SlideShare a Scribd company logo
machine learning
excellence delivered
1
Introduction to
Deep Learning
and Big Data
2
These slides online
Web version: https://www.slideshare.net/NikolayKarelin 3
Contents
• Introduction
• Machine Learning Principle
• Deep Learning
• Big Data
• Risks and Challenges
• Practical Materials
• Community
• Academic Resources
• Software & Hardware
• Books & Courses
4
Speaker
Nikolay Karelin, PhD (optics)
Head of AI, SilkData.ai
Past experience:
• VPIphotonics.com
• Institute of Physics, National Academy of Sciences
5
Introduction
6
ML Rule of Thumb
If a typical person can do a mental task with less than one second of
thought, we can probably automate it using AI either now or in the near
future.
Andrew Ng, Stanford Uni,
• Fraud detection
• Recommendations
• Customer
segmentation
• Text analysis
• Text summarization
Source: What Artificial Intelligence Can and Can’t Do Right Now
7
Buzzwords
Data science
Big data
Data mining
Synthetic intelligence
Cognitive computing
Affective computing
Deep tech
Medtech
Wikipedia:
Outline of artificial intelligence Image source: What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?, NVIDIA
8
TL;DR
What is / Why use ML?
TL;DR:
• Software tool for getting answers and decision making
• Mainly based on data, not rules/algorithms
• Two-step:
• Automatic extraction of “knowledge” (patterns) from past data
• Prediction on new data
Which data?
• See below…
9
Machine Learning Principle
10
Classical Software vs. Machine Learning
Idea from François Chollet, Deep Learning with Python, Manning, 2017
Data Software Answers
Expert Rules Software
New data Model Answers
Past data &
answers
Model
Patterns found in
past data
11
Curve Fitting Example
f(x) = x3 - 4x2 + 3x – 2 + N(0, 0.25)
Problem: find best polynomial approximation from few (noisy) samples
Why curve fitting???
Known as ‘regression’ in ML
Adapted from: Nikolenko et al., Deep Learning, 2017, in Russian 12
Dataset, Samples and Features
Dataset
(samples)
Input variable (data
features / attributes)
Output variable
(data labels)
ML task: find (approximation) of
input → output mapping
13
Model and (Hyper-)Parameters
f(x) = ΣN an xn
Model
Hyperparameter
(model order)
Parameters
(fitting/optimization)
14
Under- and Overfitting
Different polynomial approximations
f(x) = a0 + a1 x
f(x) = a0 + a1 x + a2 x2 + a3 x3
f(x) = ΣN an xn, N = 9
15
Machine Learning Types
Supervised
• Requires past data (labeled dataset)
• Mostly, predictions
Unsupervised
• Produces output from unlabeled data
• Example: clustering
Semi-supervised
• For expensive data
Manifold learning
• Example: dimensionality reduction
Reinforcement learning
• Learning ‘on-the-fly’
• Example: self-driving cars, videogame bots
16
(Classical) ML Types
Source: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
17
Datasets, Features and Labels
Images / image sequences
• Features: image pixels
• Titles
• Objects & boundaries
Texts
• Features: words, symbols, sentences
• Keywords (named entities)
• Sentiment / rating
• Translation
• Database request
• Similar text
Structured data
• Example: database report
• Customer preferences
18
Datasets: Where to find them
• Web crawling (Copyright?)
• APIs:
• Wikipedia, Google, Twitter, openstreetmap.org, …
• Government (open) data
• Wikipedia (dump)
• https://www.kaggle.com/ (quality varies)
• Google Dataset Search: https://toolbox.google.com/datasetsearch
• ‘Awesome lists’: https://github.com/awesomedata/awesome-public-
datasets
19
Data Obfuscation: Example
Allstate’s contest on Kaggle:
• https://www.kaggle.com/c/allstate-claims-severity/data
• “Each row in this dataset represents an insurance claim. You must predict
the value for the 'loss' column. Variables prefaced with 'cat' are
categorical, while those prefaced with 'cont' are continuous.”
Obfuscation
• No real names / categorical values
• Possible linear mix / rescaling of numerical values
• Patterns still remain and can be extracted by a model
id cat1 cat2 cat3 cat4 cat5 cat6 cat7 … cat116
1 A B A A A A B … LB
cont1 cont2 cont3 cont4 cont5 cont6 cont7 cont8 … loss
0.7263 0.2459 0.1875 0.7896 0.31006 0.71836 0.3350 0.3026 … 2213.18
20
Multi-iterative
process
More details of ML pipeline
Data
collection
Exploration
Visualization
Data
cleaning
Dataset
splitting
Feature
selection
Model
selection
Model
training
Testing &
Evaluation
21
Feature Selection
Only subset of data attributes
• Improves model stability
Criteria
• Maximal correlation between feature and output
• Adding of feature improves model
(frequently, model training starts from feature subset)
Example: Driving history
• Important for insurance
• Less important for favorite routes
22
Feature Engineering
Convert text etc. to numbers
Example: categorical feature
(aka ‘one-hot encoding’)
Male
Female
Male
Male
Female
Female
Male
Male
Female
Female
Gender
1
0
1
1
0
0
1
1
0
0
0
1
0
0
1
1
0
0
1
1
Male Female
23
Data Cleaning
Missing data
Incorrect values
Non-relevant data combination
Dataset imbalance
• Example: fraud
• Normally a small fraction of transactions
• Remove most of ‘other’ data or special ML techniques
24
Data Cleaning: Example
NYC Taxi Dataset
Tipping analysis
Tips payed in cash
excluded
Adapted from Real-World Machine Learning, by H. Brink, J. W. Richards, M. Fetherolf (2016), https://github.com/brinkar/real-world-machine-learning
Tip amount (USD)
Count
Count
25
Domain knowledge
It’s important to understand what’s possible / probable
Ways to organize work:
• Cooperation with domain experts
• Mutual education
• Data as way to insight
"The purpose of our research is insight, not numbers"
Numerical Methods for Scientists and Engineers
Richard Hamming, reprint of the McGraw-Hill, 1973 26
Model Training Principle
Parameters
(weights)
Prediction
Input data
Model
True labels
(ground truth)
Loss function
Optimizer
Loss score
(error)
Data
Algorithm
Train data
Validation data
Test data
~70-80%
< 10-15%
< 10-15%
27
Model evaluation
• Metric
• Baseline model
28
Source: https://www.dataoptimal.com/churn-prediction-with-r/
Deep Learning
29
Deep Learning Principle: CNN
Image features
calculation
Decision
30
Source: Jason's Machine Learning 101 presentation, Dec 2017
Nearly human performance in
• Image recognition
• Object detection:
• Images
• Video
• Translation
Deep Learning: revolution
Image source: Xavier Giro-o-Nieto
2012 contest
31
Deep learning: Style transfer
https://deepdreamgenerator.com/ddream/mpjrb6uisml
32
Deep Learning: Neuron
Source: http://cs231n.github.io/neural-networks-1/
33
Deep Learning: Activation
Source: http://cs231n.github.io/neural-networks-1/
tanh() Sigmoid
ReLU
ReLU
tanh()
34
Deep Learning: Key points
• Error back-propagation
• Big data
• GPUs / Clusters
• Exploding / Vanishing gradients
• CNN for image recognition
35
Deep Learning: Building Blocks
Source: http://cs231n.github.io/convolutional-networks/
Convolution
Pooling
36
Deep Learning: Building Blocks
Source: http://cs231n.github.io/convolutional-networks/ 37
Deep Learning: Network Examples
AlexNet
Source: https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/
VGGNet
38
Deep Learning: Network Examples
Source: https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/
GoogleNet (or Inception Network)
39
Deep Learning: Network Examples
Source: https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/
40
Deep Learning: Network Examples
Source: https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/
YOLO (You Only Look Once)
41
Deep Learning: Network Examples
Source: https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/
SegNet
42
Deep Learning: Network Examples
Source: http://www.cs.toronto.edu/~urtasun/courses/CSC2541_Winter17/Deep_generative_models.pdf
Generative Adversarial Network (GAN)
43
Deep Learning: GAN Example
Source: https://medium.com/@kcimc/how-to-recognize-fake-ai-generated-images-4d1f6f9a2842
Rus: https://habr.com/post/432580/
Generative Adversarial
Network (GAN)
2014
2017
44
Google Translate (Model)
arXiv:1609.08144
Blog: https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html 45
Deep Learning: Size
Source: https://medium.com/@culurciello/analysis-of-deep-neural-networks-dcf398e71aae
46
Big Data
47
What is BIG?
Areas
• Health
• IoT
• Media
• Science
Image source: https://en.wikipedia.org/wiki/Big_data
48
Big Data: Perspectives
• Business
• Social
• Technical
• Clusters
• Cloud
49
Apache Hadoop
Software framework for distributed storage and
processing of big data using the MapReduce
programming model.
https://en.wikipedia.org/wiki/Apache_Hadoop
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
50
Apache Spark and more
Open-source distributed general-purpose cluster-
computing framework.
Source: https://databricks.com/spark/about 51
ML pipelines
Medium: https://medium.com/@kt.era.ee/the-data-science-workflow-43859db0415
Comparison table: https://docs.google.com/spreadsheets/d/1ZHLzlMdBEHDorCUEeeiSx3WAgfLGw34pC08C9T0IMkE/edit#gid=0
Ideas from Google: https://developers.google.com/machine-learning/guides/rules-of-ml/
52
Risks and Challenges
53
Types of Risks
Errors in ML
Understanding ML
Data risks
• Quantity
• Quality
• Cost (esp. labels)
• Security (incl. international issues)
Often, feasibility study
is required
Data ML approach
Business task
54
DL example: Google Translate …
ыво алолд фыалллл ооооооооооо
оооооооооооо фЛОЛД игишщгпр
оооооооооооо шгигигшщр оооооооооо
“Mongolian”
?
German
ооооо злолтщшолд
оооооооооооооооооооооооооооооооо
ваоифтваомщофит
оооооооооооооооооооощватмшщтощт
щт
“Mongolian”
?
English
More examples: https://twitter.com/enneuralmachine
55
Google Translate fault (or joke…)
ыво алолд фыалллл ооооооооооо
оооооооооооо фЛОЛД игишщгпр
оооооооооооо шгигигшщр оооооооооо
“Mongolian”
Du musst dich selbst töten
warf seinen Kopf auf seine Knie
German
ооооо злолтщшолд
оооооооооооооооооооооооооооооооо
ваоифтваомщофит
оооооооооооооооооооощватмшщтощт
щт
“Mongolian”
Have you forgotten that you have not
forgiven yourself yet?
English
56
Inage mis-categorization
(‘Adversarial Attack’)
https://blog.openai.com/adversarial-example-research/ 57
Example: Change of Lighting
Conditions
Why a self-driving car chose wrong path?
(simulation)
DeepXplore: Automated Whitebox Testing of Deep Learning Systems, K. Pei et al., 2017, arXiv:1705.06640
58
Example: Object Mis-classification
Lack of context
Accuracy vs. performance trade-off
https://habrahabr.ru/post/346140/
https://youtu.be/VOC3huqHrss
59
Deep Dream
Source: https://pikabu.ru/story/deep_dream_generator_i_legkaya_narkomaniya_4057583
Look for animals
60
Image Confidence
Normal 0.88
Face Detection
https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952 61
Image Confidence
Normal 0.88
Rotated 0.79
Face Detection
https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952
62
Image Confidence
Normal 0.88
Rotated 0.79
“Distorted” 0.90
Face Detection
https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952
63
Explaining Tool Example
https://github.com/TeamHG-Memex/eli5
64
Explaining Tool Example
65
https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
Practical Materials
66
Materials
• Community
• Academic resources
• Software & Hardware
• Books & Courses
67
Community
68
ods.ai
Some stats: 20 407 participants, 3.06М posts 69
ods.ai
• Заполните форму
(подтверждение может занять несколько дней)
• На кого ссылаться: nkarelin
• После подтверждения:
рекомендуется написать о себе в канале #welcome
• Обсуждение встреч в Минске: #_meetings_minsk
• Канал для БААИ: #baai
70
DataTalks Belarus
Facebook: https://www.facebook.com/groups/DataTalks/
71
Belarus Big Data User Group
Facebook: https://www.facebook.com/groups/big.data.nerds.minsk/
72
Kaggle
Source: https://www.kaggle.com/c/human-protein-atlas-image-classification 73
Twitter
https://twitter.com/ylecun
74
Towards Data Science
Source: https://towardsdatascience.com/
75
Academic resources
76
Academic resources
Google Scholar
arXiv.org
arxiv-sanity.org
DataFest: https://datafest.by/
Presentation: https://github.com/karelin/sci_papers_talk
Video (Ru): https://youtu.be/HuJyLIis6ts 77
Google scholar
Main page: https://scholar.google.com/ 78
arXiv.org
Source: https://arxiv.org/abs/1605.07678 79
arxiv-sanity.org
80
Software & Hardware
81
Github
Source: https://github.com/tensorflow/tensorflow
82
Github
Code
• https://github.com/tensorflow/tensorflow
Data
• Example: https://github.com/Ricardo-Liu/Dateset
‘Awesome’ / SOTA lists / web sites
• https://github.com/sebastianruder/NLP-progress
• https://github.com/topics/awesome-list
• https://github.com/ChristosChristofidis/awesome-deep-learning
• https://project-awesome.org/
83
Programming languages
Image source: Wikipedia
84
Python numerical stack
https://www.scipy.org/ 85
Jupyter
http://jupyter.org/
Presentation: https://github.com/karelin/meetup_jupyter
Video: https://www.youtube.com/watch?v=xglXoAIxzkc 86
Anaconda
https://www.anaconda.com/
1,400+ data science packages for
Python/R and manage your
packages, dependencies, and
environments
87
PyCharm
Community vs. Pro vs. Education
https://www.jetbrains.com/pycharm/ 88
GPU
Image source:
https://www.techpowerup.com/gpu-specs/titan-v-ceo-edition.c3277
https://www.nvidia.com/en-us/data-center/tesla-v100/
CUDA = Compute Unified Device Architecture
89
• Runtime hierarchy
• Thread
• Warp
• Block
• Grid
• Memory hierarchy
• Registers
• Local
• Shared
• …
• Global
• Host (CPU)
GPU: Architecture
(Device) Grid
Constant
Memory
Texture
Memory
Global
Memory
Block (0,0)
Shared Memory
Local
Memory
Thread (0,0)
Registers
Local
Memory
Thread (1,0)
Registers
Block (1,0)
Shared Memory
Local
Memory
Thread (0,0)
Registers
Local
Memory
Thread (1,0)
Registers
Host
Source: David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010, ECE 498AL, University of
Illinois, Urbana-Champaign 90
• https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
• Most comprehensive, though unofficial
GPU: details
91
• https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
• Most comprehensive, though unofficial
GPU: details
Tesla K40 / K80 GeForce Titan
Chip / Codename GK110B GK110-400-A1
CUDA Cores 2880 2688
Clock rate 745 / 875 MHz 837 / 876 MHz
Memory size 12 Gb 6144 Mb
DRAM Type GDDR5 GDDR5
Double precision 1430–1680 GFLOPS 1300-1499.9* GFLOPS
92
CUDA
https://developer.nvidia.com/gpu-accelerated-libraries
Framework
93
DL frameworks
Main source: https://developer.nvidia.com/deep-learning-frameworks 94
Why parallel?
Source: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
Data: https://github.com/karlrupp/microprocessor-trend-data
95
Google Colab
https://colab.research.google.com/
96
Google Colab
• GPU: NVIDIA Tesla K80 / TPU
• 12-hours limit
• Example:
• https://github.com/glebsteron/colab-turi-style-transfer-coreml
https://colab.research.google.com/ 97
Cloud solutions
• Google cloud ($300 at start)
• AWS (Amazon, 1-year free)
• Microsoft Azure
• Paperspace
• IBM Cloud
• FloydHub
https://medium.com/@rupak.thakur/aws-vs-paperspace-vs-floydhub-choosing-your-cloud-gpu-partner-350150606b39
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/
98
Books & cources
99
Deep Learning book
Ian Goodfellow, Yoshua Bengio, and Aaron
Courville, Deep Learning, MIT Press, 2016
Web site: http://www.deeplearningbook.org/
100
Artificial Intelligence: A Modern Approach
Artificial Intelligence: A Modern Approach,
Third edition, 2016, by Stuart Russell and
Peter Norvig
Web page: http://aima.cs.berkeley.edu/
101
Глубокое обучение
Николенко С. И., Кадурин А. А., Архангельская Е. О.,
Глубокое обучение, Питер-пресс, сер. Библиотека
программиста, 2019, 480 с.
https://www.piter.com/product/glubokoe-obuchenie
102
Deep Learning with Python
François Chollet, Deep Learning with Python,
November 2017, ISBN 9781617294433, 384 p.
https://www.manning.com/books/deep-learning-with-
python
Code: https://github.com/fchollet/deep-learning-with-
python-notebooks
103
Deep Learning with Keras
Antonio Gulli, Sujit Pal, Deep Learning with Keras, April
2017
https://www.packtpub.com/big-data-and-business-
intelligence/deep-learning-keras
Code: https://github.com/agulli/kerasBook
104
Large Scale Machine Learning with Python
Bastiaan Sjardin, Luca Massaron, Alberto Boschetti, Large
Scale Machine Learning with Python, August 2016
https://www.packtpub.com/big-data-and-business-
intelligence/large-scale-machine-learning-python
Code: https://github.com/PacktPublishing/Large-Scale-
Machine-Learning-With-Python
105
Real-World Machine Learning
Henrik Brink, Joseph W. Richards, and Mark Fetherolf,
Real-World Machine Learning, September 2016
https://www.manning.com/books/real-world-machine-
learning
Code: https://github.com/brinkar/real-world-machine-
learning
106
Python Machine Learning
Sebastian Raschka, Vahid Mirjalili, Python Machine
Learning - Second Edition, September 2017
https://www.packtpub.com/big-data-and-business-
intelligence/python-machine-learning-second-edition
Code: https://github.com/rasbt/python-machine-learning-
book-2nd-edition
107
Machine Learning Yearning
Andrew Y. Ng, "Machine Learning Yearning"
Book web site: http://www.mlyearning.org/
108
Courses
• http://course.fast.ai/
• https://mlcourse.ai/
• Stanford
• http://cs231n.stanford.edu/ / http://cs231n.github.io/ (Convolutional Neural
Networks for Visual Recognition), http://svl.stanford.edu/teaching/
• http://web.stanford.edu/class/cs224n/ (Natural Language Processing with
Deep Learning)
• https://cs.stanford.edu/academics/courses
• Coursera
• https://www.coursera.org/learn/machine-learning
• https://www.coursera.org/specializations/machine-learning-data-analysis
(МФТИ)
109
mlcourse.ai (En + Ru)
Resources: https://mlcourse.ai/resources (Eng + Ru)
110
Stepik course (Ru)
https://stepik.org/course/150 111
Questions?
112
These slides online
Web version: https://www.slideshare.net/NikolayKarelin 113
Headquarters:
Silk Data sp. z o.o.
Domaniewska 17/19-133
02-672 Warsaw
Poland
Partner in Germany:
SilkCode GmbH
Luisenstraße 62
D-47799 Krefeld
Germany
www.silkdata.tech
hello@silkdata.ai
+48 452 380 167

More Related Content

Similar to Main principles of Data Science and Machine Learning (20)

PPTX
machine learning in the age of big data: new approaches and business applicat...
Armando Vieira
 
PPTX
B4UConference_machine learning_deeplearning
Hoa Le
 
PPTX
Artificial intelligence slides beginners
Antonio Fernandes
 
PPTX
presentation of IntroductionDeepLearning.pptx
andani26
 
PPTX
Machine-Learning-vs-Deep-Learning-Whats-the-Difference
Ozias Rondon
 
PDF
ML crash course
mikaelhuss
 
PPTX
Unit - 1 - Introduction of the machine learning
Taranpreet Singh
 
PPTX
prace_days_ml_2019.pptx
RohanBorgalli
 
PPTX
prace_days_ml_2019.pptx
SreeVani74
 
PPTX
prace_days_ml_2019.pptx
ssuserf583ac
 
PPTX
Machine Learning Essentials Demystified part1 | Big Data Demystified
Omid Vahdaty
 
PPTX
Machine Learning AND Deep Learning for OpenPOWER
Ganesan Narayanasamy
 
PDF
Fundementals of Machine Learning and Deep Learning
ParrotAI
 
PPTX
Machine_Learning_Presentation.pptx application
maryamsafibaig
 
PPTX
Introduction to Machine Learning - An overview and first step for candidate d...
Lucas Jellema
 
PDF
Deep learning: Cutting through the Myths and Hype
Siby Jose Plathottam
 
PPTX
Introduction.pptx about the mechine Learning
AdhiNaidu
 
PDF
Geometric Processing of Data in Neural Networks
Lorenzo Cassani
 
PDF
Engineering Intelligent Systems using Machine Learning
Saurabh Kaushik
 
PPTX
Deep_Learning_Introduction for newbe.pptx
nnduong1
 
machine learning in the age of big data: new approaches and business applicat...
Armando Vieira
 
B4UConference_machine learning_deeplearning
Hoa Le
 
Artificial intelligence slides beginners
Antonio Fernandes
 
presentation of IntroductionDeepLearning.pptx
andani26
 
Machine-Learning-vs-Deep-Learning-Whats-the-Difference
Ozias Rondon
 
ML crash course
mikaelhuss
 
Unit - 1 - Introduction of the machine learning
Taranpreet Singh
 
prace_days_ml_2019.pptx
RohanBorgalli
 
prace_days_ml_2019.pptx
SreeVani74
 
prace_days_ml_2019.pptx
ssuserf583ac
 
Machine Learning Essentials Demystified part1 | Big Data Demystified
Omid Vahdaty
 
Machine Learning AND Deep Learning for OpenPOWER
Ganesan Narayanasamy
 
Fundementals of Machine Learning and Deep Learning
ParrotAI
 
Machine_Learning_Presentation.pptx application
maryamsafibaig
 
Introduction to Machine Learning - An overview and first step for candidate d...
Lucas Jellema
 
Deep learning: Cutting through the Myths and Hype
Siby Jose Plathottam
 
Introduction.pptx about the mechine Learning
AdhiNaidu
 
Geometric Processing of Data in Neural Networks
Lorenzo Cassani
 
Engineering Intelligent Systems using Machine Learning
Saurabh Kaushik
 
Deep_Learning_Introduction for newbe.pptx
nnduong1
 

Recently uploaded (20)

PDF
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
PPTX
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PDF
Driving Employee Engagement in a Hybrid World.pdf
Mia scott
 
PPTX
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
PPT
tuberculosiship-2106031cyyfuftufufufivifviviv
AkshaiRam
 
PDF
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
PDF
Choosing the Right Database for Indexing.pdf
Tamanna
 
PDF
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
PPTX
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
PPTX
ER_Model_Relationship_in_DBMS_Presentation.pptx
dharaadhvaryu1992
 
PPT
Growth of Public Expendituuure_55423.ppt
NavyaDeora
 
PDF
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
PPTX
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
PPTX
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
PDF
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
PDF
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
PDF
Copia de Strategic Roadmap Infographics by Slidesgo.pptx (1).pdf
ssuserd4c6911
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PDF
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
Driving Employee Engagement in a Hybrid World.pdf
Mia scott
 
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
tuberculosiship-2106031cyyfuftufufufivifviviv
AkshaiRam
 
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
Choosing the Right Database for Indexing.pdf
Tamanna
 
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
ER_Model_Relationship_in_DBMS_Presentation.pptx
dharaadhvaryu1992
 
Growth of Public Expendituuure_55423.ppt
NavyaDeora
 
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
Copia de Strategic Roadmap Infographics by Slidesgo.pptx (1).pdf
ssuserd4c6911
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
Ad

Main principles of Data Science and Machine Learning