SlideShare a Scribd company logo
Machine Learning
Tobi Ogunbiyi & Alex Vermeulen
1
What is Machine Learning?
A computer program is said to learn if its
measured performance on a task improves with
experience.
2
• Google’s self-driving car
• Optical Character Recognition (OCR)
• Google street view
• Facebook
Machine Learning Applications
3
Supervised Learning
The machine is “trained” using examples for
which we know the correct answer.
- Labeled data
- Used for classification or prediction
4
• Features: shape, size, colour, and sound
• Labels: “cow”, “pig”, “chicken”, “llama”
Supervised Learning
Example
5
Unsupervised Learning
Tries to find patterns and groupings by analyzing
the characteristics of the data
• Unlabeled data
• Identifies patterns and groupings in the data
6
• No labels, just looking to group similar animals
• Features: shape, size, colour, and sound
Unsupervised Learning
7
Cloud accounting software designed for small,
service-based businesses
8
9
330
expenses per month
8
hours per year
Story Telling
7
seconds per expense
-
How can Machine Learning
Help?
• Simple & Painless
• Create a better user experience
• Save customers time and let them do what they
do best!
10
How did we get there?
11
12
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
12
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
12
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
Categorized expenses from the last year
12
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
13
#5795# QTH Toronto ON
#991# Toronto ON
Roots #130 Etobicoke ON
True North Climbing Toronto ON
Tim Hortons
Eddie Bauer Canada
M9C
Pre Processing
13
#5795# QTH Toronto ON
#991# Toronto ON
Roots #130 Etobicoke ON
True North Climbing Toronto ON
Tim Hortons
Eddie Bauer Canada
M9C
Pre Processing
13
QTH Toronto ON
Toronto ON
Roots Etobicoke ON
True North Climbing Toronto ON
Tim Hortons
Eddie Bauer Canada
Pre Processing
14
Tim Hortons QTH Toronto ON
Vectorize
(i)
(ii) Eddie Bauer Canada Toronto ON
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(i)
(ii) Eddie Bauer Canada Toronto ON
-
-
-
-
-
-
-
-
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(i)
(ii) Eddie Bauer Canada Toronto ON
-
-
-
-
-
-
-
-
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(i) 1
-
-
-
-
-
-
-
(ii) Eddie Bauer Canada Toronto ON
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(i) 1
-
-
-
-
-
-
-
(ii) Eddie Bauer Canada Toronto ON
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
-
-
-
-
-
-
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
1
1
1
1
1
0
0
0
(i)
(ii) Eddie Bauer Canada Toronto ON
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
1
1
1
1
1
0
0
0
(i) (ii)
(ii) Eddie Bauer Canada Toronto ON
-
-
-
-
-
-
-
-
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
1
1
1
1
1
0
0
0
(i) (ii)
(ii) Eddie Bauer Canada Toronto ON
-
-
-
-
-
-
-
-
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
1
1
1
1
1
0
0
0
(i) (ii)
(ii) Eddie Bauer Canada Toronto ON
-
-
-
-
-
1
-
-
14
Tim Hortons QTH Toronto ON
Vectorize
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
1
1
1
1
1
0
0
0
(i) (ii)
(ii) Eddie Bauer Canada Toronto ON
0
0
0
1
1
1
1
1
15
Transform
15
Transform
Term Frequency - Inverse Document Frequency
= term frequency x inverse document freq.
15
Transform
Term Frequency - Inverse Document Frequency
= term frequency x inverse document freq.
A numerical statistic that reflects how important
or descriptive a term is to a single document in a
collection.
15
Transform
Term Frequency - Inverse Document Frequency
= term frequency x inverse document freq.
term freq. = occurrences of term in document
15
Transform
inverse document freq.= log
total documents
docs containing the term
Term Frequency - Inverse Document Frequency
= term frequency x inverse document freq.
term freq. = occurrences of term in document
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
16
Tf-Idf Example
tf(tim, d1) = occurrences of term
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
16
Tf-Idf Example
tf(tim, d1) = occurrences of term
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i) tf(tim, d1) = 1
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
idf(tim, D) = log
total docs
docs cont. term
tf(tim, d1) = 1
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
idf(tim, D) = log
total docs
docs cont. term
tf(tim, d1) = 1
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
idf(tim, D) = log
docs cont. term
2
tf(tim, d1) = 1
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
idf(tim, D) = log
docs cont. term
2
tf(tim, d1) = 1
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
idf(tim, D) = log
2
1
tf(tim, d1) = 1
16
Tf-Idf Example
= 0.301
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
idf(tim, D) = log
2
1
tf(tim, d1) = 1
16
Tf-Idf Example
tfidf(tim, d1) = 1 x 0.301 = 0.301
= 0.301
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i)
idf(tim, D) = log
2
1
tf(tim, d1) = 1
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i) .301
.301
.301
0
0
0
0
0
16
Tf-Idf Example
Tim Hortons QTH Toronto ON
“tim”
“hortons”
“qth”
“toronto”
“on”
“eddie”
“bauer”
“canada”
(i)
(ii) Eddie Bauer Canada Toronto ON
1
1
1
1
1
0
0
0
(i) .301
.301
.301
0
0
0
0
0
17
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
17
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
17
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
80% training data

20% testing data
17
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
• Multinomial Logistic Regression (supervised)
• Used for unordered, categorical outputs with
more than 2 possible categories
• Series of linear sub-models which output a real
number
18
Classify
Eggwidth
2
2.5
3
3.5
4
4.5
Egg length
4 4.5 5 5.5 6 6.5 7
Duck egg
Chicken egg
Linear regression
Eggwidth
2
2.5
3
3.5
4
4.5
Egg length
4 4.5 5 5.5 6 6.5 7
Duck egg
Chicken egg
Linear regression
Linear regression
Eggwidth
2
2.5
3
3.5
4
4.5
Egg length
4 4.5 5 5.5 6 6.5 7
Duck egg
Chicken egg
20
Logistic Function
• Normalizes the output of the model to a score
between 0 and 1
20
Logistic Function
1 + e-x
logistic function =
1
• Normalizes the output of the model to a score
between 0 and 1
Output
0
0.25
0.5
0.75
1
Input
-5 -4 -3 -2 -1 0 1 2 3 4 5
20
Logistic Function
• Normalizes the output of the model to a score
between 0 and 1
21
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
21
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
Validation
• Tested against the 20% reserved testing data set
• Cross validation against a completely separate
set of expense data
22
23
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
23
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
Refinement
• How do you know if your model is good enough?
• What can you do to improve your model?
• Adjust the amount of data
• Clean irrelevant parts of the data
• Tweak parameters of the algorithm
24
MeanAccuracy(%)
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Sample size
10K 100K 200K 300K 400K 500K
SVM
Multinomial Naive Bayes
Bernoulli Naive Bayes
Logistic Regression L1
Logistic Regression L2
Experiment
26
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
26
Data Collection
Pre-Processing
Sampling
Build Model
Refinement
Evaluation
Prediction
• Use the model to classify new, unlabeled data
Prediction
27
Prediction
27
Tim Hortons 3335 QPS Toronto ON
Prediction
27
“Advertising”
“Car & Truck Expenses
“Meals & Entertainment”
“Personal”
“Rent or Lease”
“Travel”
“Utilities”
Tim Hortons 3335 QPS Toronto ON
Prediction
27
“Advertising”
“Car & Truck Expenses
“Meals & Entertainment”
“Personal”
“Rent or Lease”
“Travel”
“Utilities”
0.020
0.018
0.710
0.230
0.003
0.011
0.008
Tim Hortons 3335 QPS Toronto ON
Prediction
27
“Advertising”
“Car & Truck Expenses
“Meals & Entertainment”
“Personal”
“Rent or Lease”
“Travel”
“Utilities”
0.020
0.018
0.710
0.230
0.003
0.011
0.008
Tim Hortons 3335 QPS Toronto ON
Prediction
27
“Advertising”
“Car & Truck Expenses
“Meals & Entertainment”
“Personal”
“Rent or Lease”
“Travel”
“Utilities”
0.020
0.018
0.710
0.230
0.003
0.011
0.008
Tim Hortons 3335 QPS Toronto ON
Threshold: 0.6
Getting Started
• What kind of data do you have?
• Labeled or unlabeled?
• What questions are you trying to answer?
• Make predictions
• Label or classify
• Identify patterns or groupings
28
Lessons Learned
• Machines are intelligent, but not magicians
• It’s easy to know you’re wrong, but harder to
know when you’re right
• Some people prefer to have control
29
Take away?
• Opens up new opportunities
• Potential to deliver amazing user experiences
• Machine Learning is fun!
30
Thank You.
31
Resources
• Interested in following along with FreshBooks
Learnings?
• medium.com/@freshbookspd
• Want to learn more about Machine Learning?
• udacity.com
• coursera.org
• Python’s scikit-learn
32
More examples of our
experimentation…
33
Model Build TimeTimetotrain(min)
0
1
2
3
4
5
6
7
8
9
10
Sample size
10K 100K 200K 300K 400K 500K
SVM
Multinomial Naive Bayes
Bernoulli Naive Bayes
Logistic Regression L1
Logistic Regression L2
Prediction TimeTimetopredict(ms)
0ms
10ms
20ms
30ms
40ms
50ms
60ms
70ms
80ms
Sample size
10K 100K 200K 300K 400K 500K
SVM
Multinomial Naive Bayes
Bernoulli Naive Bayes
Logistic Regression L1
Logistic Regression L2
File Size
FileSize(MB)
0MB
500MB
1,000MB
1,500MB
2,000MB
2,500MB
Sample size
10K 100K 200K 300K 400K 500K
SVM
Multinomial Naive Bayes
Bernoulli Naive Bayes
Logistic Regression L1
Logistic Regression L2

More Related Content

DOCX
Week van de Mobiliteit 2015
Ans Huisman
 
PPTX
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...
Lumen Learning
 
PDF
Boletín Semestral INPPARES Informa (Semestre 1/ Ene - Jun 2015 )
INPPARES / Perú
 
PPTX
Cuadro Comparativo
Arleth Orellana
 
PPTX
The Percheron horses:
DrMuhammadAshiq
 
PPTX
Milvia pinedaa5
Milvia Pineda
 
PPTX
Mapa de riesgo
Paola Carolina Bracho Romero
 
PDF
Designing for Online Collaborative Sensemaking
Nitesh Goyal
 
Week van de Mobiliteit 2015
Ans Huisman
 
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...
Lumen Learning
 
Boletín Semestral INPPARES Informa (Semestre 1/ Ene - Jun 2015 )
INPPARES / Perú
 
Cuadro Comparativo
Arleth Orellana
 
The Percheron horses:
DrMuhammadAshiq
 
Milvia pinedaa5
Milvia Pineda
 
Designing for Online Collaborative Sensemaking
Nitesh Goyal
 

Viewers also liked (13)

PDF
Gastronomía 2.0 en la red
Javier Camacho
 
PDF
Fewd week6 slides
William Myers
 
PDF
Turismo en entornos competitivos
Javier Camacho
 
PPTX
Higiene y Seguridad Industrial
'Crlooz Márqez
 
PDF
La Educación Sexual Integral en la Prevención de la Violencia.
INPPARES / Perú
 
PDF
Abordaje preventivo del duelo complicado en unidades de hospitalización
Centro de Humanización de la Salud
 
PPTX
1.9 temperatura y ley cero de la termodinamica
Tersy Comi Gonzalez
 
PDF
Introducción a la ingeniería
Universidad Libre
 
PPTX
e paper seminar
Vyshnav Radhakrishnan
 
PDF
Marca Sevilla by Sevilla Tourism Week
Javier Camacho
 
PPT
Trabajo sobre el sida
septimogrado
 
PPTX
Sexualidad y discapacidad
Fundación Dios es Amor
 
PPTX
Paper battery The Future of Batteries
Shri Savitribai Phule Polytechnic Pune
 
Gastronomía 2.0 en la red
Javier Camacho
 
Fewd week6 slides
William Myers
 
Turismo en entornos competitivos
Javier Camacho
 
Higiene y Seguridad Industrial
'Crlooz Márqez
 
La Educación Sexual Integral en la Prevención de la Violencia.
INPPARES / Perú
 
Abordaje preventivo del duelo complicado en unidades de hospitalización
Centro de Humanización de la Salud
 
1.9 temperatura y ley cero de la termodinamica
Tersy Comi Gonzalez
 
Introducción a la ingeniería
Universidad Libre
 
e paper seminar
Vyshnav Radhakrishnan
 
Marca Sevilla by Sevilla Tourism Week
Javier Camacho
 
Trabajo sobre el sida
septimogrado
 
Sexualidad y discapacidad
Fundación Dios es Amor
 
Paper battery The Future of Batteries
Shri Savitribai Phule Polytechnic Pune
 
Ad

Similar to Machine learning (20)

PDF
R data mining_clear
sinanspoon
 
PDF
Machine_Learning_Trushita
Trushita Redij
 
PDF
Introduction to Radial Basis Function Networks
ESCOM
 
PPTX
machine learning
gunjisrihari2
 
PDF
book.pdf
dentistnikhil
 
DOCX
ContentsPreface vii1 Introduction 11.1 What .docx
dickonsondorris
 
PDF
Scikit learn 0.16.0 user guide
Shantanu Sharma
 
PDF
Machine learning and its parameter is discussed here
RevathiSundar4
 
PDF
Machine learning cheat sheet
Hany Sewilam Abdel Hamid
 
PDF
Machine learning-cheat-sheet
Willy Marroquin (WillyDevNET)
 
PPTX
Musings of kaggler
Kai Xin Thia
 
PPTX
Introduction to Machine Learning
Dilum Bandara
 
PPTX
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
oliversen
 
PDF
Shop vertical classification - Meetup Presentation
prevota
 
PDF
CS229_MachineLearning_notes.pdfkkkkkkkkkk
lenhan070903
 
PDF
machine learning notes by Andrew Ng and Tengyu Ma
Vijayabaskar Uthirapathy
 
PDF
Stochastic Processes and Simulations – A Machine Learning Perspective
e2wi67sy4816pahn
 
PDF
Recommender Systems: Beyond the user-item matrix
Eugene Yan Ziyou
 
PDF
numpyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
sin3divcx
 
R data mining_clear
sinanspoon
 
Machine_Learning_Trushita
Trushita Redij
 
Introduction to Radial Basis Function Networks
ESCOM
 
machine learning
gunjisrihari2
 
book.pdf
dentistnikhil
 
ContentsPreface vii1 Introduction 11.1 What .docx
dickonsondorris
 
Scikit learn 0.16.0 user guide
Shantanu Sharma
 
Machine learning and its parameter is discussed here
RevathiSundar4
 
Machine learning cheat sheet
Hany Sewilam Abdel Hamid
 
Machine learning-cheat-sheet
Willy Marroquin (WillyDevNET)
 
Musings of kaggler
Kai Xin Thia
 
Introduction to Machine Learning
Dilum Bandara
 
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
oliversen
 
Shop vertical classification - Meetup Presentation
prevota
 
CS229_MachineLearning_notes.pdfkkkkkkkkkk
lenhan070903
 
machine learning notes by Andrew Ng and Tengyu Ma
Vijayabaskar Uthirapathy
 
Stochastic Processes and Simulations – A Machine Learning Perspective
e2wi67sy4816pahn
 
Recommender Systems: Beyond the user-item matrix
Eugene Yan Ziyou
 
numpyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
sin3divcx
 
Ad

Recently uploaded (20)

PPTX
INFO8116 -Big data architecture and analytics
guddipatel10
 
PPTX
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
PPTX
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
PPT
Real Life Application of Set theory, Relations and Functions
manavparmar205
 
PDF
Blitz Campinas - Dia 24 de maio - Piettro.pdf
fabigreek
 
PDF
Classifcation using Machine Learning and deep learning
bhaveshagrawal35
 
PDF
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
PPT
From Vision to Reality: The Digital India Revolution
Harsh Bharvadiya
 
PPTX
Fluvial_Civilizations_Presentation (1).pptx
alisslovemendoza7
 
PPTX
Blue and Dark Blue Modern Technology Presentation.pptx
ap177979
 
PDF
An Uncut Conversation With Grok | PDF Document
Mike Hydes
 
PDF
WISE main accomplishments for ISQOLS award July 2025.pdf
StatsCommunications
 
PDF
Technical Writing Module-I Complete Notes.pdf
VedprakashArya13
 
PPTX
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
PPTX
Presentation on animal welfare a good topic
kidscream385
 
PPTX
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
PDF
Fundamentals and Techniques of Biophysics and Molecular Biology (Pranav Kumar...
RohitKumar868624
 
PPTX
World-population.pptx fire bunberbpeople
umutunsalnsl4402
 
PDF
Practical Measurement Systems Analysis (Gage R&R) for design
Rob Schubert
 
PDF
Blue Futuristic Cyber Security Presentation.pdf
tanvikhunt1003
 
INFO8116 -Big data architecture and analytics
guddipatel10
 
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
Real Life Application of Set theory, Relations and Functions
manavparmar205
 
Blitz Campinas - Dia 24 de maio - Piettro.pdf
fabigreek
 
Classifcation using Machine Learning and deep learning
bhaveshagrawal35
 
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
From Vision to Reality: The Digital India Revolution
Harsh Bharvadiya
 
Fluvial_Civilizations_Presentation (1).pptx
alisslovemendoza7
 
Blue and Dark Blue Modern Technology Presentation.pptx
ap177979
 
An Uncut Conversation With Grok | PDF Document
Mike Hydes
 
WISE main accomplishments for ISQOLS award July 2025.pdf
StatsCommunications
 
Technical Writing Module-I Complete Notes.pdf
VedprakashArya13
 
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
Presentation on animal welfare a good topic
kidscream385
 
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
Fundamentals and Techniques of Biophysics and Molecular Biology (Pranav Kumar...
RohitKumar868624
 
World-population.pptx fire bunberbpeople
umutunsalnsl4402
 
Practical Measurement Systems Analysis (Gage R&R) for design
Rob Schubert
 
Blue Futuristic Cyber Security Presentation.pdf
tanvikhunt1003
 

Machine learning