The document discusses limits, continuity, and related concepts. Some key points:
1) It defines the concept of a limit and explains how to evaluate one-sided and two-sided limits. A limit exists only if the left and right-sided limits are equal.
2) Continuity is defined as a function being defined at a point, and the limit existing and being equal to the function value. Functions like tan(x) are only continuous where the denominator is not 0.
3) Theorems are presented for evaluating limits of polynomials, sums, products, quotients of continuous functions, and the squeeze theorem. Piecewise functions may or may not be continuous depending on behavior at points of discontin