SlideShare a Scribd company logo
Machine Learning and TensorFlow
Artificial Intelligence Present and Future
José Papo
Gerente de relações com startups e developers
Google América Latina
@josepapo
Machine learning and TensorFlow
“Machine learning is a core,
transformative way by which we’re
re-thinking how we’re doing everything”
Sundar Pichai
CEO, Google
“Machine learning will cause every
successful huge IPO win in 5 years.”
Eric Schmidt
Executive Chairman, Alphabet
Basic Concepts
● Artificial General Intelligence
● Artificial Superintelligence
● Artificial Narrow Intelligence
Artificial Intelligence
Machine Learning (Narrow AI)
Deep Learning (ML on Steroids!!!)
Machine learning and TensorFlow
What’s different now from 10 years ago?
WAY MORE
DATA
More
Compute
Better
Algorithms
Machine learning and TensorFlow
Machine Learning at Google
Products using Machine Learning
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
TensorFlow
Machine learning and TensorFlow
● Open source Machine
Learning library
● Especially useful for
Deep Learning
● For research and
production
● Apache 2.0 license
Raspberry
Pi
DatacentersYour laptop Android iOS
Portable & Scalable
A multidimensional array.
A graph of operations.
Data Flow Graphs
Computation is defined as a directed acyclic graph
(DAG) to optimize an objective function
● Graph is defined in high-level language (Python)
● Graph is compiled and optimized
● Graph is executed (in parts or fully) on available low
level devices (CPU, GPU)
● Data (tensors) flow through the graph
● TensorFlow can compute gradients automatically
Machine learning and TensorFlow
Image source: Wikimedia
+ =
A Neural Algorithm of Artistic Style http://arxiv.org/abs/1508.06576
?
Image source: Wikimedia
+ =
A Neural Algorithm of Artistic Style http://arxiv.org/abs/1508.06576
Image source: Wikimedia
+ =
A Neural Algorithm of Artistic Style http://arxiv.org/abs/1508.06576
goo.gl/fyDxhC
Most popular ML open source project on GitHub
Cloud, Mobile, Machine Learning
Cloud Machine Learning APIs
See, Hear and Understand the world
Cloud
Natural Language
Cloud
Speech
Cloud
Translate
Cloud
Vision
Faces
Faces, facial landmarks, emotions
OCR
Read and extract text, with
support for > 10 languages
Label
Detect entities from furniture to
transportation
Logos
Identify product logos
Landmarks & Image Properties
Detect landmarks & dominant
color of image
Safe Search
Detect explicit content - adult,
violent, medical and spoof
Cloud Vision API
Confidential & ProprietaryGoogle Cloud Platform 34
Cloud Natural Language API
Extract sentence, identify parts of
speech and create dependency parse
trees for each sentence.
Identify entities and label by types such
as person, organization, location, events,
products and media.
Understand the overall sentiment of a
block of text.
Syntax Analysis Entity Recognition
Sentiment Analysis
Confidential & ProprietaryGoogle Cloud Platform 35
Cloud Speech API
Automatic Speech Recognition (ASR)
powered by deep learning neural
networking to power your
applications like voice search or
speech transcription.
Recognizes over 80
languages and variants
with an extensive
vocabulary.
Returns partial
recognition results
immediately, as they
become available.
Filter inappropriate
content in text results.
Audio input can be captured by an application’s
microphone or sent from a pre-recorded audio
file. Multiple audio file formats are supported,
including FLAC, AMR, PCMU and linear-16.
Handles noisy audio from many
environments without requiring
additional noise cancellation.
Audio files can be uploaded in the
request and, in future releases,
integrated with Google Cloud
Storage.
Automatic Speech Recognition Global Vocabulary Inappropriate Content
Filtering
Streaming Recognition
Real-time or Buffered Audio Support Noisy Audio Handling Integrated API
Mobile Vision API
Providing on-device vision for applications
Face API
faces, facial landmarks, eyes
open, smiling
Barcode API
1D and 2D barcodes
Text API
Latin-based text / structure
Common Mobile Vision API
Support for fast image and video on-device detection and tracking.
NEW!
Face API
Photo credit developers.google.com/vision
Text Detection
Latin based language
Understand text structure
Photo credit Getty Images
Barcode Detection
1D barcodes
EAN-13/8
UPC-A/E
Code-39/93/128
ITF
Codabar
2D barcodes
QR Code
Data Matrix
PDF-417
AZTEC
UPC
DataMatrix
QR Code
PDF 417
Video and image credit Google
Machine Learning Democratization
Use Cases in Latin America
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
ACESSO UNIVERSAL A MEDICINA DE QUALIDADE
Machine Learning
AGENDA
• Otimização do broadcast
• Otimização do processo billing
• Personal Cloud
Machine
Learning
operacion
al
comercia
l
usuário
s
3perspectiva
s
Otimização do broadcast
• Reduzir a quantidade de envio de mensagens de
estímulo mantendo a mesma taxa de retorno.
comercia
l Desafio
Proposta
• Identificar o comportamento ou características dos
usuários mais propensos a responder ao estímulo.
Otimização do broadcast
• Text Mining para tratamento das frases,
classificando-as, como por exemplo, pela ideia
transmitida.
• Análise de modelos preditivos para seleção dos
clientes mais propensos.
comercia
l
Processo de
análise
Otimização do broadcast
• Prever quem não irá responder a nossa oferta nos
dá a possibilidade de pensarmos em algo diferente
para este usuário e desta forma conhecê-lo um
pouco mais.
• Redução de média 40% nos envios de broadcast.
comercia
l
Resultad
o
Otimização do billing
• Aumentar o sucesso nas cobranças dos serviços
prestados.
Desafi
o
Propost
a
• Identificar os clientes mais propensos em
determinados horários.
operacion
al
Otimização do billing
• Tratamento e enriquecimento da base de dados com
BigQuery.
• Análise de modelos preditivos para criação de escore de
crédito.
Processo de
análise
operacion
al
Otimização do billing
Proposição de
uso
Otimização do billing
• Redução de custos com infraestrutura de TI, uso
mais inteligente de recursos.
• Melhora de 42% em média na acertividade do
billing.
Resultad
o
operacion
al
Personal Cloud
• Detectar objetos e faces dentro das fotos dos
usuários do Personal Cloud para possibilitar busca e
criação de álbuns de forma automática
Desafi
o
Propost
a
• Utilização da API do Google Cloud Vision.
usuário
s
Busca por tags e álbuns
automáticos
Otimização do broadcast
Processo de
análiseusuário
s pé
dedo
bolsa
óculo
s
praia
Don’t Think Outside The
Box, Think Like There is NO
BOX!
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
Machine learning and TensorFlow
tensorflow.org
github.com/tensorflow
Want to learn more?
Udacity class on Deep Learning, goo.gl/iHssII
Guides, codelabs, videos
MNIST for Beginners, goo.gl/tx8R2b
TF Learn Quickstart, goo.gl/uiefRn
TensorFlow for Poets, goo.gl/bVjFIL
ML Recipes, goo.gl/KewA03
TensorFlow and Deep Learning without a PhD, goo.gl/pHeXe7
Learn More...
OBRIGADO!
slideshare.net/jpapo
José Papo
@josepapo

More Related Content

What's hot (20)

PDF
[English] Create Mobile LBS Application Using Maps API
Google Cloud Platform - Japan
 
PDF
Cloud computing overview & Technical intro to Google Cloud
wesley chun
 
PDF
Decode2018 report
Osamu Masutani
 
PDF
GCP Gaming 2016 Keynote Seoul, Korea
Chris Jang
 
PPTX
Tensorflow London 13: Barbara Fusinska 'Hassle Free, Scalable, Machine Learni...
Seldon
 
PPTX
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Akash Tandon
 
PDF
Azure AI Conference Report
Osamu Masutani
 
PDF
Google Tech Talk with Dr. Eric Brewer in Korea Apr.27.2015
Chris Jang
 
PDF
Introduction to gcp
IPSpecialist
 
PDF
Google Developers Summit Tokyo - Google Cloud Platform で知る Google クラウドの「Googl...
Google Cloud Platform - Japan
 
PDF
Kaz Sato, Evangelist, Google at MLconf ATL 2016
MLconf
 
PDF
Google Cloud Platform - for Mobile Solutions
Simon Su
 
PPTX
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
Seldon
 
PDF
Distributed Deep Learning on Spark
Mathieu Dumoulin
 
PDF
GCP Gaming 2016 Seoul, Korea Gaming Analytics
Chris Jang
 
PDF
What's New in H2O Driverless AI? - Arno Candel - H2O AI World London 2018
Sri Ambati
 
PDF
Machine learning at scale by Amy Unruh from Google
Bill Liu
 
PDF
Big data on google cloud
Tu Pham
 
PDF
Google Cloud Platform for Data Science teams
Barton Rhodes
 
PDF
CI/CD for Machine Learning with Daniel Kobran
Databricks
 
[English] Create Mobile LBS Application Using Maps API
Google Cloud Platform - Japan
 
Cloud computing overview & Technical intro to Google Cloud
wesley chun
 
Decode2018 report
Osamu Masutani
 
GCP Gaming 2016 Keynote Seoul, Korea
Chris Jang
 
Tensorflow London 13: Barbara Fusinska 'Hassle Free, Scalable, Machine Learni...
Seldon
 
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Akash Tandon
 
Azure AI Conference Report
Osamu Masutani
 
Google Tech Talk with Dr. Eric Brewer in Korea Apr.27.2015
Chris Jang
 
Introduction to gcp
IPSpecialist
 
Google Developers Summit Tokyo - Google Cloud Platform で知る Google クラウドの「Googl...
Google Cloud Platform - Japan
 
Kaz Sato, Evangelist, Google at MLconf ATL 2016
MLconf
 
Google Cloud Platform - for Mobile Solutions
Simon Su
 
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
Seldon
 
Distributed Deep Learning on Spark
Mathieu Dumoulin
 
GCP Gaming 2016 Seoul, Korea Gaming Analytics
Chris Jang
 
What's New in H2O Driverless AI? - Arno Candel - H2O AI World London 2018
Sri Ambati
 
Machine learning at scale by Amy Unruh from Google
Bill Liu
 
Big data on google cloud
Tu Pham
 
Google Cloud Platform for Data Science teams
Barton Rhodes
 
CI/CD for Machine Learning with Daniel Kobran
Databricks
 

Similar to Machine learning and TensorFlow (20)

PDF
Google Cloud: Data Analysis and Machine Learningn Technologies
Andrés Leonardo Martinez Ortiz
 
PDF
Estado tecnológico soluciones y disruptores IA, GOOGLE
AMETIC
 
PDF
Track2 02. machine intelligence at google scale google, kaz sato, staff devel...
양 한빛
 
PPTX
How to Get Started in ML?
The Wisdom Daily
 
PDF
Machine Learning for Any Size of Data, Any Type of Data
DataWorks Summit/Hadoop Summit
 
PDF
Google Analytics Konferenz 2018_Machine Learning / AI mit Google_Lukman Ramse...
e-dialog GmbH
 
PPTX
Hands-On with Google’s Machine Learning APIs, 12/3/2017
Stephen Wylie
 
PPTX
AI services in google
Abdullah Khosa
 
PPTX
Understanding Intelligence: Ml vs. AI
The Wisdom Daily
 
PPTX
For linked in part 2 no template
Pankaj Tomar
 
PPTX
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
DevDay Da Nang
 
PDF
Google Cloud Machine Learning
India Quotient
 
PDF
Building a Data Cloud to enable Analytics & AI-Driven Innovation - Lak Lakshm...
Daniel Zivkovic
 
PPTX
Top 10 Use of Machine Learning in Our Daily Lives
e-Definers Technology
 
PDF
Machine learning, WTF!?
Alê Borba
 
PDF
Big Data & Artificial Intelligence
Zavain Dar
 
PDF
Artificial Intelligence for Business
Nicola Mattina
 
PPTX
Production ML Systems and Computer Vision with Google Cloud
gdgsurrey
 
PDF
Cloud-Native Roadshow Google Cloud Platform - Los Angeles
VMware Tanzu
 
PPTX
Innovations using PowerAI
Ganesan Narayanasamy
 
Google Cloud: Data Analysis and Machine Learningn Technologies
Andrés Leonardo Martinez Ortiz
 
Estado tecnológico soluciones y disruptores IA, GOOGLE
AMETIC
 
Track2 02. machine intelligence at google scale google, kaz sato, staff devel...
양 한빛
 
How to Get Started in ML?
The Wisdom Daily
 
Machine Learning for Any Size of Data, Any Type of Data
DataWorks Summit/Hadoop Summit
 
Google Analytics Konferenz 2018_Machine Learning / AI mit Google_Lukman Ramse...
e-dialog GmbH
 
Hands-On with Google’s Machine Learning APIs, 12/3/2017
Stephen Wylie
 
AI services in google
Abdullah Khosa
 
Understanding Intelligence: Ml vs. AI
The Wisdom Daily
 
For linked in part 2 no template
Pankaj Tomar
 
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
DevDay Da Nang
 
Google Cloud Machine Learning
India Quotient
 
Building a Data Cloud to enable Analytics & AI-Driven Innovation - Lak Lakshm...
Daniel Zivkovic
 
Top 10 Use of Machine Learning in Our Daily Lives
e-Definers Technology
 
Machine learning, WTF!?
Alê Borba
 
Big Data & Artificial Intelligence
Zavain Dar
 
Artificial Intelligence for Business
Nicola Mattina
 
Production ML Systems and Computer Vision with Google Cloud
gdgsurrey
 
Cloud-Native Roadshow Google Cloud Platform - Los Angeles
VMware Tanzu
 
Innovations using PowerAI
Ganesan Narayanasamy
 
Ad

More from Jose Papo, MSc (20)

PDF
Machine Learning e AI - O que o Google oferece
Jose Papo, MSc
 
PDF
Por que o Google Cloud Platform é diferente
Jose Papo, MSc
 
PDF
Serverless: Um novo paradigma de arquitetura de aplicações - Exemplos com Fir...
Jose Papo, MSc
 
PDF
Introdução ao Firebase
Jose Papo, MSc
 
PDF
Ferramentas e programas do Google para startups e apps
Jose Papo, MSc
 
PDF
As 8 características de um gestor e líder no "Estilo Google"
Jose Papo, MSc
 
PDF
The Hyper Connected Era: Mobile First, Cloud First and Multi Screen
Jose Papo, MSc
 
PDF
Mobile, UX e Micro-momentos
Jose Papo, MSc
 
PDF
Cloud Computing: De tendencia a realidade
Jose Papo, MSc
 
PDF
Novidades do Google IO 2015
Jose Papo, MSc
 
PDF
Opções de Backends para seus apps móveis: Análise e Arquiteturas
Jose Papo, MSc
 
PDF
A Nova Era Hiper Conectada: Mobile-First, Cloud-First e Multi-Screen
Jose Papo, MSc
 
PDF
Como organizar e definir ritmo em sua startup/empresa "Google Style"
Jose Papo, MSc
 
PDF
Google BigQuery - Introdução
Jose Papo, MSc
 
PDF
Novidades do Google I/O 2014 - Uma Visão
Jose Papo, MSc
 
PDF
Introdução ao Google Cloud Platform: Computação em Nuvem do Google
Jose Papo, MSc
 
PDF
Introdução ao pitch de ouro
Jose Papo, MSc
 
PDF
Monetizacao e Hipoteses orientadas a objetivos
Jose Papo, MSc
 
PDF
A Nova Era Industrial: Internet das Coisas e como escalar uma startup de hard...
Jose Papo, MSc
 
PDF
Gato ou gado? Como você trata seus servidores?
Jose Papo, MSc
 
Machine Learning e AI - O que o Google oferece
Jose Papo, MSc
 
Por que o Google Cloud Platform é diferente
Jose Papo, MSc
 
Serverless: Um novo paradigma de arquitetura de aplicações - Exemplos com Fir...
Jose Papo, MSc
 
Introdução ao Firebase
Jose Papo, MSc
 
Ferramentas e programas do Google para startups e apps
Jose Papo, MSc
 
As 8 características de um gestor e líder no "Estilo Google"
Jose Papo, MSc
 
The Hyper Connected Era: Mobile First, Cloud First and Multi Screen
Jose Papo, MSc
 
Mobile, UX e Micro-momentos
Jose Papo, MSc
 
Cloud Computing: De tendencia a realidade
Jose Papo, MSc
 
Novidades do Google IO 2015
Jose Papo, MSc
 
Opções de Backends para seus apps móveis: Análise e Arquiteturas
Jose Papo, MSc
 
A Nova Era Hiper Conectada: Mobile-First, Cloud-First e Multi-Screen
Jose Papo, MSc
 
Como organizar e definir ritmo em sua startup/empresa "Google Style"
Jose Papo, MSc
 
Google BigQuery - Introdução
Jose Papo, MSc
 
Novidades do Google I/O 2014 - Uma Visão
Jose Papo, MSc
 
Introdução ao Google Cloud Platform: Computação em Nuvem do Google
Jose Papo, MSc
 
Introdução ao pitch de ouro
Jose Papo, MSc
 
Monetizacao e Hipoteses orientadas a objetivos
Jose Papo, MSc
 
A Nova Era Industrial: Internet das Coisas e como escalar uma startup de hard...
Jose Papo, MSc
 
Gato ou gado? Como você trata seus servidores?
Jose Papo, MSc
 
Ad

Recently uploaded (20)

PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PDF
July Patch Tuesday
Ivanti
 
PDF
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
PDF
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
PDF
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
PPTX
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
PDF
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
July Patch Tuesday
Ivanti
 
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 

Machine learning and TensorFlow

  • 1. Machine Learning and TensorFlow Artificial Intelligence Present and Future José Papo Gerente de relações com startups e developers Google América Latina @josepapo
  • 3. “Machine learning is a core, transformative way by which we’re re-thinking how we’re doing everything” Sundar Pichai CEO, Google
  • 4. “Machine learning will cause every successful huge IPO win in 5 years.” Eric Schmidt Executive Chairman, Alphabet
  • 6. ● Artificial General Intelligence ● Artificial Superintelligence ● Artificial Narrow Intelligence Artificial Intelligence
  • 8. Deep Learning (ML on Steroids!!!)
  • 10. What’s different now from 10 years ago? WAY MORE DATA More Compute Better Algorithms
  • 21. ● Open source Machine Learning library ● Especially useful for Deep Learning ● For research and production ● Apache 2.0 license
  • 23. A multidimensional array. A graph of operations.
  • 24. Data Flow Graphs Computation is defined as a directed acyclic graph (DAG) to optimize an objective function ● Graph is defined in high-level language (Python) ● Graph is compiled and optimized ● Graph is executed (in parts or fully) on available low level devices (CPU, GPU) ● Data (tensors) flow through the graph ● TensorFlow can compute gradients automatically
  • 26. Image source: Wikimedia + = A Neural Algorithm of Artistic Style http://arxiv.org/abs/1508.06576 ?
  • 27. Image source: Wikimedia + = A Neural Algorithm of Artistic Style http://arxiv.org/abs/1508.06576
  • 28. Image source: Wikimedia + = A Neural Algorithm of Artistic Style http://arxiv.org/abs/1508.06576 goo.gl/fyDxhC
  • 29. Most popular ML open source project on GitHub
  • 31. Cloud Machine Learning APIs See, Hear and Understand the world
  • 33. Faces Faces, facial landmarks, emotions OCR Read and extract text, with support for > 10 languages Label Detect entities from furniture to transportation Logos Identify product logos Landmarks & Image Properties Detect landmarks & dominant color of image Safe Search Detect explicit content - adult, violent, medical and spoof Cloud Vision API
  • 34. Confidential & ProprietaryGoogle Cloud Platform 34 Cloud Natural Language API Extract sentence, identify parts of speech and create dependency parse trees for each sentence. Identify entities and label by types such as person, organization, location, events, products and media. Understand the overall sentiment of a block of text. Syntax Analysis Entity Recognition Sentiment Analysis
  • 35. Confidential & ProprietaryGoogle Cloud Platform 35 Cloud Speech API Automatic Speech Recognition (ASR) powered by deep learning neural networking to power your applications like voice search or speech transcription. Recognizes over 80 languages and variants with an extensive vocabulary. Returns partial recognition results immediately, as they become available. Filter inappropriate content in text results. Audio input can be captured by an application’s microphone or sent from a pre-recorded audio file. Multiple audio file formats are supported, including FLAC, AMR, PCMU and linear-16. Handles noisy audio from many environments without requiring additional noise cancellation. Audio files can be uploaded in the request and, in future releases, integrated with Google Cloud Storage. Automatic Speech Recognition Global Vocabulary Inappropriate Content Filtering Streaming Recognition Real-time or Buffered Audio Support Noisy Audio Handling Integrated API
  • 36. Mobile Vision API Providing on-device vision for applications
  • 37. Face API faces, facial landmarks, eyes open, smiling Barcode API 1D and 2D barcodes Text API Latin-based text / structure Common Mobile Vision API Support for fast image and video on-device detection and tracking. NEW!
  • 38. Face API Photo credit developers.google.com/vision
  • 39. Text Detection Latin based language Understand text structure Photo credit Getty Images
  • 40. Barcode Detection 1D barcodes EAN-13/8 UPC-A/E Code-39/93/128 ITF Codabar 2D barcodes QR Code Data Matrix PDF-417 AZTEC UPC DataMatrix QR Code PDF 417 Video and image credit Google
  • 41. Machine Learning Democratization Use Cases in Latin America
  • 58. ACESSO UNIVERSAL A MEDICINA DE QUALIDADE
  • 60. AGENDA • Otimização do broadcast • Otimização do processo billing • Personal Cloud Machine Learning
  • 62. Otimização do broadcast • Reduzir a quantidade de envio de mensagens de estímulo mantendo a mesma taxa de retorno. comercia l Desafio Proposta • Identificar o comportamento ou características dos usuários mais propensos a responder ao estímulo.
  • 63. Otimização do broadcast • Text Mining para tratamento das frases, classificando-as, como por exemplo, pela ideia transmitida. • Análise de modelos preditivos para seleção dos clientes mais propensos. comercia l Processo de análise
  • 64. Otimização do broadcast • Prever quem não irá responder a nossa oferta nos dá a possibilidade de pensarmos em algo diferente para este usuário e desta forma conhecê-lo um pouco mais. • Redução de média 40% nos envios de broadcast. comercia l Resultad o
  • 65. Otimização do billing • Aumentar o sucesso nas cobranças dos serviços prestados. Desafi o Propost a • Identificar os clientes mais propensos em determinados horários. operacion al
  • 66. Otimização do billing • Tratamento e enriquecimento da base de dados com BigQuery. • Análise de modelos preditivos para criação de escore de crédito. Processo de análise operacion al
  • 68. Otimização do billing • Redução de custos com infraestrutura de TI, uso mais inteligente de recursos. • Melhora de 42% em média na acertividade do billing. Resultad o operacion al
  • 69. Personal Cloud • Detectar objetos e faces dentro das fotos dos usuários do Personal Cloud para possibilitar busca e criação de álbuns de forma automática Desafi o Propost a • Utilização da API do Google Cloud Vision. usuário s Busca por tags e álbuns automáticos
  • 70. Otimização do broadcast Processo de análiseusuário s pé dedo bolsa óculo s praia
  • 71. Don’t Think Outside The Box, Think Like There is NO BOX!
  • 93. tensorflow.org github.com/tensorflow Want to learn more? Udacity class on Deep Learning, goo.gl/iHssII Guides, codelabs, videos MNIST for Beginners, goo.gl/tx8R2b TF Learn Quickstart, goo.gl/uiefRn TensorFlow for Poets, goo.gl/bVjFIL ML Recipes, goo.gl/KewA03 TensorFlow and Deep Learning without a PhD, goo.gl/pHeXe7 Learn More...