SlideShare a Scribd company logo
Lessons Learned on Benchmarking
Big Data Platforms
Todor Ivanov
todor@dbis.cs.uni-frankfurt.de
Goethe University Frankfurt am Main, Germany
http://www.bigdata.uni-frankfurt.de/
Agenda
• Evaluation of Hadoop using TPCx-HS
• Comparing SQL-on-Hadoop Engines with TPC-H
• Performance Evaluation of Spark SQL using BigBench
• Evaluation of Big Data Platforms with HiBench
2
Contact Information
http://www.bigdata.uni-frankfurt.de
Robert-Mayer-Str. 10,
60325 Institut für Informatik,
Fachbereich Informatik und Mathematik
(FB12) Frankfurt Germany
Telefon: 069-798-28212
Fax: 069-798-25123
3
Industrial Partner
Technology Partners
Member of
Supported by
4
Research Areas
Our lab is currently active in the following research areas:
• Big Data Management Technologies
• Graph Databases / Linked Open Data (LOD)
• Data Analytics / Data Science
• Big Data for Common Good
5
Big Data Management Technologies
Systems:
Benchmarking Big Data platforms for performance, scalability, elasticity, fault-tolerance …
Benchmarks used:
• Yahoo Cloud Service Benchmark (YCSB) - Evaluating the performance (read/write
workloads) of NoSQL stores like Cassandra.
• HiBench - 10 workloads for evaluating the Hadoop platform in terms of speed, throughput,
HDFS bandwidth, system resource utilization and machine learning algorithms.
• BigBench – Application level benchmark consisting of 30 queries implemented in Hive and
Hadoop, based on the TPC-DS benchmark.
• TPCx-HS – The first standard Big Data Benchmark for Hadoop, based on the TeraSort
workload. 6
Member of the
Standard Performance Evaluation Corporation (SPEC)
SPEC is a non-profit corporation formed to establish, maintain and endorse a
standardized set of relevant benchmarks that can be applied to the newest
generation of high-performance computers.
The RG Big Data Working Group is a forum for individuals and organizations
interested in the big data benchmarking topic.
List of all 52 Member Organizations:
Advanced Strategic Technology LLC * ARM * bankmark UG * Barcelona Supercomputing Center * Charles University * Cisco Systems *
Cloudera, Inc * Compilaflows * Delft University of Technology * Dell
fortiss GmbH * Friedrich-Alexander-University Erlangen-Nuremberg * Goethe University Frankfurt * Hewlett-Packard * Huawei * IBM * Imperial
College London * Indian Institute of Technology, Bombay * Institute for Information Industry, Taiwan * Institute of Communication and
Computer Systems/NTUA * Intel
Karlsruhe Institute of Technology * Kiel University * Microsoft * MIOsoft Corporation * NICTA * NovaTec GmbH * Oracle
Purdue University * Red Hat * RWTH Aachen University * Salesforce.com * San Diego Supercomputing Center * San Francisco State
University * SAP AG * Siemens Corporation * Technische Universität Darmstadt * Technische Universität Dresden * The MITRE
Corporation
Umea University * University of Alberta * University of Coimbra * University of Florence * University of Lugano * University of Minnesota *
University of North Florida * University of Paderborn * University of Pavia * University of Stuttgart * University of Texas at Austin *
University of Wuerzburg * VMware
7
Evaluation of Hadoop Clusters using TPCx-HS
Todor Ivanov and Sead Izberovic
New Cluster Setup
• Operating System: Ubuntu Server 14.04.1. LTS
• Cloudera’s Hadoop Distribution - CDH 5.2
• Replication Factor of 2 (only 3 worker nodes)
Goal  Run end-to-end, analytical Big Data benchmark (BigBench) to evaluate the
platform!
Initial results  BigBench performance was very slow!  Shared 1Gbit Network
Solution  Upgrade to Dedicated 1Gbit Switch (around 30 €)
9
Setup Description Summary
Total Nodes: 4 x Dell PowerEdge T420
Total Processors/
Cores/Threads:
5 CPUs/
30 Cores/ 60 Threads
Total Memory: 4x 32GB = 128 GB
Total Number of Disks:
13 x 1TB,SATA, 3.5 in, 7.2K
RPM, 64MB Cache
Total Storage Capacity: 13 TB
Network: 1GBit EthernetMaster
Node
Worker
Node 1
Worker
Node 2
Worker
Node 3
Dedicated/Shared Network with
1 Gbit Switch
TPCx-HS: TPC Express for Hadoop Systems
• X: Express, H: Hadoop, S: Sort
• TPCx-HS [6],[7] is the first industry standard Big Data
Benchmark released in July 2014
• Based on TeraSort and consists of 4 modules: HSGen,
HSDataCkeck, HSSort & HSValidate
• Scale Factors following stepped size model: 100GB, 300GB,
1TB, 3TB,10TB ….
• The TPCx-HS specification defines three major metrics:
– Performance metric (HSph@SF)
– Price-performance metric ($/HSph@SF)
– Power per performance metric (Watts/HSph@SF)
[6] TPC website - http://www.tpc.org/tpcx-hs
[7] Nambiar et al.,“Introducing TPCx-HS: The First Industry Standard for Benchmarking Big Data
Systems,” in Performance Characterization and Benchmarking. Traditional to Big Data, Eds. Springer
International Publishing, 2014.
10
Shared vs. Dedicated - Performance
• Tested with 3 scale factors: 100GB, 300GB, 1TB
• The shared setup is 5 times slower compared to the dedicated one.
11
2.98 8.93
29.30
0.62 1.67 5.85
0
10
20
30
40
100 GB 300 GB 1 TB
Time(Hours)
Time (Lower is better)
Shared Dedicated
0.03 0.03 0.03
0.16
0.18 0.17
0
0.05
0.1
0.15
0.2
100 GB 300 GB 1 TB
Metric(HSph@SF)
HSph@SF Metric (Higher is better)
Shared Dedicated
Shared vs. Dedicated - CPU
• Performance Analysis Tool (PAT) (https://github.com/intel-hadoop/PAT)
• Measured for 100GB scale factor.
• The dedicated setup performs 5-6 times faster than the shared setup.
12
0
20
40
60
80
100
0
125
250
375
500
625
750
875
1000
1125
1250
1375
1500
1625
1750
1875
2000
2125
2250
2375
2500
2625
2750
2875
3000
3125
3250
3375
3500
3625
3750
3875
4000
4125
4250
4375
4500
CPU%
Time (sec)
Dedicated 1 Gbit - CPU Utilization %
System % User % IOwait %
0
20
40
60
80
100
0
585
1170
1755
2340
2925
3510
4095
4680
5265
5850
6435
7020
7605
8190
8775
9360
9945
10530
11115
11700
12285
12870
13455
14040
14625
15210
15795
16380
16965
17550
18135
18720
19305
19890
20475
21060
CPU%
Time (sec)
Shared 1Gbit - CPU Utilization %
System % User % IOwait %
Shared vs. Dedicated – Disk Bandwidth
• Dedicated setup: on average read throughput is around 6.4 MB per second and write
throughput is around 18.6 MB per second.
• Shared setup: on average read throughput is around 1.4 MB per second and write
throughput is around 4 MB per second.
13
0
20000
40000
60000
80000
100000
0
135
270
405
540
675
810
945
1080
1215
1350
1485
1620
1755
1890
2025
2160
2295
2430
2565
2700
2835
2970
3105
3240
3375
3510
3645
3780
3915
4050
4185
4320
4455
4590
KBytes
Time (sec)
Dedicated 1 Gbit - Disk Bandwidth
KBytes Read per Second
KBytes Written per Second
0
10000
20000
30000
40000
50000
60000
0
620
1240
1860
2480
3100
3720
4340
4960
5580
6200
6820
7440
8060
8680
9300
9920
10540
11160
11780
12400
13020
13640
14260
14880
15500
16120
16740
17360
17980
18600
19220
19840
20460
21080
KBytes
Time (sec)
Shared 1Gbit - Disk Bandwidth
KBytes Read per Second
KBytes Written per Second
Shared vs. Dedicated – Network
• Dedicated setup: on average received 32.8MB per second and transmitted 30.6MB per
second.
• Shared setup: on average are received 7.1MB per second and transmitted 6.4MB per
second
• The dedicated setup achieves almost 5 times better network utilization.
14
0
10000
20000
30000
40000
50000
60000
70000
80000
0
130
260
390
520
650
780
910
1040
1170
1300
1430
1560
1690
1820
1950
2080
2210
2340
2470
2600
2730
2860
2990
3120
3250
3380
3510
3640
3770
3900
4030
4160
4290
4420
4550
KBytes
Time (sec)
Dedicated 1 Gbit - Network I/O
Kbytes Received per Second
KBytes Transmitted per Second
0
20000
40000
60000
80000
0
585
1170
1755
2340
2925
3510
4095
4680
5265
5850
6435
7020
7605
8190
8775
9360
9945
10530
11115
11700
12285
12870
13455
14040
14625
15210
15795
16380
16965
17550
18135
18720
19305
19890
20475
21060
KBytes
Time (sec)
Shared 1Gbit - Network I/O
KBytes Received per Second
KBytes Transmitted per Second
Next Steps
• Improve network speed by using 2 NICs in parallel
– Network bonding driver (Mode 0 (balance-rr) or Mode 2 (balance-xor))
– Switch supporting Link Aggregation (LACP)/Trunking
• Re-run the TPCx-HS and compare with the current numbers.
16
Comparing SQL-on-Hadoop Engines with TPC-H
Todor Ivanov
Motivation
• Comparing SQL-on-Hadoop engines/technologies.
– Very dynamic field, new commercial and open source products introduced every day.
– Which one is most suitable for a particular use case? What are the similarities and
differences in terms of design and features?
• Analogously, growing number of file formats are available:
– SequenceFile
– RCfile
– ORC
– Parquet
– Avro
• What is the optimal use case for each format? What are the advantages compared to other
formats? How to configure it in an optimal way?
• Is there existing benchmark for such comparison and what are the important
characteristics?
18
SQL-on-Hadoop Engines
Open Source
• Apache Hive
• Hive-on-Tez
• Hive-on-Spark
• Apache Pig
• Pig-on-Tez
• Pig-on-Spark
• Apache Spark SQL
• Cloudera Impala
• Apache Drill
• Apache Tajo
• Apache Phoenix
• Phoenix-on-Spark
• Facebook Presto
• Apache Flink
• Apache Kylin
• Apache MRQL
• Splout SQL
• Cascading Lingual
• Apache HAWQ
Commercial
• IBM Big SQL
• Microsoft PolyBase
• Teradata Aster SQL-MapReduce
• SAP HANA Integration & Vora
• Oracle Big Data SQL
• RainStor
• Jethro
• Splice Machine
19
Why to start with TPC-H?
• Standard TPC Data Warehousing (OLAP) benchmark since 1999
– Defines 5 Tables (parts, suppliers, customers, orders and lineitems)
– Dynamic scale factor starting from 1GB upwards
– Include 22 analytical queries
• TPC-H implementation available for many engines
– Complete: Hive, Spark SQL, Impala, Pig, Presto, Tajo, IBM Big SQL, SAP HANA
– Partial: Drill, Phoenix
20
Cluster Setup
• Operating System: Ubuntu Server 14.04.1. LTS
• Cloudera’s Hadoop Distribution - CDH 5.2
• Replication Factor of 2 (only 3 worker nodes)
• Hive version 0.13.1
• Spark version 1.4.0-SNAPSHOT (March 27th 2015)
• TPC-H code (https://github.com/t-ivanov/D2F-Bench )
• At least 3 test repetitions
• ORC and Parquet with default configurations
21
Setup Description Summary
Total Nodes: 4 x Dell PowerEdge T420
Total Processors/
Cores/Threads:
5 CPUs/
30 Cores/ 60 Threads
Total Memory: 4x 32GB = 128 GB
Total Number of Disks:
13 x 1TB,SATA, 3.5 in, 7.2K
RPM, 64MB Cache
Total Storage Capacity: 13 TB
Network: Dedicated 1 GBit Ethernet
ORC vs. Parquet – Data Loading
• Loading 1TB data in Hive
• Loading data in Parquet is faster. Are they doing the same?  No
• Default configuration in Hive
– ORC block size is 256MB with ZLIB compression.
– Parquet block size is 128MB with no compression.
22
TABLE Number of Rows ORC Time (sec) Num. Files Total Size (GB) Parquet Time (sec) Num. Files Total Size (GB) Time Diff % Data Diff %
part 200000000 887.5 14 3.19 725 50 11.95 22.41 275.05
partsupp 800000000 1056 1000 23.07 824 1000 104.07 28.16 351.04
supplier 10000000 584 2 0.43 484 6 1.39 20.66 221.07
customer 150000000 911.5 28 6.77 546 1000 22.29 66.94 229.04
orders 1500000000 2133 1000 34.35 1380.5 1000 127.29 54.51 270.54
lineitem 5999989709 6976.5 1000 151.24 4081.5 1000 342.69 70.93 126.59
nation 25 33 1 0.00 35 1 0.00 -5.71 93.20
region 5 32 1 0.00 32 1 0.00 0.00 15.87
Sum 220 610
ORC vs. Parquet – 1TB Data size
• Hive finished successfully all 22 queries with acceptable Standard Deviation between the
runs.
• Hive with ORC is on average around 1.44 times faster than Hive with Parquet without
any exceptions. (both using default configurations in Hive)
• Spark SQL finished successfully only 12 queries.
• Only 5 queries (Q1, Q6, Q14, Q15 and Q22) have Standard Deviation less than 3% for
both file formats.
• Spark SQL with Parquet is on average around 1.35 times faster than Spark with ORC
except Q22.
23
Hive vs. Spark SQL – ORC – 1TB Data size
• 6 queries (Q1, Q2, Q7, Q10, Q12 and Q16) perform slower than Hive.
 Only 5 Spark SQL queries are stable and perform faster than Hive!
24
Query Hive ORC Duration (sec) Hive ORC STDV % Spark SQL ORC Duration (sec) Spark SQL ORC STDV % Diff %
Query 1 509.33 1.15 873.00 0.40 -41.66
Query 2 869.66 1.04 1292.66 0.29 -32.72
Query 3 2632 0.60
Query 4 1530.33 0.64
Query 5 4146.33 0.70
Query 6 555.33 0.28 341.75 1.13 62.50
Query 7 6075.66 1.59 10303.00 1.51 -41.03
Query 8 3928.33 0.56
Query 9 17396 0.54
Query 10 1673 0.96 2456.50 7.72 -31.89
Query 11 1560 0.23
Query 12 2519 2.17 4863.50 4.32 -48.21
Query 13 1229.33 1.39 925.00 0.54 32.90
Query 14 724.66 1.00 590.00 1.36 22.82
Query 15 1223 0.29 1073.00 0.34 13.98
Query 16 1418.33 0.18 1722.66 5.43 -17.67
Query 17 6038 1.61
Query 18 4393.66 0.80
Query 19 4286.66 0.82 1721.66 3.43 148.98
Query 20 1404.66 0.36
Query 21 8669.66 0.10
Query 22 922 0.47 436.50 1.19 111.23
Hive vs. Spark SQL – Parquet – 1TB Data size
• 4 queries (Q2, Q7, Q12 and Q16) are slower than Hive.
 Only 6 Spark SQL queries are stable and perform faster than Hive!
25
Query Hive Parquet Duration (sec) Hive Parquet STDV % Spark SQL Parquet Duration (sec) Spark SQL Parquet STDV % Diff %
Query 1 1772.33 0.94 530.75 0.73 233.93
Query 2 968.00 0.63 1267.33 7.69 -23.62
Query 3 3472.00 1.25
Query 4 2743.33 1.55
Query 5 4905.00 1.75
Query 6 908.33 1.04 260.75 2.45 248.35
Query 7 6649.66 1.52 10456.75 6.76 -36.41
Query 8 4796.66 1.14
Query 9 17972.66 0.96
Query 10 2491.00 0.26 2288.00 3.34 8.87
Query 11 1756.00 0.93
Query 12 3140.66 1.40 4154.66 2.22 -24.41
Query 13 1449.66 0.70 1399.75 5.01 3.57
Query 14 1280.00 0.61 532.50 2.32 140.38
Query 15 2546.00 1.06 805.00 1.94 216.27
Query 16 1622.66 0.98 1713.25 5.71 -5.29
Query 17 6986.00 1.60
Query 18 5914.00 0.69
Query 19 4721.66 1.27 1676.00 1.49 181.72
Query 20 2376.33 0.46
Query 21 11077.66 0.08
Query 22 1137.00 1.38 612.50 1.40 85.63
Lessons Learned
• Parquet and ORC default configurations in Hive are not comparable.
– How to configure and test them in a proper way?
• Spark SQL is not stable and can run only a subset of the TPC-H queries.
• Spark SQL with Parquet performs faster than Spark SQL with ORC.
– Does Spark SQL use different Parquet configuration than Hive? (Answer: Yes)
Next Steps
 Update the Parquet configuration and re-run the experiments for both Hive and Spark SQL.
 Generate the data with each engine using their default format settings. (Spark SQL)
26
Performance Evaluation of Spark SQL using
BigBench
Todor Ivanov and Max-Georg Beer
Slides: http://www.slideshare.net/t_ivanov/wbdb-2015-performance-evaluation-of-spark-
sql-using-bigbench
Practical Tips
• Use BigBench to configure your cluster for Big Data applications. Tests a wide range of
components and use cases.
• Not all BigBench queries are suitable for scalability tests.
• Spark SQL does not perform stable for complex queries and large data sizes.
• Always look at the Standard Deviation (%) between the runs. You can identify faulty
queries.
46
Evaluation of Cassandra (DSE) and Hadoop (CDH)
using HiBench
Todor Ivanov, Raik Niemann, Sead Izberovic, Marten Rosselli, Karsten Tolle and
Roberto V. Zicari
Slides: http://www.slideshare.net/t_ivanov/bdse-2015-evaluation-of-big-data-platforms-with-
hibench
Contact
Todor Ivanov
todor@dbis.cs.uni-frankfurt.de
Goethe University Frankfurt am Main, Germany
http://www.bigdata.uni-frankfurt.de/
63

More Related Content

What's hot (20)

PDF
sudoers: Benchmarking Hadoop with ALOJA
Nicolas Poggi
 
PDF
Current Trends and Challenges in Big Data Benchmarking
eXascale Infolab
 
PDF
Big Data Technology on Red Hat Enterprise Linux: OpenJDK vs. Oracle JDK
Principled Technologies
 
PDF
Big Data: hype or necessity?
Bart Vandewoestyne
 
PPTX
Distributed Deep Learning on Hadoop Clusters
DataWorks Summit/Hadoop Summit
 
PDF
The Impact of Columnar File Formats on SQL-on-Hadoop Engine Performance: A St...
t_ivanov
 
PPTX
High Performance Data Analytics with Java on Large Multicore HPC Clusters
Saliya Ekanayake
 
PDF
Crafting bigdatabenchmarks
Tilmann Rabl
 
PDF
TPC-DI - The First Industry Benchmark for Data Integration
Tilmann Rabl
 
PPTX
Interactive SQL POC on Hadoop (Hive, Presto and Hive-on-Tez)
Sudhir Mallem
 
PPTX
Stories About Spark, HPC and Barcelona by Jordi Torres
Spark Summit
 
PDF
Hadoop: The Default Machine Learning Platform ?
Milind Bhandarkar
 
PDF
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Masayuki Matsushita
 
PDF
Large Infrastructure Monitoring At CERN by Matthias Braeger at Big Data Spain...
Big Data Spain
 
PDF
Fast and Reliable Apache Spark SQL Releases
DataWorks Summit
 
PPT
HW09 Hadoop Vaidya
Cloudera, Inc.
 
PPTX
The columnar roadmap: Apache Parquet and Apache Arrow
DataWorks Summit
 
PPTX
Real time hadoop + mapreduce intro
Geoff Hendrey
 
PDF
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Jan Wiegelmann
 
PDF
Deep Learning on Apache Spark at CERN’s Large Hadron Collider with Intel Tech...
Databricks
 
sudoers: Benchmarking Hadoop with ALOJA
Nicolas Poggi
 
Current Trends and Challenges in Big Data Benchmarking
eXascale Infolab
 
Big Data Technology on Red Hat Enterprise Linux: OpenJDK vs. Oracle JDK
Principled Technologies
 
Big Data: hype or necessity?
Bart Vandewoestyne
 
Distributed Deep Learning on Hadoop Clusters
DataWorks Summit/Hadoop Summit
 
The Impact of Columnar File Formats on SQL-on-Hadoop Engine Performance: A St...
t_ivanov
 
High Performance Data Analytics with Java on Large Multicore HPC Clusters
Saliya Ekanayake
 
Crafting bigdatabenchmarks
Tilmann Rabl
 
TPC-DI - The First Industry Benchmark for Data Integration
Tilmann Rabl
 
Interactive SQL POC on Hadoop (Hive, Presto and Hive-on-Tez)
Sudhir Mallem
 
Stories About Spark, HPC and Barcelona by Jordi Torres
Spark Summit
 
Hadoop: The Default Machine Learning Platform ?
Milind Bhandarkar
 
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Masayuki Matsushita
 
Large Infrastructure Monitoring At CERN by Matthias Braeger at Big Data Spain...
Big Data Spain
 
Fast and Reliable Apache Spark SQL Releases
DataWorks Summit
 
HW09 Hadoop Vaidya
Cloudera, Inc.
 
The columnar roadmap: Apache Parquet and Apache Arrow
DataWorks Summit
 
Real time hadoop + mapreduce intro
Geoff Hendrey
 
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Jan Wiegelmann
 
Deep Learning on Apache Spark at CERN’s Large Hadron Collider with Intel Tech...
Databricks
 

Similar to Lessons Learned on Benchmarking Big Data Platforms (20)

PPTX
Accelerating Apache Hadoop through High-Performance Networking and I/O Techno...
DataWorks Summit/Hadoop Summit
 
PDF
The Apache Spark config behind the indsutry's first 100TB Spark SQL benchmark
Lenovo Data Center
 
PPTX
Empower Data-Driven Organizations
DataWorks Summit/Hadoop Summit
 
PDF
Spark Summit EU talk by Berni Schiefer
Spark Summit
 
PDF
Accelerate Big Data Processing with High-Performance Computing Technologies
Intel® Software
 
PDF
詹剑锋:Big databench—benchmarking big data systems
hdhappy001
 
PDF
詹剑锋:Big databench—benchmarking big data systems
hdhappy001
 
PDF
The state of SQL-on-Hadoop in the Cloud
DataWorks Summit/Hadoop Summit
 
PDF
The state of Spark in the cloud
Nicolas Poggi
 
PDF
Case Study: Big Data Analytics
Abhinav Das
 
PDF
Raghu nambiar:industry standard benchmarks
hdhappy001
 
PDF
LAS16-305: Smart City Big Data Visualization on 96Boards
Linaro
 
PDF
Smart City Big Data Visualization on 96Boards - Linaro Connect Las Vegas 2016
Ganesh Raju
 
PPTX
A Database Benchmark for Hyper-Converged Infrastructure (HCI)
Gary Little
 
PDF
The_Case_for_Single_Node_Systems_Supporting_Large_Scale_Data_Analytics (1).pdf
DotInsight1
 
PDF
High Performance Hardware for Data Analysis
Mike Pittaro
 
PDF
Mike Pittaro - High Performance Hardware for Data Analysis
PyData
 
PDF
Is your cloud ready for Big Data? Strata NY 2013
Richard McDougall
 
PPTX
Big data talk barcelona - jsr - jc
James Saint-Rossy
 
PDF
DBMS benchmarking overview and trends for Moscow ACM SIGMOD Chapter
Andrei Nikolaenko
 
Accelerating Apache Hadoop through High-Performance Networking and I/O Techno...
DataWorks Summit/Hadoop Summit
 
The Apache Spark config behind the indsutry's first 100TB Spark SQL benchmark
Lenovo Data Center
 
Empower Data-Driven Organizations
DataWorks Summit/Hadoop Summit
 
Spark Summit EU talk by Berni Schiefer
Spark Summit
 
Accelerate Big Data Processing with High-Performance Computing Technologies
Intel® Software
 
詹剑锋:Big databench—benchmarking big data systems
hdhappy001
 
詹剑锋:Big databench—benchmarking big data systems
hdhappy001
 
The state of SQL-on-Hadoop in the Cloud
DataWorks Summit/Hadoop Summit
 
The state of Spark in the cloud
Nicolas Poggi
 
Case Study: Big Data Analytics
Abhinav Das
 
Raghu nambiar:industry standard benchmarks
hdhappy001
 
LAS16-305: Smart City Big Data Visualization on 96Boards
Linaro
 
Smart City Big Data Visualization on 96Boards - Linaro Connect Las Vegas 2016
Ganesh Raju
 
A Database Benchmark for Hyper-Converged Infrastructure (HCI)
Gary Little
 
The_Case_for_Single_Node_Systems_Supporting_Large_Scale_Data_Analytics (1).pdf
DotInsight1
 
High Performance Hardware for Data Analysis
Mike Pittaro
 
Mike Pittaro - High Performance Hardware for Data Analysis
PyData
 
Is your cloud ready for Big Data? Strata NY 2013
Richard McDougall
 
Big data talk barcelona - jsr - jc
James Saint-Rossy
 
DBMS benchmarking overview and trends for Moscow ACM SIGMOD Chapter
Andrei Nikolaenko
 
Ad

More from t_ivanov (6)

PDF
CoreBigBench: Benchmarking Big Data Core Operations
t_ivanov
 
PDF
Building the DataBench Workflow and Architecture
t_ivanov
 
PDF
Adding Velocity to BigBench
t_ivanov
 
PDF
Exploratory Analysis of Spark Structured Streaming
t_ivanov
 
PDF
ABench: Big Data Architecture Stack Benchmark
t_ivanov
 
PDF
WBDB 2014 Benchmarking Virtualized Hadoop Clusters
t_ivanov
 
CoreBigBench: Benchmarking Big Data Core Operations
t_ivanov
 
Building the DataBench Workflow and Architecture
t_ivanov
 
Adding Velocity to BigBench
t_ivanov
 
Exploratory Analysis of Spark Structured Streaming
t_ivanov
 
ABench: Big Data Architecture Stack Benchmark
t_ivanov
 
WBDB 2014 Benchmarking Virtualized Hadoop Clusters
t_ivanov
 
Ad

Recently uploaded (20)

PDF
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
PDF
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
PPTX
Tally software_Introduction_Presentation
AditiBansal54083
 
PDF
SAP Firmaya İade ABAB Kodları - ABAB ile yazılmıl hazır kod örneği
Salih Küçük
 
PPTX
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
PDF
Top Agile Project Management Tools for Teams in 2025
Orangescrum
 
PDF
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
PPTX
Finding Your License Details in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
PDF
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
PDF
vMix Pro 28.0.0.42 Download vMix Registration key Bundle
kulindacore
 
PDF
The 5 Reasons for IT Maintenance - Arna Softech
Arna Softech
 
PDF
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
PPTX
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
Alexander Marshalov - How to use AI Assistants with your Monitoring system Q2...
VictoriaMetrics
 
PPTX
OpenChain @ OSS NA - In From the Cold: Open Source as Part of Mainstream Soft...
Shane Coughlan
 
PDF
MiniTool Partition Wizard 12.8 Crack License Key LATEST
hashhshs786
 
PPTX
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
PPTX
Foundations of Marketo Engage - Powering Campaigns with Marketo Personalization
bbedford2
 
PDF
IDM Crack with Internet Download Manager 6.42 Build 43 with Patch Latest 2025
bashirkhan333g
 
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
Tally software_Introduction_Presentation
AditiBansal54083
 
SAP Firmaya İade ABAB Kodları - ABAB ile yazılmıl hazır kod örneği
Salih Küçük
 
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
Top Agile Project Management Tools for Teams in 2025
Orangescrum
 
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
Finding Your License Details in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
vMix Pro 28.0.0.42 Download vMix Registration key Bundle
kulindacore
 
The 5 Reasons for IT Maintenance - Arna Softech
Arna Softech
 
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
Alexander Marshalov - How to use AI Assistants with your Monitoring system Q2...
VictoriaMetrics
 
OpenChain @ OSS NA - In From the Cold: Open Source as Part of Mainstream Soft...
Shane Coughlan
 
MiniTool Partition Wizard 12.8 Crack License Key LATEST
hashhshs786
 
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
Foundations of Marketo Engage - Powering Campaigns with Marketo Personalization
bbedford2
 
IDM Crack with Internet Download Manager 6.42 Build 43 with Patch Latest 2025
bashirkhan333g
 

Lessons Learned on Benchmarking Big Data Platforms

  • 1. Lessons Learned on Benchmarking Big Data Platforms Todor Ivanov [email protected] Goethe University Frankfurt am Main, Germany http://www.bigdata.uni-frankfurt.de/
  • 2. Agenda • Evaluation of Hadoop using TPCx-HS • Comparing SQL-on-Hadoop Engines with TPC-H • Performance Evaluation of Spark SQL using BigBench • Evaluation of Big Data Platforms with HiBench 2
  • 3. Contact Information http://www.bigdata.uni-frankfurt.de Robert-Mayer-Str. 10, 60325 Institut für Informatik, Fachbereich Informatik und Mathematik (FB12) Frankfurt Germany Telefon: 069-798-28212 Fax: 069-798-25123 3
  • 5. Research Areas Our lab is currently active in the following research areas: • Big Data Management Technologies • Graph Databases / Linked Open Data (LOD) • Data Analytics / Data Science • Big Data for Common Good 5
  • 6. Big Data Management Technologies Systems: Benchmarking Big Data platforms for performance, scalability, elasticity, fault-tolerance … Benchmarks used: • Yahoo Cloud Service Benchmark (YCSB) - Evaluating the performance (read/write workloads) of NoSQL stores like Cassandra. • HiBench - 10 workloads for evaluating the Hadoop platform in terms of speed, throughput, HDFS bandwidth, system resource utilization and machine learning algorithms. • BigBench – Application level benchmark consisting of 30 queries implemented in Hive and Hadoop, based on the TPC-DS benchmark. • TPCx-HS – The first standard Big Data Benchmark for Hadoop, based on the TeraSort workload. 6
  • 7. Member of the Standard Performance Evaluation Corporation (SPEC) SPEC is a non-profit corporation formed to establish, maintain and endorse a standardized set of relevant benchmarks that can be applied to the newest generation of high-performance computers. The RG Big Data Working Group is a forum for individuals and organizations interested in the big data benchmarking topic. List of all 52 Member Organizations: Advanced Strategic Technology LLC * ARM * bankmark UG * Barcelona Supercomputing Center * Charles University * Cisco Systems * Cloudera, Inc * Compilaflows * Delft University of Technology * Dell fortiss GmbH * Friedrich-Alexander-University Erlangen-Nuremberg * Goethe University Frankfurt * Hewlett-Packard * Huawei * IBM * Imperial College London * Indian Institute of Technology, Bombay * Institute for Information Industry, Taiwan * Institute of Communication and Computer Systems/NTUA * Intel Karlsruhe Institute of Technology * Kiel University * Microsoft * MIOsoft Corporation * NICTA * NovaTec GmbH * Oracle Purdue University * Red Hat * RWTH Aachen University * Salesforce.com * San Diego Supercomputing Center * San Francisco State University * SAP AG * Siemens Corporation * Technische Universität Darmstadt * Technische Universität Dresden * The MITRE Corporation Umea University * University of Alberta * University of Coimbra * University of Florence * University of Lugano * University of Minnesota * University of North Florida * University of Paderborn * University of Pavia * University of Stuttgart * University of Texas at Austin * University of Wuerzburg * VMware 7
  • 8. Evaluation of Hadoop Clusters using TPCx-HS Todor Ivanov and Sead Izberovic
  • 9. New Cluster Setup • Operating System: Ubuntu Server 14.04.1. LTS • Cloudera’s Hadoop Distribution - CDH 5.2 • Replication Factor of 2 (only 3 worker nodes) Goal  Run end-to-end, analytical Big Data benchmark (BigBench) to evaluate the platform! Initial results  BigBench performance was very slow!  Shared 1Gbit Network Solution  Upgrade to Dedicated 1Gbit Switch (around 30 €) 9 Setup Description Summary Total Nodes: 4 x Dell PowerEdge T420 Total Processors/ Cores/Threads: 5 CPUs/ 30 Cores/ 60 Threads Total Memory: 4x 32GB = 128 GB Total Number of Disks: 13 x 1TB,SATA, 3.5 in, 7.2K RPM, 64MB Cache Total Storage Capacity: 13 TB Network: 1GBit EthernetMaster Node Worker Node 1 Worker Node 2 Worker Node 3 Dedicated/Shared Network with 1 Gbit Switch
  • 10. TPCx-HS: TPC Express for Hadoop Systems • X: Express, H: Hadoop, S: Sort • TPCx-HS [6],[7] is the first industry standard Big Data Benchmark released in July 2014 • Based on TeraSort and consists of 4 modules: HSGen, HSDataCkeck, HSSort & HSValidate • Scale Factors following stepped size model: 100GB, 300GB, 1TB, 3TB,10TB …. • The TPCx-HS specification defines three major metrics: – Performance metric (HSph@SF) – Price-performance metric ($/HSph@SF) – Power per performance metric (Watts/HSph@SF) [6] TPC website - http://www.tpc.org/tpcx-hs [7] Nambiar et al.,“Introducing TPCx-HS: The First Industry Standard for Benchmarking Big Data Systems,” in Performance Characterization and Benchmarking. Traditional to Big Data, Eds. Springer International Publishing, 2014. 10
  • 11. Shared vs. Dedicated - Performance • Tested with 3 scale factors: 100GB, 300GB, 1TB • The shared setup is 5 times slower compared to the dedicated one. 11 2.98 8.93 29.30 0.62 1.67 5.85 0 10 20 30 40 100 GB 300 GB 1 TB Time(Hours) Time (Lower is better) Shared Dedicated 0.03 0.03 0.03 0.16 0.18 0.17 0 0.05 0.1 0.15 0.2 100 GB 300 GB 1 TB Metric(HSph@SF) HSph@SF Metric (Higher is better) Shared Dedicated
  • 12. Shared vs. Dedicated - CPU • Performance Analysis Tool (PAT) (https://github.com/intel-hadoop/PAT) • Measured for 100GB scale factor. • The dedicated setup performs 5-6 times faster than the shared setup. 12 0 20 40 60 80 100 0 125 250 375 500 625 750 875 1000 1125 1250 1375 1500 1625 1750 1875 2000 2125 2250 2375 2500 2625 2750 2875 3000 3125 3250 3375 3500 3625 3750 3875 4000 4125 4250 4375 4500 CPU% Time (sec) Dedicated 1 Gbit - CPU Utilization % System % User % IOwait % 0 20 40 60 80 100 0 585 1170 1755 2340 2925 3510 4095 4680 5265 5850 6435 7020 7605 8190 8775 9360 9945 10530 11115 11700 12285 12870 13455 14040 14625 15210 15795 16380 16965 17550 18135 18720 19305 19890 20475 21060 CPU% Time (sec) Shared 1Gbit - CPU Utilization % System % User % IOwait %
  • 13. Shared vs. Dedicated – Disk Bandwidth • Dedicated setup: on average read throughput is around 6.4 MB per second and write throughput is around 18.6 MB per second. • Shared setup: on average read throughput is around 1.4 MB per second and write throughput is around 4 MB per second. 13 0 20000 40000 60000 80000 100000 0 135 270 405 540 675 810 945 1080 1215 1350 1485 1620 1755 1890 2025 2160 2295 2430 2565 2700 2835 2970 3105 3240 3375 3510 3645 3780 3915 4050 4185 4320 4455 4590 KBytes Time (sec) Dedicated 1 Gbit - Disk Bandwidth KBytes Read per Second KBytes Written per Second 0 10000 20000 30000 40000 50000 60000 0 620 1240 1860 2480 3100 3720 4340 4960 5580 6200 6820 7440 8060 8680 9300 9920 10540 11160 11780 12400 13020 13640 14260 14880 15500 16120 16740 17360 17980 18600 19220 19840 20460 21080 KBytes Time (sec) Shared 1Gbit - Disk Bandwidth KBytes Read per Second KBytes Written per Second
  • 14. Shared vs. Dedicated – Network • Dedicated setup: on average received 32.8MB per second and transmitted 30.6MB per second. • Shared setup: on average are received 7.1MB per second and transmitted 6.4MB per second • The dedicated setup achieves almost 5 times better network utilization. 14 0 10000 20000 30000 40000 50000 60000 70000 80000 0 130 260 390 520 650 780 910 1040 1170 1300 1430 1560 1690 1820 1950 2080 2210 2340 2470 2600 2730 2860 2990 3120 3250 3380 3510 3640 3770 3900 4030 4160 4290 4420 4550 KBytes Time (sec) Dedicated 1 Gbit - Network I/O Kbytes Received per Second KBytes Transmitted per Second 0 20000 40000 60000 80000 0 585 1170 1755 2340 2925 3510 4095 4680 5265 5850 6435 7020 7605 8190 8775 9360 9945 10530 11115 11700 12285 12870 13455 14040 14625 15210 15795 16380 16965 17550 18135 18720 19305 19890 20475 21060 KBytes Time (sec) Shared 1Gbit - Network I/O KBytes Received per Second KBytes Transmitted per Second
  • 15. Next Steps • Improve network speed by using 2 NICs in parallel – Network bonding driver (Mode 0 (balance-rr) or Mode 2 (balance-xor)) – Switch supporting Link Aggregation (LACP)/Trunking • Re-run the TPCx-HS and compare with the current numbers. 16
  • 16. Comparing SQL-on-Hadoop Engines with TPC-H Todor Ivanov
  • 17. Motivation • Comparing SQL-on-Hadoop engines/technologies. – Very dynamic field, new commercial and open source products introduced every day. – Which one is most suitable for a particular use case? What are the similarities and differences in terms of design and features? • Analogously, growing number of file formats are available: – SequenceFile – RCfile – ORC – Parquet – Avro • What is the optimal use case for each format? What are the advantages compared to other formats? How to configure it in an optimal way? • Is there existing benchmark for such comparison and what are the important characteristics? 18
  • 18. SQL-on-Hadoop Engines Open Source • Apache Hive • Hive-on-Tez • Hive-on-Spark • Apache Pig • Pig-on-Tez • Pig-on-Spark • Apache Spark SQL • Cloudera Impala • Apache Drill • Apache Tajo • Apache Phoenix • Phoenix-on-Spark • Facebook Presto • Apache Flink • Apache Kylin • Apache MRQL • Splout SQL • Cascading Lingual • Apache HAWQ Commercial • IBM Big SQL • Microsoft PolyBase • Teradata Aster SQL-MapReduce • SAP HANA Integration & Vora • Oracle Big Data SQL • RainStor • Jethro • Splice Machine 19
  • 19. Why to start with TPC-H? • Standard TPC Data Warehousing (OLAP) benchmark since 1999 – Defines 5 Tables (parts, suppliers, customers, orders and lineitems) – Dynamic scale factor starting from 1GB upwards – Include 22 analytical queries • TPC-H implementation available for many engines – Complete: Hive, Spark SQL, Impala, Pig, Presto, Tajo, IBM Big SQL, SAP HANA – Partial: Drill, Phoenix 20
  • 20. Cluster Setup • Operating System: Ubuntu Server 14.04.1. LTS • Cloudera’s Hadoop Distribution - CDH 5.2 • Replication Factor of 2 (only 3 worker nodes) • Hive version 0.13.1 • Spark version 1.4.0-SNAPSHOT (March 27th 2015) • TPC-H code (https://github.com/t-ivanov/D2F-Bench ) • At least 3 test repetitions • ORC and Parquet with default configurations 21 Setup Description Summary Total Nodes: 4 x Dell PowerEdge T420 Total Processors/ Cores/Threads: 5 CPUs/ 30 Cores/ 60 Threads Total Memory: 4x 32GB = 128 GB Total Number of Disks: 13 x 1TB,SATA, 3.5 in, 7.2K RPM, 64MB Cache Total Storage Capacity: 13 TB Network: Dedicated 1 GBit Ethernet
  • 21. ORC vs. Parquet – Data Loading • Loading 1TB data in Hive • Loading data in Parquet is faster. Are they doing the same?  No • Default configuration in Hive – ORC block size is 256MB with ZLIB compression. – Parquet block size is 128MB with no compression. 22 TABLE Number of Rows ORC Time (sec) Num. Files Total Size (GB) Parquet Time (sec) Num. Files Total Size (GB) Time Diff % Data Diff % part 200000000 887.5 14 3.19 725 50 11.95 22.41 275.05 partsupp 800000000 1056 1000 23.07 824 1000 104.07 28.16 351.04 supplier 10000000 584 2 0.43 484 6 1.39 20.66 221.07 customer 150000000 911.5 28 6.77 546 1000 22.29 66.94 229.04 orders 1500000000 2133 1000 34.35 1380.5 1000 127.29 54.51 270.54 lineitem 5999989709 6976.5 1000 151.24 4081.5 1000 342.69 70.93 126.59 nation 25 33 1 0.00 35 1 0.00 -5.71 93.20 region 5 32 1 0.00 32 1 0.00 0.00 15.87 Sum 220 610
  • 22. ORC vs. Parquet – 1TB Data size • Hive finished successfully all 22 queries with acceptable Standard Deviation between the runs. • Hive with ORC is on average around 1.44 times faster than Hive with Parquet without any exceptions. (both using default configurations in Hive) • Spark SQL finished successfully only 12 queries. • Only 5 queries (Q1, Q6, Q14, Q15 and Q22) have Standard Deviation less than 3% for both file formats. • Spark SQL with Parquet is on average around 1.35 times faster than Spark with ORC except Q22. 23
  • 23. Hive vs. Spark SQL – ORC – 1TB Data size • 6 queries (Q1, Q2, Q7, Q10, Q12 and Q16) perform slower than Hive.  Only 5 Spark SQL queries are stable and perform faster than Hive! 24 Query Hive ORC Duration (sec) Hive ORC STDV % Spark SQL ORC Duration (sec) Spark SQL ORC STDV % Diff % Query 1 509.33 1.15 873.00 0.40 -41.66 Query 2 869.66 1.04 1292.66 0.29 -32.72 Query 3 2632 0.60 Query 4 1530.33 0.64 Query 5 4146.33 0.70 Query 6 555.33 0.28 341.75 1.13 62.50 Query 7 6075.66 1.59 10303.00 1.51 -41.03 Query 8 3928.33 0.56 Query 9 17396 0.54 Query 10 1673 0.96 2456.50 7.72 -31.89 Query 11 1560 0.23 Query 12 2519 2.17 4863.50 4.32 -48.21 Query 13 1229.33 1.39 925.00 0.54 32.90 Query 14 724.66 1.00 590.00 1.36 22.82 Query 15 1223 0.29 1073.00 0.34 13.98 Query 16 1418.33 0.18 1722.66 5.43 -17.67 Query 17 6038 1.61 Query 18 4393.66 0.80 Query 19 4286.66 0.82 1721.66 3.43 148.98 Query 20 1404.66 0.36 Query 21 8669.66 0.10 Query 22 922 0.47 436.50 1.19 111.23
  • 24. Hive vs. Spark SQL – Parquet – 1TB Data size • 4 queries (Q2, Q7, Q12 and Q16) are slower than Hive.  Only 6 Spark SQL queries are stable and perform faster than Hive! 25 Query Hive Parquet Duration (sec) Hive Parquet STDV % Spark SQL Parquet Duration (sec) Spark SQL Parquet STDV % Diff % Query 1 1772.33 0.94 530.75 0.73 233.93 Query 2 968.00 0.63 1267.33 7.69 -23.62 Query 3 3472.00 1.25 Query 4 2743.33 1.55 Query 5 4905.00 1.75 Query 6 908.33 1.04 260.75 2.45 248.35 Query 7 6649.66 1.52 10456.75 6.76 -36.41 Query 8 4796.66 1.14 Query 9 17972.66 0.96 Query 10 2491.00 0.26 2288.00 3.34 8.87 Query 11 1756.00 0.93 Query 12 3140.66 1.40 4154.66 2.22 -24.41 Query 13 1449.66 0.70 1399.75 5.01 3.57 Query 14 1280.00 0.61 532.50 2.32 140.38 Query 15 2546.00 1.06 805.00 1.94 216.27 Query 16 1622.66 0.98 1713.25 5.71 -5.29 Query 17 6986.00 1.60 Query 18 5914.00 0.69 Query 19 4721.66 1.27 1676.00 1.49 181.72 Query 20 2376.33 0.46 Query 21 11077.66 0.08 Query 22 1137.00 1.38 612.50 1.40 85.63
  • 25. Lessons Learned • Parquet and ORC default configurations in Hive are not comparable. – How to configure and test them in a proper way? • Spark SQL is not stable and can run only a subset of the TPC-H queries. • Spark SQL with Parquet performs faster than Spark SQL with ORC. – Does Spark SQL use different Parquet configuration than Hive? (Answer: Yes) Next Steps  Update the Parquet configuration and re-run the experiments for both Hive and Spark SQL.  Generate the data with each engine using their default format settings. (Spark SQL) 26
  • 26. Performance Evaluation of Spark SQL using BigBench Todor Ivanov and Max-Georg Beer Slides: http://www.slideshare.net/t_ivanov/wbdb-2015-performance-evaluation-of-spark- sql-using-bigbench
  • 27. Practical Tips • Use BigBench to configure your cluster for Big Data applications. Tests a wide range of components and use cases. • Not all BigBench queries are suitable for scalability tests. • Spark SQL does not perform stable for complex queries and large data sizes. • Always look at the Standard Deviation (%) between the runs. You can identify faulty queries. 46
  • 28. Evaluation of Cassandra (DSE) and Hadoop (CDH) using HiBench Todor Ivanov, Raik Niemann, Sead Izberovic, Marten Rosselli, Karsten Tolle and Roberto V. Zicari Slides: http://www.slideshare.net/t_ivanov/bdse-2015-evaluation-of-big-data-platforms-with- hibench
  • 29. Contact Todor Ivanov [email protected] Goethe University Frankfurt am Main, Germany http://www.bigdata.uni-frankfurt.de/ 63