
                               (               )
                  ′′      d           1               1
                  f (x) =          1 + x−1/2       = − x−3/2
                          dx          2               4
      This	is	negative	whenever x > 0.
      If x < 0, then
                          (               )
                ′′     d       1     −1/2      1
               f (x) =      1 − (−x)        = − (−x)−3/2
                       dx      2               4
      which	is	also	always	negative	for	negative x.
                                 1
      In	other	words, f′′ (x) = − |x|−3/2 .
                                 4




                                                    .   .   .   .   .   .
Step	2: Concavity
       If x > 0, then
                                (               )
                   ′′      d           1               1
                   f (x) =          1 + x−1/2       = − x−3/2
                           dx          2               4
       This	is	negative	whenever x > 0.
       If x < 0, then
                           (               )
                 ′′     d       1     −1/2      1
                f (x) =      1 − (−x)        = − (−x)−3/2
                        dx      2               4
       which	is	also	always	negative	for	negative x.
                                  1
       In	other	words, f′′ (x) = − |x|−3/2 .
                                  4
   Here	is	the	sign	chart:

                        −
                        . −          −.
                                     . ∞            −
                                                    . −             f′′
                                                                  . . (x )
                         .
                         ⌢                           .
                                                     ⌢            .
                                       0
                                       .                            f
                                                                    .(x)
                                                     .    .   .    .     .   .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞      0
            ..             .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
           −
           . 1            −
                          . .41    0
                                   .                           s
                                                               . hape
     .    zero        .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
       . . 1
         −                −
                          . .41    0
                                   .                           s
                                                               . hape
     . zero           .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
       . . 1
         −           .    −
                          . .41    0
                                   .                           s
                                                               . hape
     . zero           .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
       . . 1
         −           .    −
                          . .41 . .0                           s
                                                               . hape
     . zero           .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                                 ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +               . 1 (x)
                                                            +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .                ↗m
                                                             . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −             . ∞ (x)
                                                           − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢                . . oncavity
                                                             ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                      . ∞ x)
                                                           + .(f
                             .
       . . 1
         −           .    −
                          . .41 . .0           .                 s
                                                                 . hape
     . zero           .   max min




                                           .       .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                                 ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +               . 1 (x)
                                                            +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .                ↗m
                                                             . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −             . ∞ (x)
                                                           − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢                . . oncavity
                                                             ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                      . ∞ x)
                                                           + .(f
                             .
       . . 1
         −           .    −
                          . .41 . .0           .                 s
                                                                 . hape
     . zero           .   max min




                                           .       .   .     .       .    .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Example
                    2
Graph f(x) = xe−x




                        .   .   .   .   .   .
Example
                    2
Graph f(x) = xe−x
Before	taking	derivatives, we	notice	that f is	odd, that f(0) = 0,
and lim f(x) = 0
    x→∞




                                              .    .    .   .    .   .
Step	1: Monotonicity
                2
   If f(x) = xe−x , then
                             2      2       (       )    2
             f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                      (     √ )(      √ )     2
                    = 1 − 2x 1 + 2x e−x

                    2
   The	factor e−x is	always	positive	so	it	doesn’t	figure	into	the	sign
   of f′ (x). So	our	sign	chart	looks	like	this:

            .
            +                           ..
                                        +       0
                                                .         −
                                                          .                    √
                                              √.                      . −
                                                                      1            2x
                                              . 1/2
            −
            .                0
                             ..         .
                                        +                 .
                                                          +                    √
                             √                                        1
                                                                      . +          2x
                         −
                         .        1/2
                                                                       ′
            −
            .                0
                             ..         .
                                        +       0
                                                .         −
                                                          .           f
                                                                      . (x)
                             √                √.
            ↘
            .             − 1/2         ↗
                                        .                 ↘
                                                          .           f
                                                                      . (x )
                        . .               .   . 1/2
                                               max
                            min

                                                      .       .   .        .       .    .
Step	2: Concavity
                          2
   If f′ (x) = (1 − 2x2 )e−x , we	know
                        2               2       (        )    2
      f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                               2
            = 2x(2x2 − 3)e−x

           −
           .             −
                         .     0
                               ..   .
                                    +                .
                                                     +
                                                                 .x
                                                                 2
                               0
                               .
           −
           .             −
                         .          −
                                    .      0
                                           .         .
                                                     +           √     √
                                         √.                      . 2x − 3
                                         . 3/2
           −
           .      0
                  ..     .
                         +          .
                                    +                .
                                                     +           √     √
                  √                                              . 2x + 3
               − 3/2
               .
          −
          . −    .. . +
                 0 +           0
                               ..   −
                                    . − .. 0     . +
                                                 +               .′′ (x)
                                                                 f
           .
           ⌢     √   .
                     ⌣               ⌢ √3
                                     .            .
                                                  ⌣
               − 3/2 .         0
                               .                                 f
                                                                 .(x)
             . .                       . . /2
                 IP            IP         IP


                                                 .       .   .      .      .   .
Step	3: Synthesis

                                              2
                                f(x) = xe−x


       −
       .           − 0 +
                   . .. .            + . −                          −       .′ (x)
                                                                            f
                      √            . . √. .
                                         0                          .
       ↘
       .           ↘ 1/2 .
                   ..
                    −    ↗           ↗      ↘
                                     . . 1/2.                       ↘
                                                                    .       m
                                                                            . onotonic

      −
      . −       .. . +
                0+         + 0 −
                           . + .. . −             − 0
                                                  . − ..        . +
                                                                +           .′′ (x)
                                                                            f
       .
       ⌢        √.  ⌣       ⌣ . .
                            .                      . √3          .
              − 3/2
              .                0 ⌢                 ⌢
                                                     . /2
                                                                 ⌣          c
                                                                            . oncavity

                √                               √
              − 2e3 . √1
              .     3
                       − 2e                .√1 . 2e3
                                                   3
                                                                            f
                                                                            .(x)
                 .       .         0
                                   ..        2e
                                              . √.
       .        √ . √                     √ .
              −
            . . . .
                   3/2− 1/2 .
                           .
                                   . .
                                   0
                                      .   . 1/2 . 3/2
                                              .
                                                                    .       s
                                                                            . hape
                IP min            IP       max IP


                                                     .      .   .       .    .        .
Step	4: Graph

                                 f
                                 .(x)

                                       (√        )(
                                       . 1/2, √1    √      √ )
                           2                   2e .   3/2,   3
             .(x) = xe−x
             f                              .               2e3
                                                 .
                                   .                                      x
                                                                          .
                                       . 0, 0 )
                                       (
   (                    .
      √       √ )             .
   . − 3/2, − 2e3 ( √
                 3                  )
                     . − 1/2, − √1
                                 2e
                      √                       √
                   − 2e3 √1
                   .      3
                            −
                            . 2e        .√1 . 2e33
                                                                          f
                                                                          .(x)
                        .     .      0
                                     ..   2e
             .         √ √              √. √.
               .   − ..
                   . . 3/2 1/2 . . . . . .1/2.. 3/2
                           − .       0                        .           s
                                                                          . hape
                       IP min       IP  max IP
                                                  .   .   .       .   .   .
Example
               1   1
Graph f(x) =     + 2
               x  x




                       .   .   .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined.




                                                .   .     .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                1     1    x+1
                         f(x) = + 2 =            .
                                x    x       x2
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                               x+1
                            lim    = ∞,
                            x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph.




                                                .   .   .   .   .    .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                1     1    x+1
                         f(x) = + 2 =            .
                                x    x       x2
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                              x+1
                           lim    = ∞,
                           x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph. We	can	make	a	sign
   chart	as	follows:
                 −
                 .    0
                      ..         .          .
                                            +
                                                    x
                                                    . +1
                     −
                     . 1
                 .
                 +             0
                               ..           .
                                            +
                                                    .2
                                                    x
                               0
                               .
                 −
                 .    .. .
                      0 +      ∞
                               ..           .
                                            +
                                                    f
                                                    . (x )
                     −
                     . 1       0
                               .
                                                .   .        .   .   .   .
For	horizontal	asymptotes, notice	that

                               x+1
                         lim       = 0,
                         x→∞    x2
so y = 0 is	a	horizontal	asymptote	of	the	graph. The	same	is	true
at −∞.




                                            .   .    .   .    .     .
Step	1: Monotonicity




                       .   .   .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                 .   −
                                           .
                                                   −
                                                   . (x + 2)
                   −
                   . 2
               −
               .                      0
                                      ..   .
                                           +
                                                   .3
                                                   x
                                      0
                                      .




                                               .        .   .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     0
                                     ..   .
                                          +
                                                  .3
                                                  x
                                     0
                                     .
               −
               .    0
                    ..         .
                               +     ∞
                                     ..   −
                                          .       . ′ (x )
                                                  f
                   −
                   . 2               0
                                     .            f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     0
                                     ..   .
                                          +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .  0            .
                               +     ∞
                                     ..   −
                                          .       . ′ (x )
                                                  f
               . −
               ↘ . 2                 0
                                     .            f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     0
                                     ..   .
                                          +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .  0            .
                               +     ∞
                                     ..   −
                                          .       . ′ (x )
                                                  f
               . −
               ↘ . 2           ↗
                               .     0
                                     .            f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     .. .
                                     0 +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .  0            .
                               +     ∞ −
                                     .. .         . ′ (x )
                                                  f
               . −
               ↘ . 2           ↗
                               .     0 ↘
                                     . .          f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     .. .
                                     0 +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .   0           .
                               +     ∞ −
                                     .. .         . ′ (x )
                                                  f
               .  −
               ↘ . 2           ↗
                               .     0 ↘
                                     . .          f
                                                  .(x)
                 m
                 . in



                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                      .. .
                                      0 +
                                                  .3
                                                  x
                                      0
                                      .
               − ..
               .   0           .
                               +     ∞ −
                                     .. .         . ′ (x )
                                                  f
               .  −
               ↘ . 2           ↗
                               .      0 ↘
                                      . .         f
                                                  .(x)
                 m
                 . in                V
                                     .A



                                              .        .     .   .   .   .
Step	2: Concavity




                    .   .   .   .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   0
                                                 ..        .
                                                           +
                                                                   .4
                                                                   x
                                                 0
                                                 .
                  0
                  ..                             ∞
                                                 ..                .′ (x)
                                                                   f
                 −
                 . 3                             0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   0
                                                 ..        .
                                                           +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                                ∞
                                                 ..                .′ (x)
                                                                   f
               −
               . 3                               0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   0
                                                 ..        .
                                                           +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                  . +
                                   +             ∞
                                                 ..                .′ (x)
                                                                   f
               −
               . 3                               0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                  . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
               −
               . 3                               0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
               0                   . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                                 0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
               0                   . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣            0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
               0                   . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣            . .
                                                 0 ⌣               f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                  . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣            . .
                                                 0 ⌣               f
                                                                   .(x)
               I
               .P




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                    .. .
                                                  0 +
                                                                   .4
                                                                   x
                                                  0
                                                  .
           −
           . − ..
                0                  . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣             . .
                                                  0 ⌣              f
                                                                   .(x)
               I
               .P                                V
                                                 .A




                                                       .       .    .       .   .   .
Step	3: Synthesis
                                           .

                  − ..
                  .  0            .
                                  +       ∞ −
                                          .. .         .′
                                                       f
                  . −
                  ↘ . 2           ↗
                                  .       0 ↘
                                          . .          m
                                                       . onotonicity
        −
        . − ..
            0               . +
                            +             ∞ −
                                          .. . −       .′′
                                                       f
         .
         ⌢ . 3
            −                .
                             ⌣            . .
                                          0 ⌣          c
                                                       . oncavity

      0
      .   −
          . 2/9     −
                    . 1/4          0
                                   ..     ∞
                                          ..        0f
                                                    ..
             .         .
    −
    . ∞ . . 3
        − −          −
                     . 2          . 1 .
                                  − +     0
                                          .    .
                                               +   ∞s
                                                   . . hape	of f




                                               .   .     .    .    .   .
Step	3: Synthesis
                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   . −
                   ↘ . 2           ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ −
                                           .. . −       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
              .         .
    −
    . ∞ . . 3
         − −          −
                      . 2          . 1 .
                                   − +     0
                                           .    .
                                                +   ∞s
                                                    . . hape	of f
     H
     . A




                                                .   .     .    .    .   .
Step	3: Synthesis
                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   . −
                   ↘ . 2           ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ −
                                           .. . −       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
              .         .
    −
    . ∞ . . 3
         − −          −
                      . 2          . 1 .
                                   − +     0
                                           .    .
                                                +   ∞s
                                                    . . hape	of f
     . A .
     H




                                                .   .     .    .    .   .
Step	3: Synthesis
                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   . −
                   ↘ . 2           ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ −
                                           .. . −       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
               .        .
    −
    . ∞ . . 3
         − −          −
                      . 2          . 1 .
                                   − +     0
                                           .    .
                                                +   ∞s
                                                    . . hape	of f
     . A .
     H       I
             .P




                                                .   .     .    .    .   .
Step	3: Synthesis
                                         .

                 − ..
                 .  0           .
                                +       ∞ −
                                        .. .         .′
                                                     f
                 . −
                 ↘ . 2          ↗
                                .       0 ↘
                                        . .          m
                                                     . onotonicity
        −
        . − ..
            0             . +
                          +             ∞ −
                                        .. . −       .′′
                                                     f
         .
         ⌢ . 3
            −              .
                           ⌣            . .
                                        0 ⌣          c
                                                     . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4          0
                                 ..     ∞
                                        ..        0f
                                                  ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2          . 1 .
                                − +     0
                                        .    .
                                             +   ∞s
                                                 . . hape	of f
     . A .
     H       .P .
             I




                                             .   .     .    .    .   .
Step	3: Synthesis
                                         .

                 − ..
                 .  0           .
                                +       ∞ −
                                        .. .         .′
                                                     f
                 . −
                 ↘ . 2          ↗
                                .       0 ↘
                                        . .          m
                                                     . onotonicity
        −
        . − ..
            0             . +
                          +             ∞ −
                                        .. . −       .′′
                                                     f
         .
         ⌢ . 3
            −              .
                           ⌣            . .
                                        0 ⌣          c
                                                     . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4          0
                                 ..     ∞
                                        ..        0f
                                                  ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2          . 1 .
                                − +     0
                                        .    .
                                             +   ∞s
                                                 . . hape	of f
     . A .
     H       .P . . in
             I    m




                                             .   .     .    .    .   .
Step	3: Synthesis
                                        .

                 − ..
                 .  0          .
                               +       ∞ −
                                       .. .         .′
                                                    f
                 . −
                 ↘ . 2         ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
        −
        . − ..
            0            . +
                         +             ∞ −
                                       .. . −       .′′
                                                    f
         .
         ⌢ . 3
            −             .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..     ∞
                                       ..        0f
                                                 ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − +     0
                                       .    .
                                            +   ∞s
                                                . . hape	of f
     . A .
     H       .P . . in .
             I    m




                                            .   .     .    .    .   .
Step	3: Synthesis
                                        .

                 − ..
                 .  0          .
                               +       ∞ −
                                       .. .         .′
                                                    f
                 . −
                 ↘ . 2         ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
        −
        . − ..
            0            . +
                         +             ∞ −
                                       .. . −       .′′
                                                    f
         .
         ⌢ . 3
            −             .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..     ∞
                                       ..        0f
                                                 ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − +     0
                                       .    .
                                            +   ∞s
                                                . . hape	of f
     . A .
     H       .P . . in .
             I    m             0
                                .




                                            .   .     .    .    .   .
Step	3: Synthesis
                                        .

                 − ..
                 .  0          .
                               +       ∞ −
                                       .. .         .′
                                                    f
                 . −
                 ↘ . 2         ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
        −
        . − ..
            0            . +
                         +             ∞ −
                                       .. . −       .′′
                                                    f
         .
         ⌢ . 3
            −             .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..     ∞
                                       ..        0f
                                                 ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − +     0
                                       .    .
                                            +   ∞s
                                                . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 .
                                .




                                            .   .     .    .    .   .
Step	3: Synthesis
                                     .

                 − ..
                 .  0          .
                               +    ∞ −
                                    .. .         .′
                                                 f
                 . −
                 ↘ . 2         ↗
                               .    0 ↘
                                    . .          m
                                                 . onotonicity
        −
        . − ..
            0            . +
                         +          ∞ −
                                    .. . −       .′′
                                                 f
         .
         ⌢ . 3
            −             .
                          ⌣         . .
                                    0 ⌣          c
                                                 . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..   ∞
                                     ..       0f
                                              ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − + .  0 .
                                        +    ∞s
                                             . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 . .A
                                .    V




                                         .   .     .    .    .   .
Step	3: Synthesis
                                     .

                 − ..
                 .  0          .
                               +    ∞ −
                                    .. .         .′
                                                 f
                 . −
                 ↘ . 2         ↗
                               .    0 ↘
                                    . .          m
                                                 . onotonicity
        −
        . − ..
            0            . +
                         +          ∞ −
                                    .. . −       .′′
                                                 f
         .
         ⌢ . 3
            −             .
                          ⌣         . .
                                    0 ⌣          c
                                                 . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..   ∞
                                     ..       0f
                                              ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − + .  0 .
                                        +    ∞s
                                             . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 . .A .
                                .    V




                                         .   .     .    .    .   .
Step	3: Synthesis
                                       .

                 − ..
                 .  0          .
                               +      ∞ −
                                      .. .         .′
                                                   f
                 . −
                 ↘ . 2         ↗
                               .      0 ↘
                                      . .          m
                                                   . onotonicity
        −
        . − ..
            0            . +
                         +            ∞ −
                                      .. . −       .′′
                                                   f
         .
         ⌢ . 3
            −             .
                          ⌣           . .
                                      0 ⌣          c
                                                   . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..   ∞
                                     ..    0f
                                           ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − + .  0 .
                                        + ∞s
                                          . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 . .A . . A
                                .    V    H




                                           .   .     .    .   .    .
Step	4: Graph

                                   y
                                   .




                                   .               x
                                                   .
               .    .
         . −3, −2/9) . −2, −1/4)
         (            (



                                       .   .   .       .   .   .
Problem
Graph f(x) = cos x − x




                         .   .   .   .   .   .
Problem
Graph f(x) = cos x − x


                         y
                         .




                             .




                                 .   .   .   .   .   .
Problem
Graph f(x) = x ln x2




                       .   .   .   .   .   .
Problem
Graph f(x) = x ln x2

                       y
                       .




                           .           x
                                       .




                               .   .       .   .   .   .

More Related Content

PDF
Lesson 18: Graphing
PDF
Lesson 21: Curve Sketching (Section 4 version)
PDF
Actividad 4 calculo diferencial
PDF
Lesson 21: Curve Sketching (slides)
PDF
PDF
Lesson03 The Concept Of Limit 027 Slides
PDF
Lesson 21: Curve Sketching (Section 10 version)
PDF
Lesson 24: Optimization II
Lesson 18: Graphing
Lesson 21: Curve Sketching (Section 4 version)
Actividad 4 calculo diferencial
Lesson 21: Curve Sketching (slides)
Lesson03 The Concept Of Limit 027 Slides
Lesson 21: Curve Sketching (Section 10 version)
Lesson 24: Optimization II

What's hot (20)

PPTX
Jacob's and Vlad's D.E.V. Project - 2012
PDF
001 basic concepts
DOC
01 plain
PDF
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
PDF
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
PPT
Mat 128 11 3
PDF
Lesson 16: Derivatives of Logarithmic and Exponential Functions
PDF
Chapter 15
PPT
Chapter 3
PDF
Lesson 29: Linear Programming I
PDF
Math 21a Midterm I Review
PDF
Lesson 54
PDF
Lesson 13: Derivatives of Logarithmic and Exponential Functions
PDF
Pc12 sol c03_3-5
PDF
Lesson 22: Optimization II (Section 10 version)
PDF
Lesson 22: Optimization II (Section 4 version)
PDF
Chapter 07
PDF
P2 Graphs Function
Jacob's and Vlad's D.E.V. Project - 2012
001 basic concepts
01 plain
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Mat 128 11 3
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Chapter 15
Chapter 3
Lesson 29: Linear Programming I
Math 21a Midterm I Review
Lesson 54
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Pc12 sol c03_3-5
Lesson 22: Optimization II (Section 10 version)
Lesson 22: Optimization II (Section 4 version)
Chapter 07
P2 Graphs Function
Ad

Viewers also liked (20)

PDF
Lesson 29: Integration by Substition
PDF
Lesson 25: Areas and Distances; The Definite Integral
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 20: The Mean Value Theorem
PDF
Lesson 24: Optimization
PDF
Lesson 21: Derivatives and the Shapes of Curves
PDF
Lesson 22: Graphing
PDF
Lesson 29: Integration by Substition (worksheet solutions)
PDF
Lesson 23: Antiderivatives
PDF
A Multiformat Document Workflow With Docutils
PDF
Lesson19 Maximum And Minimum Values 034 Slides
PDF
Lesson 1: Functions and their Representations
PDF
Lesson 21: Derivatives and the Shapes of Curves
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 23: Antiderivatives
PDF
Lesson 20: The Mean Value Theorem
PDF
Lesson 24: Optimization
PDF
Lesson 3: The Concept of Limit
Lesson 29: Integration by Substition
Lesson 25: Areas and Distances; The Definite Integral
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Lesson 27: Evaluating Definite Integrals
Lesson 20: The Mean Value Theorem
Lesson 24: Optimization
Lesson 21: Derivatives and the Shapes of Curves
Lesson 22: Graphing
Lesson 29: Integration by Substition (worksheet solutions)
Lesson 23: Antiderivatives
A Multiformat Document Workflow With Docutils
Lesson19 Maximum And Minimum Values 034 Slides
Lesson 1: Functions and their Representations
Lesson 21: Derivatives and the Shapes of Curves
Lesson 27: Evaluating Definite Integrals
Lesson 23: Antiderivatives
Lesson 20: The Mean Value Theorem
Lesson 24: Optimization
Lesson 3: The Concept of Limit
Ad

Similar to Lesson 22: Graphing (20)

PDF
Lesson 21: Curve Sketching (slides)
PPT
2.2 Polynomial Function Notes
DOC
1st 2practice
PDF
Lesson 8: Basic Differentiation Rules
PDF
Lesson 8: Basic Differentiation Rules
PPTX
Jackson d.e.v.
PDF
Lesson 8: Basic Differentiation Rules
PDF
PDF
solucionario de purcell 1
PPTX
Antiderivatives nako sa calculus official
PDF
Algebra 1 factorisation by grouping
KEY
AP Calculus - Tutorial
PDF
Calculus First Test 2011/10/20
PDF
PDF
Quadratic Function Presentation
PDF
Quadratic functions and models
DOC
πιασαμε τα ορια
PDF
Lesson 8: Basic Differentation Rules (slides)
PDF
Lesson 8: Basic Differentation Rules (slides)
PPT
125 5.4
Lesson 21: Curve Sketching (slides)
2.2 Polynomial Function Notes
1st 2practice
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
Jackson d.e.v.
Lesson 8: Basic Differentiation Rules
solucionario de purcell 1
Antiderivatives nako sa calculus official
Algebra 1 factorisation by grouping
AP Calculus - Tutorial
Calculus First Test 2011/10/20
Quadratic Function Presentation
Quadratic functions and models
πιασαμε τα ορια
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
125 5.4

More from Matthew Leingang (20)

PPT
Making Lesson Plans
PPT
Streamlining assessment, feedback, and archival with auto-multiple-choice
PDF
Electronic Grading of Paper Assessments
PDF
Lesson 27: Integration by Substitution (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 27: Integration by Substitution (handout)
PDF
Lesson 26: The Fundamental Theorem of Calculus (handout)
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PDF
Lesson 25: Evaluating Definite Integrals (handout)
PDF
Lesson 24: Areas and Distances, The Definite Integral (handout)
PDF
Lesson 24: Areas and Distances, The Definite Integral (slides)
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 22: Optimization Problems (slides)
PDF
Lesson 22: Optimization Problems (handout)
PDF
Lesson 21: Curve Sketching (handout)
PDF
Lesson 20: Derivatives and the Shapes of Curves (slides)
PDF
Lesson 20: Derivatives and the Shapes of Curves (handout)
PDF
Lesson 19: The Mean Value Theorem (slides)
Making Lesson Plans
Streamlining assessment, feedback, and archival with auto-multiple-choice
Electronic Grading of Paper Assessments
Lesson 27: Integration by Substitution (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 27: Integration by Substitution (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (handout)
Lesson 21: Curve Sketching (handout)
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 19: The Mean Value Theorem (slides)

Recently uploaded (20)

PPTX
Configure Apache Mutual Authentication
PDF
4 layer Arch & Reference Arch of IoT.pdf
PPT
Module 1.ppt Iot fundamentals and Architecture
PPTX
The various Industrial Revolutions .pptx
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PDF
Comparative analysis of machine learning models for fake news detection in so...
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
Improvisation in detection of pomegranate leaf disease using transfer learni...
PPT
Geologic Time for studying geology for geologist
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
Architecture types and enterprise applications.pdf
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PPTX
Microsoft Excel 365/2024 Beginner's training
PPTX
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
PPT
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
PDF
Consumable AI The What, Why & How for Small Teams.pdf
Configure Apache Mutual Authentication
4 layer Arch & Reference Arch of IoT.pdf
Module 1.ppt Iot fundamentals and Architecture
The various Industrial Revolutions .pptx
A proposed approach for plagiarism detection in Myanmar Unicode text
sbt 2.0: go big (Scala Days 2025 edition)
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
sustainability-14-14877-v2.pddhzftheheeeee
Comparative analysis of machine learning models for fake news detection in so...
Taming the Chaos: How to Turn Unstructured Data into Decisions
Improvisation in detection of pomegranate leaf disease using transfer learni...
Geologic Time for studying geology for geologist
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Developing a website for English-speaking practice to English as a foreign la...
Architecture types and enterprise applications.pdf
NewMind AI Weekly Chronicles – August ’25 Week III
Microsoft Excel 365/2024 Beginner's training
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
Consumable AI The What, Why & How for Small Teams.pdf

Lesson 22: Graphing

  • 1. Section 4.4 Curve Sketching V63.0121.027, Calculus I November 17, 2009 Announcements Next written assignment will be due Wednesday, Nov 25 next and last quiz will be the week after Thanksgiving Final Exam: Friday, December 18, 2:00–3:50pm . . . . . .
  • 2. Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . .
  • 3. Objective Given a function, graph it completely, indicating zeroes asymptotes if applicable critical points local/global max/min inflection points . . Image credit: Image Of Surgery . . . . . .
  • 4. The Increasing/Decreasing Test Theorem (The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Proof. Pick two points x and y in (a, b) with x < y. We must show f(x) < f(y). By MVT there exists a point c in (x, y) such that f(y) − f(x) = f′ (c) > 0. y−x So f(y) − f(x) = f′ (c)(y − x) > 0. . . . . . .
  • 5. Theorem (Concavity Test) If f′′ (x) > 0 for all x in I, then the graph of f is concave upward on I If f′′ (x) < 0 for all x in I, then the graph of f is concave downward on I Proof. Suppose f′′ (x) > 0 on I. This means f′ is increasing on I. Let a and x be in I. The tangent line through (a, f(a)) is the graph of L(x) = f(a) + f′ (a)(x − a) f(x) − f(a) By MVT, there exists a b between a and x with = f′ (b). x−a So f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x) . . . . . .
  • 6. Graphing Checklist To graph a function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . .
  • 7. Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . .
  • 8. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. . . . . . .
  • 9. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. (Step 0) First, let’s find the zeros. We can at least factor out one power of x: f(x) = x(2x2 − 3x − 12) so f(0) = 0. The other factor is a quadratic, so we the other two roots are √ √ 3 ± 32 − 4(2)(−12) 3 ± 105 x= = 4 4 It’s OK to skip this step for now since the roots are so complicated. . . . . . .
  • 10. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . . . . .
  • 11. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . .
  • 12. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . .
  • 13. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . .
  • 14. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + .′ (x) f . − . 1 2 . f .(x) . . . . . .
  • 15. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . .′ (x) f . − . 1 2 . f .(x) . . . . . .
  • 16. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . − . 1 2 . f .(x) . . . . . .
  • 17. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 2 . f .(x) . . . . . .
  • 18. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . f .(x) . . . . . .
  • 19. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) . . . . . .
  • 20. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax . . . . . .
  • 21. Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax m . in . . . . . .
  • 22. Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . . . . . . .
  • 23. Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f . . 1/2 f .(x) . . . . . .
  • 24. Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − .′′ (x) f . . 1/2 f .(x) . . . . . .
  • 25. Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . 1/2 f .(x) . . . . . .
  • 26. Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ . 1/2 f .(x) . . . . . .
  • 27. Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ . 1/2 . ⌣ f .(x) . . . . . .
  • 28. Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ . 1/2 . ⌣ f .(x) I .P . . . . . .
  • 29. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . . . . . .
  • 30. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. − . . . . + − . . + .′ (x) f . ↗− ↘ . . 1 . ↘ . 2 . ↗ . m . onotonicity . . . . . .
  • 31. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ . ⌢ 1/2 . . ⌣ . ⌣ c . oncavity . . . . . .
  • 32. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . − . 1 . 1/2 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 33. Combinations of monotonicity and concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . . decreasing, increasing, concave up concave up . . . . . .
  • 34. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 − . 1/2 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 35. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 − 1 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 36. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 37. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 38. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 39. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 40. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 41. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 42. Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 43. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 . . . . . .
  • 44. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 (Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many x→±∞ other points on the graph are evident. . . . . . .
  • 45. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) . . . . . .
  • 46. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . . . . . . .
  • 47. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. 0 .. . x2 4 0 . . . . . . .
  • 48. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . x2 4 0 . . . . . . .
  • 49. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . x2 4 0 . . . . . . .
  • 50. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . . . . . . .
  • 51. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . 0 .. . x − 3) ( 3 . . . . . . .
  • 52. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . 0 .. . x − 3) ( 3 . . . . . . .
  • 53. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . 0 .. . x − 3) ( 3 . . . . . . .
  • 54. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . . . . . . .
  • 55. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . 0 .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 56. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 57. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 58. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 59. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . 3 . f .(x) . . . . . .
  • 60. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 . f .(x) . . . . . .
  • 61. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) . . . . . .
  • 62. Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) m . in . . . . . .
  • 63. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) . . . . . .
  • 64. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: . . . . . . .
  • 65. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: 0 .. 1 . 2x 0 . . . . . . .
  • 66. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. 1 . 2x 0 . . . . . . .
  • 67. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + 1 . 2x 0 . . . . . . .
  • 68. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . . . . . . .
  • 69. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . 0 .. . −2 x 2 . . . . . . .
  • 70. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . 0 .. . −2 x 2 . . . . . . .
  • 71. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . −2 x 2 . . . . . . .
  • 72. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . . . . . .
  • 73. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . 0 .. 0 .. .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 74. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 0 .. .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 75. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 76. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 77. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 2 . f . (x ) . . . . . .
  • 78. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . f . (x ) . . . . . .
  • 79. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f . (x ) . . . . . .
  • 80. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f . (x ) I .P . . . . . .
  • 81. Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f . (x ) I .P I .P . . . . . .
  • 82. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) 0 . 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 83. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 84. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 85. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . 3 s . hape I .P I .P . inm . . . . . .
  • 86. Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . inm . . . . . .
  • 87. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 88. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 89. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 90. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 91. Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 92. Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . .
  • 93. Example √ Graph f(x) = x + |x| . . . . . .
  • 94. Example √ Graph f(x) = x + |x| This function looks strange because of the absolute value. But whenever we become nervous, we can just take cases. . . . . . .
  • 95. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. . . . . . .
  • 96. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? . . . . . .
  • 97. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? √ x + −x = 0 √ −x = −x −x = x2 x2 + x = 0 The only solutions are x = 0 and x = −1 . . . . . .
  • 98. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ . . . . . .
  • 99. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the x→−∞ √ same as lim (−y + y) y→+∞ . . . . . .
  • 100. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the x→−∞ √ same as lim (−y + y) y→+∞ √ √ √ y+y lim (−y + y) = lim ( y − y) · √ y→+∞ y→∞ y+y y − y2 = lim √ = −∞ y→∞ y+y . . . . . .
  • 101. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x . . . . . .
  • 102. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 . . . . . .
  • 103. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 lim f′ (x) = ∞ x→0+ . . . . . .
  • 104. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 lim f′ (x) = ∞ x→0+ lim f′ (x) = 1 x→∞ . . . . . .
  • 105. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. . . . . . .
  • 106. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. Notice lim f′ (x) = −∞ x→0− . . . . . .
  • 107. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. Notice lim f′ (x) = −∞ x→0− lim f′ (x) = 1 x→−∞ . . . . . .
  • 108. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 . . . . . .
  • 109. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. . . . . . .
  • 110. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. 0 .. ∓. . ∞ . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 111. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 .. ∓. . ∞ . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 112. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 113. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 114. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . . 1 −4 0 . f .(x) . . . . . .
  • 115. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . 1. . f .(x) . . . . . .
  • 116. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . . . . . .
  • 117. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . max . . . . . .
  • 118. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . .1 . . ↗ . f .(x) . max min . . . . . .
  • 119. Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . .1 . . ↗ . f .(x) . max min . . . . . .
  • 120. Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. . . . . . .
  • 121. Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. . . . . . .
  • 122. Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 . . . . . .
  • 123. Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 Here is the sign chart: − . − −. . ∞ − . − f′′ . . (x ) . ⌢ . ⌢ . 0 . f .(x) . . . . . .
  • 124. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . − . 1 − . .41 0 . s . hape . zero . max min . . . . . .
  • 125. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − − . .41 0 . s . hape . zero . max min . . . . . .
  • 126. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 0 . s . hape . zero . max min . . . . . .
  • 127. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 . .0 s . hape . zero . max min . . . . . .
  • 128. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 . .0 . s . hape . zero . max min . . . . . .
  • 129. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 . .0 . s . hape . zero . max min . . . . . .
  • 130. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 131. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 132. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 133. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 134. Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 135. Example 2 Graph f(x) = xe−x . . . . . .
  • 136. Example 2 Graph f(x) = xe−x Before taking derivatives, we notice that f is odd, that f(0) = 0, and lim f(x) = 0 x→∞ . . . . . .
  • 137. Step 1: Monotonicity 2 If f(x) = xe−x , then 2 2 ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x ( √ )( √ ) 2 = 1 − 2x 1 + 2x e−x 2 The factor e−x is always positive so it doesn’t figure into the sign of f′ (x). So our sign chart looks like this: . + .. + 0 . − . √ √. . − 1 2x . 1/2 − . 0 .. . + . + √ √ 1 . + 2x − . 1/2 ′ − . 0 .. . + 0 . − . f . (x) √ √. ↘ . − 1/2 ↗ . ↘ . f . (x ) . . . . 1/2 max min . . . . . .
  • 138. Step 2: Concavity 2 If f′ (x) = (1 − 2x2 )e−x , we know 2 2 ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 = 2x(2x2 − 3)e−x − . − . 0 .. . + . + .x 2 0 . − . − . − . 0 . . + √ √ √. . 2x − 3 . 3/2 − . 0 .. . + . + . + √ √ √ . 2x + 3 − 3/2 . − . − .. . + 0 + 0 .. − . − .. 0 . + + .′′ (x) f . ⌢ √ . ⌣ ⌢ √3 . . ⌣ − 3/2 . 0 . f .(x) . . . . /2 IP IP IP . . . . . .
  • 139. Step 3: Synthesis 2 f(x) = xe−x − . − 0 + . .. . + . − − .′ (x) f √ . . √. . 0 . ↘ . ↘ 1/2 . .. − ↗ ↗ ↘ . . 1/2. ↘ . m . onotonic − . − .. . + 0+ + 0 − . + .. . − − 0 . − .. . + + .′′ (x) f . ⌢ √. ⌣ ⌣ . . . . √3 . − 3/2 . 0 ⌢ ⌢ . /2 ⌣ c . oncavity √ √ − 2e3 . √1 . 3 − 2e .√1 . 2e3 3 f .(x) . . 0 .. 2e . √. . √ . √ √ . − . . . . 3/2− 1/2 . . . . 0 . . 1/2 . 3/2 . . s . hape IP min IP max IP . . . . . .
  • 140. Step 4: Graph f .(x) (√ )( . 1/2, √1 √ √ ) 2 2e . 3/2, 3 .(x) = xe−x f . 2e3 . . x . . 0, 0 ) ( ( . √ √ ) . . − 3/2, − 2e3 ( √ 3 ) . − 1/2, − √1 2e √ √ − 2e3 √1 . 3 − . 2e .√1 . 2e33 f .(x) . . 0 .. 2e . √ √ √. √. . − .. . . 3/2 1/2 . . . . . .1/2.. 3/2 − . 0 . s . hape IP min IP max IP . . . . . .
  • 141. Example 1 1 Graph f(x) = + 2 x x . . . . . .
  • 142. Step 0 Find when f is positive, negative, zero, not defined. . . . . . .
  • 143. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + 2 = . x x x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. . . . . . .
  • 144. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + 2 = . x x x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. We can make a sign chart as follows: − . 0 .. . . + x . +1 − . 1 . + 0 .. . + .2 x 0 . − . .. . 0 + ∞ .. . + f . (x ) − . 1 0 . . . . . . .
  • 145. For horizontal asymptotes, notice that x+1 lim = 0, x→∞ x2 so y = 0 is a horizontal asymptote of the graph. The same is true at −∞. . . . . . .
  • 146. Step 1: Monotonicity . . . . . .
  • 147. Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . . . . . . .
  • 148. Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − . 0 .. . + ∞ .. − . . ′ (x ) f − . 2 0 . f .(x) . . . . . .
  • 149. Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . . ′ (x ) f . − ↘ . 2 0 . f .(x) . . . . . .
  • 150. Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . . ′ (x ) f . − ↘ . 2 ↗ . 0 . f .(x) . . . . . .
  • 151. Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . . ′ (x ) f . − ↘ . 2 ↗ . 0 ↘ . . f .(x) . . . . . .
  • 152. Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . . ′ (x ) f . − ↘ . 2 ↗ . 0 ↘ . . f .(x) m . in . . . . . .
  • 153. Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . . ′ (x ) f . − ↘ . 2 ↗ . 0 ↘ . . f .(x) m . in V .A . . . . . .
  • 154. Step 2: Concavity . . . . . .
  • 155. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . 0 .. ∞ .. .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 156. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 ∞ .. .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 157. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 . + + ∞ .. .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 158. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 159. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − 0 . f .(x) . . . . . .
  • 160. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ 0 . f .(x) . . . . . .
  • 161. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) . . . . . .
  • 162. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P . . . . . .
  • 163. Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P V .A . . . . . .
  • 164. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . . . . . .
  • 165. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f H . A . . . . . .
  • 166. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H . . . . . .
  • 167. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H I .P . . . . . .
  • 168. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . I . . . . . .
  • 169. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in I m . . . . . .
  • 170. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in . I m . . . . . .
  • 171. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in . I m 0 . . . . . . .
  • 172. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in . I m 0 . . . . . . . .
  • 173. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + . 0 . + ∞s . . hape of f . A . H .P . . in . I m 0 . .A . V . . . . . .
  • 174. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + . 0 . + ∞s . . hape of f . A . H .P . . in . I m 0 . .A . . V . . . . . .
  • 175. Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + . 0 . + ∞s . . hape of f . A . H .P . . in . I m 0 . .A . . A . V H . . . . . .
  • 176. Step 4: Graph y . . x . . . . −3, −2/9) . −2, −1/4) ( ( . . . . . .
  • 177. Problem Graph f(x) = cos x − x . . . . . .
  • 178. Problem Graph f(x) = cos x − x y . . . . . . . .
  • 179. Problem Graph f(x) = x ln x2 . . . . . .
  • 180. Problem Graph f(x) = x ln x2 y . . x . . . . . . .