KEY POINTS TO KNOW
Field
Difference between scalar & vector
Binary Operation
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
 A SCALAR QUANTITY IS A QUANTITY
THAT HAS ONLY MAGNITUDE
 IT IS ONE DIMENTIONAL
 ANY CHANGE IN SCALAR QUANTITY IS
THE REFLECTION OF CHANGE IN
MAGNITUDE.
 EXAMPLES:-
MASS,LENGTH,AREA,VOLUME,PRESS
URE,TEMPERATURE,ENERGY,WORK,
PPOWER,TIME,…
 AVECTOR QUANTITY IS A QUANTITY
THAT HAS BOTH MAGNITUDE AND
DIRECTION
 IT CAN BE 1-D,2-D OR 3-D
 ANY CHANGE INVECTOR QUANTITY
ISTHE REFLECTION OF CHANGE IN
EITHER MAGNITUDE OR DIRECTION
OR BOTH.
 EXAMPLES:-
DISPACEMENT,ACCELARATION,
VELOCITY,MOMENTAM,FORCE,…
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES


MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE
(if we add two vectors, we get vector belonging to same space)
(if we multiply a vector by scalar says a real number, we still get a vector)
Vector Space+ .
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE-PROPERTIES
𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒
𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒
𝟏 𝟏 𝟐 𝟐, 𝟑 𝟑, 𝟒 𝟒)
𝟏 𝟐 𝟑 𝟒 .
𝟏 𝟐 𝟑 𝟒
𝟏 𝟐 𝟑 𝟒
𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒
𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒
𝟏 𝟏 𝟐 𝟐, 𝟑 𝟑, 𝟒 𝟒
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE-PROPERTIES
𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒
𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒
𝟏 𝟏 𝟐 𝟐, 𝟑 𝟑, 𝟒 𝟒)
𝟏 𝟐 𝟑 𝟒
𝟏 𝟐 𝟑 𝟒
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE
Let u=(2, – 1, 5, 0), v=(4, 3, 1, – 1), and w=(– 6, 2, 0, 3) be
vectors in R
4
. Solve for x in 3(x + w) = 2u – v + x
     
 4,,,9
,0,3,9,,,20,5,1,2
322
323
233
2)(3
2
9
2
11
2
9
2
1
2
1
2
3
2
3
2
1









wvux
wvux
wvuxx
xvuwx
xvuwx
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
INTERNAL & EXTENAL COMPOSITIONS
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE- dEfINITION
-
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
N - dIMENSIONAL VECTOR SPACE
An ordered n-tuple: it is a sequence of n-Real numbers
𝟏 𝟐 𝟑 𝒏
𝒏
: the set of all ordered n-tuple
Examples:-
𝟏
𝟏 𝟐 𝟑
2
𝟏 𝟐 𝟏 𝟑 𝟐 𝟐
𝟑
𝟏 𝟐 𝟑 𝟏 𝟐 𝟒 𝟐 𝟑 𝟒
𝟒
𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟒 𝟓 𝟐 𝟑 𝟒 𝟓
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
N - dIMENSIONAL VECTOR SPACE
a point
 21, xx
a vector
 21, xx
 0,0
(2) An n-tuple can be viewed as a vector
in Rn with the xi’s as its components.
 21 , xx
 21 , xx
(1) An n-tuple can be viewed as a point in R
n
with the xi’s as its coordinates.
 21 , xx
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
Matrix space: (the set of all m×n matrices with real values)nmMV 
Ex: :(m = n = 2)




















22222121
12121111
2221
1211
2221
1211
vuvu
vuvu
vv
vv
uu
uu












2221
1211
2221
1211
kuku
kuku
uu
uu
k
vector addition
scalar multiplication
METRIX SPACE
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
POLYNOMIAL & fUNTIONAL SPACE
n-th degree polynomial space:
(the set of all real polynomials of degree n or less)
)(xPV n
n
nn xbaxbabaxqxp )()()()()( 1100  
n
n xkaxkakaxkp  10)(
)()())(( xgxfxgf 
Function space:
(the set of all real-valued continuous functions defined on the
entire real line.)
),(  cV
)())(( xkfxkf 
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
NULL SPACE (OR) zERO VECTOR SPACE
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE-PROPERTIES
1.
2.
3.
4.
5.
6.
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE-PROPERTIES
.
( + ) ------(1) as + =
= + -------(2) as
(1) &(2)
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE-PROPERTIES
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE-PROPERTIES
MANIKANTA SATYALA || || VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES
VECTOR SPACE
MANIKANTA SATYALA || || VECTOR SPACES
VECTOR SUb-SPACE
MANIKANTA SATYALA || || VECTOR SPACES
VECTOR SUb-SPACE
MANIKANTA SATYALA || || VECTOR SPACES
VECTOR SUb-SPACE
fficient
MANIKANTA SATYALA || || VECTOR SPACES
VECTOR SUb-SPACE
fficient
VECTOR SUb-SPACE
MANIKANTA SATYALA || || VECTOR SPACES
VECTOR SUb-SPACE
MANIKANTA SATYALA || || VECTOR SPACES
VECTOR SUb-SPACE
The set W of ordered triads (x,y,0)
where x , y F is a subspace

Liner algebra-vector space-1 introduction to vector space and subspace

  • 2.
    KEY POINTS TOKNOW Field Difference between scalar & vector Binary Operation
  • 3.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES  A SCALAR QUANTITY IS A QUANTITY THAT HAS ONLY MAGNITUDE  IT IS ONE DIMENTIONAL  ANY CHANGE IN SCALAR QUANTITY IS THE REFLECTION OF CHANGE IN MAGNITUDE.  EXAMPLES:- MASS,LENGTH,AREA,VOLUME,PRESS URE,TEMPERATURE,ENERGY,WORK, PPOWER,TIME,…  AVECTOR QUANTITY IS A QUANTITY THAT HAS BOTH MAGNITUDE AND DIRECTION  IT CAN BE 1-D,2-D OR 3-D  ANY CHANGE INVECTOR QUANTITY ISTHE REFLECTION OF CHANGE IN EITHER MAGNITUDE OR DIRECTION OR BOTH.  EXAMPLES:- DISPACEMENT,ACCELARATION, VELOCITY,MOMENTAM,FORCE,…
  • 4.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES  
  • 5.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE (if we add two vectors, we get vector belonging to same space) (if we multiply a vector by scalar says a real number, we still get a vector) Vector Space+ .
  • 6.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE
  • 7.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE
  • 8.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE-PROPERTIES 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟏 𝟐 𝟐, 𝟑 𝟑, 𝟒 𝟒) 𝟏 𝟐 𝟑 𝟒 . 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟏 𝟐 𝟐, 𝟑 𝟑, 𝟒 𝟒
  • 9.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE-PROPERTIES 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟏 𝟐 𝟐, 𝟑 𝟑, 𝟒 𝟒) 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒
  • 10.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE Let u=(2, – 1, 5, 0), v=(4, 3, 1, – 1), and w=(– 6, 2, 0, 3) be vectors in R 4 . Solve for x in 3(x + w) = 2u – v + x        4,,,9 ,0,3,9,,,20,5,1,2 322 323 233 2)(3 2 9 2 11 2 9 2 1 2 1 2 3 2 3 2 1          wvux wvux wvuxx xvuwx xvuwx
  • 11.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES INTERNAL & EXTENAL COMPOSITIONS
  • 12.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE- dEfINITION -
  • 13.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES N - dIMENSIONAL VECTOR SPACE An ordered n-tuple: it is a sequence of n-Real numbers 𝟏 𝟐 𝟑 𝒏 𝒏 : the set of all ordered n-tuple Examples:- 𝟏 𝟏 𝟐 𝟑 2 𝟏 𝟐 𝟏 𝟑 𝟐 𝟐 𝟑 𝟏 𝟐 𝟑 𝟏 𝟐 𝟒 𝟐 𝟑 𝟒 𝟒 𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟒 𝟓 𝟐 𝟑 𝟒 𝟓
  • 14.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES N - dIMENSIONAL VECTOR SPACE a point  21, xx a vector  21, xx  0,0 (2) An n-tuple can be viewed as a vector in Rn with the xi’s as its components.  21 , xx  21 , xx (1) An n-tuple can be viewed as a point in R n with the xi’s as its coordinates.  21 , xx
  • 15.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES Matrix space: (the set of all m×n matrices with real values)nmMV  Ex: :(m = n = 2)                     22222121 12121111 2221 1211 2221 1211 vuvu vuvu vv vv uu uu             2221 1211 2221 1211 kuku kuku uu uu k vector addition scalar multiplication METRIX SPACE
  • 16.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES POLYNOMIAL & fUNTIONAL SPACE n-th degree polynomial space: (the set of all real polynomials of degree n or less) )(xPV n n nn xbaxbabaxqxp )()()()()( 1100   n n xkaxkakaxkp  10)( )()())(( xgxfxgf  Function space: (the set of all real-valued continuous functions defined on the entire real line.) ),(  cV )())(( xkfxkf 
  • 17.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES NULL SPACE (OR) zERO VECTOR SPACE
  • 18.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE-PROPERTIES 1. 2. 3. 4. 5. 6.
  • 19.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE-PROPERTIES . ( + ) ------(1) as + = = + -------(2) as (1) &(2)
  • 20.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE-PROPERTIES
  • 21.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE-PROPERTIES
  • 22.
    MANIKANTA SATYALA |||| VECTOR SPACESMANIKANTA SATYALA || || VECTOR SPACES VECTOR SPACE
  • 23.
    MANIKANTA SATYALA |||| VECTOR SPACES VECTOR SUb-SPACE
  • 24.
    MANIKANTA SATYALA |||| VECTOR SPACES VECTOR SUb-SPACE
  • 25.
    MANIKANTA SATYALA |||| VECTOR SPACES VECTOR SUb-SPACE fficient
  • 26.
    MANIKANTA SATYALA |||| VECTOR SPACES VECTOR SUb-SPACE fficient
  • 27.
  • 28.
    MANIKANTA SATYALA |||| VECTOR SPACES VECTOR SUb-SPACE
  • 29.
    MANIKANTA SATYALA |||| VECTOR SPACES VECTOR SUb-SPACE The set W of ordered triads (x,y,0) where x , y F is a subspace