This document describes a study that uses a convolutional neural network (CNN) to classify lung cancer in CT scans. The CNN model is trained on a dataset of 1018 patient CT scans containing annotations of lung nodules as benign or malignant. The CNN architecture includes convolution layers to extract features, max pooling layers to reduce computations, dropout layers to prevent overfitting, and fully connected layers to classify scans. The model achieves a 65% accuracy on the training set at detecting cancer in new CT scans. The CNN is integrated into a web application to allow doctors to efficiently analyze scans for lung cancer.