SlideShare a Scribd company logo
Summary of Logic Gates
IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS
Draw the circuit diagram to implement the expression f (A,B,C) = (A + B)(B + C).
F (A,B,C) = AC + BC + ABC
Universal Gates
KEC- 101
• A universal gate is a gate which can implement any Boolean function
without need to use any other gate type.
• The NAND and NOR gates are universal gates.
• This is advantageous since NAND and NOR gates are economical and
easier to fabricate and are the basic gates used in all IC digital logic
families.
Logic Gates Using Only NAND Gates
NAND AS NOT GATE
𝒀= 𝑨
.𝑩
= 𝑨
.𝑨
𝒀= 𝑨
NAND AS OR GATE
Y=A+B
𝒀=𝑨+𝑩
𝒀=𝑨.𝑩
NAND AS NOR GATE
NAND AS AND GATE
NAND AS XOR GATE
NAND AS XNOR GATE
Logic Gates Using Only NOR Gates
A
𝐀
Logic gates summary in digital electronics
Logic gates summary in digital electronics
Logic gates summary in digital electronics
Logic gates summary in digital electronics
Logic gates summary in digital electronics
Logic gates summary in digital electronics
Boolean Function Representation
• Various way of representing a given function
1- Sum of Product Form (SOP)
2- Product of Sum Form (POS)
3- Standard or Canonical SOP Form
4- Standard or Canonical POS Form
5-Truth Table Form
6- Karnaugh Map or K- Map
Sum of Product Form (SOP) Standard or Canonical SOP Form
• The Sum of Products is abbreviated as
SOP.
• It is the logical expression in Boolean
algebra where all the input terms are
ANDed (Product) first and then ORed
(summed) together.
• SOP form: F(A,B,C)=A+BC'+A'BC
• The variables in each term are not
necessarily all the variables of the
function.
• Standard SOP term must contain all
the function variables either in
complemented form or in
uncomplemented form.
• A product term which contain all the
function variables either in
complemented form or in
uncomplemented form is called a
minterm.
F(A,B,C)=AB’C+A’BC'+A'BC
Conversion of SOP to Canonical SOP
F(A,B,C)=A+BC'+A'BC
=A+BC'+A'BC
=A(B+B')(C+C')+BC'(A+A')+A'BC
=ABC+ABC'+AB'C+AB'C'+ ABC'+A'BC'+A'BC
=ABC+ABC'+AB'C+AB'C'+ A'BC'+A'BC (A+A=A)
Product of Sum Form (POS) Standard or Canonical POS Form
• POS form means that the inputs of
each term are Added together
using OR function then all terms are
multiplied together using AND
function.
• The variables in each term are not
necessarily all the variables of the
function.
• POS form:
F(A,B,C)=A.(B+C').(A'+B+C')
• Standard POS term must contain all the
function variables either in
complemented form or in
uncomplemented form.
• A sum term which contain all the
function variables either in
complemented form or in
uncomplemented form is called a
maxterm.
• F(A,B,C)=(A+B+C)(A+B+C').(A'+B+C')
Conversion of POS to Canonical POS
F(A,B,C)=A.(B+C').(A'+B+C')
=[A+(B.B')+(C.C')].[(B+C')+(A.A')].(A'+B+C') =[(A+B+C).(A+B+C').(A+B'+C).
(A+B'+C')].[(A+B+C').(A'+B+C')].(A'+B+C’)
(A.A=A)
=(A+B+C).(A+B+C').(A+B'+C).(A+B'+C').(A'+B+C')
Example 1 – Express the Boolean function F = A + B’C as standard
sum of minterms.
A = A(B + B’) = AB + AB’
A = AB(C + C’) + AB'(C + C’) = ABC + ABC’+ AB’C + AB’C’
B’C = B’C(A + A’) = AB’C + A’B’C
F = A + B’C = ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C
F = A’B’C + AB’C’ + AB’C + ABC’ + ABC
= m1 + m4 + m5 + m6 + m7
=m(1,4,5,6,7)
Example 2 – Express the Boolean function F = (A+B’)(B+C) as a product of
max-terms
• F = (A+B’)(B+C)
• I term: (A+B’)= (A+B’+CC’)
= (A+B’+C) (A+B’+C’)
• II term: (B+C)= (AA’+B+C)
= (A+B+C) (A’+B+C)
• Combining both:
• F= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C)
= M2 * M3 * M0 * M4
= ΠM(0,2,3,4)
Example 3 – Express the Boolean function F = xy + x’z as a product
of maxterms.
• F = xy + x’z
= (xy + x’)(xy + z)
= (x + x’)(y + x’)(x + z)(y + z)
= (x’ + y)(x + z)(y + z)
• x’ + y = x’ + y + zz’
= (x’+ y + z)(x’ + y + z’) x + z
• x + z + yy’
= (x + y + z)(x + y’ + z) y + z
• y + z + xx’
= (x + y + z)(x’ + y + z)
• F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z’)
= M0*M2*M4*M5
= πM(0,2,4,5)
Example 4–Convert F(A, B, C) = m(1,4,5,6,7) to POS FORM
• Missing terms of minterms = terms of maxterms
• Missing terms of maxterms = terms of minterms
• F(A, B, C) = m(1,4,5,6,7) =πM(0,2,3)
Example 5– Convert Boolean expression in standard form
F=y’+xz’+xyz
• F=y’+xz’+xyz
• F = (x+x’)y'(z+z’)+x(y+y’)z’ +xyz
• F = xy’z+ xy’z’+x’y’z+x’y’z’+ xyz’+xy’z’+xyz
• F = m5, m4, m1, m0, m6, m4, m7
• F= m (0,1,4,5,6,7)
Example 6: Generate truth table for F= xy + x’z
INPUTS OUTPUT
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
0 Maxterms
1 Minterms
Truth Table

More Related Content

Similar to Logic gates summary in digital electronics (20)

PPTX
Switching theory and logic design.
Anto Jose Moyalan
 
PDF
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
arunachalamr16
 
PPTX
Boolean Function SOP & POS
GargiKhanna1
 
PPTX
Digital electronics basic overview .pptx
singhparmpreet
 
PPTX
ANALOG AND DIGITAL ELECTRONICS unit 4
ACE ENGINEERING COLLEGE
 
PDF
K-map Digital Logic Design DLD Theory l
khanyz4884
 
PDF
Boolen Algebra Lecture Notes.pdf
nyamuonatinashe
 
PDF
2,Combinational Logic Circuits.pdf
DamotTesfaye
 
PPTX
boolenalgebralecturenotes-220915100409-6e6a97bd (1).pptx
shvetachaudhari19bca
 
PPTX
Boolean algebra
LingalaSowjanya
 
PPTX
WINSEM2024-25_ISWE201L_TH_VL2024250503341_2024-12-18_Reference-Material-I.pptx
vinothdivya2006
 
PPTX
SOP_POS_kmap_ DJ_Section_B.pptx
divanshujain8
 
PPT
Principles of Combinational Logic-1
Supanna Shirguppe
 
PPT
Ch4 Boolean Algebra And Logic Simplication1
Qundeel
 
PDF
digital electronics PPT.pdfggjjnjjjjuuhhh
abhijeet002saha
 
PPTX
combinational-logic-circuit_with_Proper_Diagrams.pptx
MdYekraRahman1
 
PPTX
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptx
MdJubayerFaisalEmon
 
PDF
Dld lecture module 06
Bilal Maqbool ツ
 
PDF
Sop and pos
shubhamprajapat23
 
Switching theory and logic design.
Anto Jose Moyalan
 
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
arunachalamr16
 
Boolean Function SOP & POS
GargiKhanna1
 
Digital electronics basic overview .pptx
singhparmpreet
 
ANALOG AND DIGITAL ELECTRONICS unit 4
ACE ENGINEERING COLLEGE
 
K-map Digital Logic Design DLD Theory l
khanyz4884
 
Boolen Algebra Lecture Notes.pdf
nyamuonatinashe
 
2,Combinational Logic Circuits.pdf
DamotTesfaye
 
boolenalgebralecturenotes-220915100409-6e6a97bd (1).pptx
shvetachaudhari19bca
 
Boolean algebra
LingalaSowjanya
 
WINSEM2024-25_ISWE201L_TH_VL2024250503341_2024-12-18_Reference-Material-I.pptx
vinothdivya2006
 
SOP_POS_kmap_ DJ_Section_B.pptx
divanshujain8
 
Principles of Combinational Logic-1
Supanna Shirguppe
 
Ch4 Boolean Algebra And Logic Simplication1
Qundeel
 
digital electronics PPT.pdfggjjnjjjjuuhhh
abhijeet002saha
 
combinational-logic-circuit_with_Proper_Diagrams.pptx
MdYekraRahman1
 
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptx
MdJubayerFaisalEmon
 
Dld lecture module 06
Bilal Maqbool ツ
 
Sop and pos
shubhamprajapat23
 

Recently uploaded (20)

PDF
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PDF
Choosing the Right Database for Indexing.pdf
Tamanna
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PDF
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
PDF
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
PDF
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
PDF
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
PPTX
b6057ea5-8e8c-4415-90c0-ed8e9666ffcd.pptx
Anees487379
 
PPTX
apidays Helsinki & North 2025 - Agentic AI: A Friend or Foe?, Merja Kajava (A...
apidays
 
PDF
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
PDF
Early_Diabetes_Detection_using_Machine_L.pdf
maria879693
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PDF
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
PPTX
GenAI-Introduction-to-Copilot-for-Bing-March-2025-FOR-HUB.pptx
cleydsonborges1
 
PPTX
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
PPT
deep dive data management sharepoint apps.ppt
novaprofk
 
PPTX
recruitment Presentation.pptxhdhshhshshhehh
devraj40467
 
PPTX
apidays Singapore 2025 - Designing for Change, Julie Schiller (Google)
apidays
 
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
Choosing the Right Database for Indexing.pdf
Tamanna
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
b6057ea5-8e8c-4415-90c0-ed8e9666ffcd.pptx
Anees487379
 
apidays Helsinki & North 2025 - Agentic AI: A Friend or Foe?, Merja Kajava (A...
apidays
 
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
Early_Diabetes_Detection_using_Machine_L.pdf
maria879693
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
GenAI-Introduction-to-Copilot-for-Bing-March-2025-FOR-HUB.pptx
cleydsonborges1
 
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
deep dive data management sharepoint apps.ppt
novaprofk
 
recruitment Presentation.pptxhdhshhshshhehh
devraj40467
 
apidays Singapore 2025 - Designing for Change, Julie Schiller (Google)
apidays
 
Ad

Logic gates summary in digital electronics

  • 2. IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS Draw the circuit diagram to implement the expression f (A,B,C) = (A + B)(B + C). F (A,B,C) = AC + BC + ABC
  • 3. Universal Gates KEC- 101 • A universal gate is a gate which can implement any Boolean function without need to use any other gate type. • The NAND and NOR gates are universal gates. • This is advantageous since NAND and NOR gates are economical and easier to fabricate and are the basic gates used in all IC digital logic families.
  • 4. Logic Gates Using Only NAND Gates NAND AS NOT GATE 𝒀= 𝑨 .𝑩 = 𝑨 .𝑨 𝒀= 𝑨 NAND AS OR GATE Y=A+B 𝒀=𝑨+𝑩 𝒀=𝑨.𝑩
  • 5. NAND AS NOR GATE
  • 6. NAND AS AND GATE
  • 7. NAND AS XOR GATE
  • 9. Logic Gates Using Only NOR Gates A 𝐀
  • 16. Boolean Function Representation • Various way of representing a given function 1- Sum of Product Form (SOP) 2- Product of Sum Form (POS) 3- Standard or Canonical SOP Form 4- Standard or Canonical POS Form 5-Truth Table Form 6- Karnaugh Map or K- Map
  • 17. Sum of Product Form (SOP) Standard or Canonical SOP Form • The Sum of Products is abbreviated as SOP. • It is the logical expression in Boolean algebra where all the input terms are ANDed (Product) first and then ORed (summed) together. • SOP form: F(A,B,C)=A+BC'+A'BC • The variables in each term are not necessarily all the variables of the function. • Standard SOP term must contain all the function variables either in complemented form or in uncomplemented form. • A product term which contain all the function variables either in complemented form or in uncomplemented form is called a minterm. F(A,B,C)=AB’C+A’BC'+A'BC
  • 18. Conversion of SOP to Canonical SOP F(A,B,C)=A+BC'+A'BC =A+BC'+A'BC =A(B+B')(C+C')+BC'(A+A')+A'BC =ABC+ABC'+AB'C+AB'C'+ ABC'+A'BC'+A'BC =ABC+ABC'+AB'C+AB'C'+ A'BC'+A'BC (A+A=A)
  • 19. Product of Sum Form (POS) Standard or Canonical POS Form • POS form means that the inputs of each term are Added together using OR function then all terms are multiplied together using AND function. • The variables in each term are not necessarily all the variables of the function. • POS form: F(A,B,C)=A.(B+C').(A'+B+C') • Standard POS term must contain all the function variables either in complemented form or in uncomplemented form. • A sum term which contain all the function variables either in complemented form or in uncomplemented form is called a maxterm. • F(A,B,C)=(A+B+C)(A+B+C').(A'+B+C')
  • 20. Conversion of POS to Canonical POS F(A,B,C)=A.(B+C').(A'+B+C') =[A+(B.B')+(C.C')].[(B+C')+(A.A')].(A'+B+C') =[(A+B+C).(A+B+C').(A+B'+C). (A+B'+C')].[(A+B+C').(A'+B+C')].(A'+B+C’) (A.A=A) =(A+B+C).(A+B+C').(A+B'+C).(A+B'+C').(A'+B+C')
  • 21. Example 1 – Express the Boolean function F = A + B’C as standard sum of minterms. A = A(B + B’) = AB + AB’ A = AB(C + C’) + AB'(C + C’) = ABC + ABC’+ AB’C + AB’C’ B’C = B’C(A + A’) = AB’C + A’B’C F = A + B’C = ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C F = A’B’C + AB’C’ + AB’C + ABC’ + ABC = m1 + m4 + m5 + m6 + m7 =m(1,4,5,6,7)
  • 22. Example 2 – Express the Boolean function F = (A+B’)(B+C) as a product of max-terms • F = (A+B’)(B+C) • I term: (A+B’)= (A+B’+CC’) = (A+B’+C) (A+B’+C’) • II term: (B+C)= (AA’+B+C) = (A+B+C) (A’+B+C) • Combining both: • F= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) = M2 * M3 * M0 * M4 = ΠM(0,2,3,4)
  • 23. Example 3 – Express the Boolean function F = xy + x’z as a product of maxterms. • F = xy + x’z = (xy + x’)(xy + z) = (x + x’)(y + x’)(x + z)(y + z) = (x’ + y)(x + z)(y + z) • x’ + y = x’ + y + zz’ = (x’+ y + z)(x’ + y + z’) x + z • x + z + yy’ = (x + y + z)(x + y’ + z) y + z • y + z + xx’ = (x + y + z)(x’ + y + z) • F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z’) = M0*M2*M4*M5 = πM(0,2,4,5)
  • 24. Example 4–Convert F(A, B, C) = m(1,4,5,6,7) to POS FORM • Missing terms of minterms = terms of maxterms • Missing terms of maxterms = terms of minterms • F(A, B, C) = m(1,4,5,6,7) =πM(0,2,3) Example 5– Convert Boolean expression in standard form F=y’+xz’+xyz • F=y’+xz’+xyz • F = (x+x’)y'(z+z’)+x(y+y’)z’ +xyz • F = xy’z+ xy’z’+x’y’z+x’y’z’+ xyz’+xy’z’+xyz • F = m5, m4, m1, m0, m6, m4, m7 • F= m (0,1,4,5,6,7)
  • 25. Example 6: Generate truth table for F= xy + x’z INPUTS OUTPUT A B C F 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 Maxterms 1 Minterms Truth Table