SlideShare a Scribd company logo
manifold learning
with applications to object recognition




Advanced Perception
David R. Thompson
agenda
1. why learn manifolds?

2. Isomap

3. LLE

4. applications
types of manifolds




exhaust                       Sir Walter
manifold                   Synnot Manifold
                             1849-1928


           low-D surface
           embedded in
           high-D space
manifold learning
Find a low-D basis for
describing high-D data.

X → X' S.T.
dim(X') << dim(X)

uncovers the intrinsic
dimensionality
(invertible)
manifolds in vision
plenoptic function / motion / occlusion
manifolds in vision
  appearance variation




images from hormel corp.
manifolds in vision
  deformation




images from www.golfswingphotos.com
why do manifold learning?
1. data compression

2. “curse of dimensionality”

3. de-noising

4. visualization

5. reasonable distance metrics *
reasonable distance metrics
reasonable distance metrics
reasonable distance metrics



             ?
reasonable distance metrics



                ?



       linear interpolation
reasonable distance metrics



               ?



     manifold interpolation
agenda
1. why learn manifolds?

2. Isomap

3. LLE

4. applications
Isomap
For n data points, and a distance matrix D,


                       i
               Dij =

                              j

...we can construct a m-dimensional space to
preserve inter-point distances by using the top
eigenvectors of D scaled by their eigenvalues.

       yi= [    λ1v1i ,    λ2v2i , ... , λmvmi ]
Isomap

 Infer a distance matrix using
 distances along the
 manifold.
Isomap
1. Build a sparse graph with K-nearest neighbors




Dg =



(distance matrix is
sparse)
Isomap
2. Infer other interpoint distances by finding
shortest paths on the graph (Dijkstra's
algorithm).



Dg =
Isomap
3. Build a low-D embedded space to best
preserve the complete distance matrix.

Error function:                   inner product
                                  distances in new
                  inner product
                                  coordinate
                  distances in
                                  system
                  graph
                                            L2 norm




Solution – set points Y to top eigenvectors of Dg
Isomap
shortest-distance on a graph is easy to
compute
Isomap results: hands
Isomap: pro and con
- preserves global structure

- few free parameters

- sensitive to noise, noise edges

- computationally expensive (dense
matrix eigen-reduction)
Locally Linear Embedding
  Find a mapping to preserve
  local linear relationships
  between neighbors
Locally Linear Embedding
LLE: Two key steps
1. Find weight matrix W of linear
coefficients:



Enforce sum-to-one constraint with the
Lagrange Multiplier:
LLE: Two key steps
2. Find projected vectors Y to minimize
reconstruction error




must solve for whole dataset
simultaneously
LLE: Two key steps



We add constraints to prevent
multiple / degenerate solutions:
LLE: Two key steps
cost function becomes:




the optimal embedded coordinates are
given by bottom m+1 eigenvectors of
the matrix M
LLE: Result
preserves local
topology
                  PCA




                  LLE
LLE: pro and con

- no local minima, one free parameter

- incremental & fast

- simple linear algebra operations

- can distort global structure
Others you may encounter
●
    Laplacian Eigenmaps (Belkin 2001)
     ●
       spectral method similar to LLE
     ●
       better preserves clusters in data
●
    Kernel PCA
●
 Kohonen Self-Organizing Map
(Kohonen, 1990)
     ●
       iterative algorithm fits a network of pre-
       defined connectivity
     ●
       simple, fast for on-line learning
     ●
       local minima
     ●
       lacking theoretical justification
No Free Lunch
the “curvier” your
manifold, the denser your
data must be

           bad              OK!
conclusions
Manifold learning is a key tool in your
object recognition toolbox

A formal framework for many different
ad-hoc object recognition techniques

More Related Content

What's hot (20)

PPTX
Transformers AI PPT.pptx
RahulKumar854607
 
PDF
WaveNetが音声合成研究に与える影響
NU_I_TODALAB
 
PDF
Overview on Optimization algorithms in Deep Learning
Khang Pham
 
PDF
Multimodal Deep Learning
Universitat Politècnica de Catalunya
 
PDF
【2017年度】勉強会資料_学習に関するテクニック
Ryosuke Tanno
 
PDF
Autoencoder
HARISH R
 
PPTX
Multi-Task Learning in Deep Neural Networks.pptx
ibrahimalshareef3
 
PPTX
Curse of dimensionality
Nikhil Sharma
 
PDF
Enhanced Deep Residual Networks for Single Image Super-Resolution
NAVER Engineering
 
PPTX
Emily Denton - Unsupervised Learning of Disentangled Representations from Vid...
Luba Elliott
 
PPTX
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
changedaeoh
 
PDF
Interspeech2020 paper reading workshop "Similarity-and-Independence-Aware-Bea...
ssuserf54db1
 
PPTX
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
PPTX
Deep learning with tensorflow
Charmi Chokshi
 
PDF
【DL輪読会】Implicit Behavioral Cloning
Deep Learning JP
 
PDF
[DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
Deep Learning JP
 
PPTX
Masked Autoencoders Are Scalable Vision Learners.pptx
Sangmin Woo
 
PDF
Meta-Learning with Memory-Augmented Neural Networks (MANN)
Yeonsu Kim
 
PDF
(Presentation)NLP Pretraining models based on deeplearning -BERT, GPT, and BART
hyunyoung Lee
 
PPTX
Diffusion models beat gans on image synthesis
BeerenSahu
 
Transformers AI PPT.pptx
RahulKumar854607
 
WaveNetが音声合成研究に与える影響
NU_I_TODALAB
 
Overview on Optimization algorithms in Deep Learning
Khang Pham
 
Multimodal Deep Learning
Universitat Politècnica de Catalunya
 
【2017年度】勉強会資料_学習に関するテクニック
Ryosuke Tanno
 
Autoencoder
HARISH R
 
Multi-Task Learning in Deep Neural Networks.pptx
ibrahimalshareef3
 
Curse of dimensionality
Nikhil Sharma
 
Enhanced Deep Residual Networks for Single Image Super-Resolution
NAVER Engineering
 
Emily Denton - Unsupervised Learning of Disentangled Representations from Vid...
Luba Elliott
 
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
changedaeoh
 
Interspeech2020 paper reading workshop "Similarity-and-Independence-Aware-Bea...
ssuserf54db1
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
Deep learning with tensorflow
Charmi Chokshi
 
【DL輪読会】Implicit Behavioral Cloning
Deep Learning JP
 
[DL輪読会]"CyCADA: Cycle-Consistent Adversarial Domain Adaptation"&"Learning Se...
Deep Learning JP
 
Masked Autoencoders Are Scalable Vision Learners.pptx
Sangmin Woo
 
Meta-Learning with Memory-Augmented Neural Networks (MANN)
Yeonsu Kim
 
(Presentation)NLP Pretraining models based on deeplearning -BERT, GPT, and BART
hyunyoung Lee
 
Diffusion models beat gans on image synthesis
BeerenSahu
 

Viewers also liked (15)

PDF
The Gaussian Process Latent Variable Model (GPLVM)
James McMurray
 
PPTX
Dimension Reduction And Visualization Of Large High Dimensional Data Via Inte...
wl820609
 
PPT
Topic Models
Claudia Wagner
 
PDF
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Ryan B Harvey, CSDP, CSM
 
PDF
関東CV勉強会 Kernel PCA (2011.2.19)
Akisato Kimura
 
PPTX
Self-organizing map
Tarat Diloksawatdikul
 
PDF
[Kim+ ICML2012] Dirichlet Process with Mixed Random Measures : A Nonparametri...
Shuyo Nakatani
 
PDF
WSDM2016読み会 Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
Kotaro Tanahashi
 
PDF
Visualizing Data Using t-SNE
Tomoki Hayashi
 
PDF
AutoEncoderで特徴抽出
Kai Sasaki
 
PDF
LDA入門
正志 坪坂
 
PDF
非線形データの次元圧縮 150905 WACODE 2nd
Mika Yoshimura
 
PDF
CVIM#11 3. 最小化のための数値計算
sleepy_yoshi
 
PDF
Numpy scipyで独立成分分析
Shintaro Fukushima
 
PDF
Hyperoptとその周辺について
Keisuke Hosaka
 
The Gaussian Process Latent Variable Model (GPLVM)
James McMurray
 
Dimension Reduction And Visualization Of Large High Dimensional Data Via Inte...
wl820609
 
Topic Models
Claudia Wagner
 
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Ryan B Harvey, CSDP, CSM
 
関東CV勉強会 Kernel PCA (2011.2.19)
Akisato Kimura
 
Self-organizing map
Tarat Diloksawatdikul
 
[Kim+ ICML2012] Dirichlet Process with Mixed Random Measures : A Nonparametri...
Shuyo Nakatani
 
WSDM2016読み会 Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
Kotaro Tanahashi
 
Visualizing Data Using t-SNE
Tomoki Hayashi
 
AutoEncoderで特徴抽出
Kai Sasaki
 
LDA入門
正志 坪坂
 
非線形データの次元圧縮 150905 WACODE 2nd
Mika Yoshimura
 
CVIM#11 3. 最小化のための数値計算
sleepy_yoshi
 
Numpy scipyで独立成分分析
Shintaro Fukushima
 
Hyperoptとその周辺について
Keisuke Hosaka
 
Ad

Similar to Manifold learning with application to object recognition (20)

PDF
Fundamental of deep learning
Stanley Wang
 
PDF
Understanding Convolutional Neural Networks
Jeremy Nixon
 
PPTX
som
huda2018
 
PPTX
Deep learning from a novice perspective
Anirban Santara
 
PDF
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Florent Renucci
 
PPTX
Deep learning (2)
Muhanad Al-khalisy
 
PPTX
Thesis Presentation
Reuben Feinman
 
PDF
Paper id 24201464
IJRAT
 
PDF
Using A Application For A Desktop Application
Tracy Huang
 
PDF
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PDF
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
PDF
Feedforward Networks and Deep Learning Module-02.pdf
roopashreesv
 
PDF
Presentation v3.2
Luca Lorenzi
 
PDF
Presentation v3.2
Luca Lorenzi
 
PPTX
Online learning, Vowpal Wabbit and Hadoop
Héloïse Nonne
 
PPTX
Semantic Mapping of Road Scenes
Sunando Sengupta
 
PPT
deep learning UNIT-1 Introduction Part-1.ppt
shashikanthsana
 
PPTX
Android and Deep Learning
Oswald Campesato
 
PPT
lec6a.ppt
SaadMemon23
 
PDF
BriefHistoryTransformerstransformers.pdf
creative sam
 
Fundamental of deep learning
Stanley Wang
 
Understanding Convolutional Neural Networks
Jeremy Nixon
 
Deep learning from a novice perspective
Anirban Santara
 
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Florent Renucci
 
Deep learning (2)
Muhanad Al-khalisy
 
Thesis Presentation
Reuben Feinman
 
Paper id 24201464
IJRAT
 
Using A Application For A Desktop Application
Tracy Huang
 
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Feedforward Networks and Deep Learning Module-02.pdf
roopashreesv
 
Presentation v3.2
Luca Lorenzi
 
Presentation v3.2
Luca Lorenzi
 
Online learning, Vowpal Wabbit and Hadoop
Héloïse Nonne
 
Semantic Mapping of Road Scenes
Sunando Sengupta
 
deep learning UNIT-1 Introduction Part-1.ppt
shashikanthsana
 
Android and Deep Learning
Oswald Campesato
 
lec6a.ppt
SaadMemon23
 
BriefHistoryTransformerstransformers.pdf
creative sam
 
Ad

More from zukun (20)

PDF
My lyn tutorial 2009
zukun
 
PDF
ETHZ CV2012: Tutorial openCV
zukun
 
PDF
ETHZ CV2012: Information
zukun
 
PDF
Siwei lyu: natural image statistics
zukun
 
PDF
Lecture9 camera calibration
zukun
 
PDF
Brunelli 2008: template matching techniques in computer vision
zukun
 
PDF
Modern features-part-4-evaluation
zukun
 
PDF
Modern features-part-3-software
zukun
 
PDF
Modern features-part-2-descriptors
zukun
 
PDF
Modern features-part-1-detectors
zukun
 
PDF
Modern features-part-0-intro
zukun
 
PDF
Lecture 02 internet video search
zukun
 
PDF
Lecture 01 internet video search
zukun
 
PDF
Lecture 03 internet video search
zukun
 
PDF
Icml2012 tutorial representation_learning
zukun
 
PPT
Advances in discrete energy minimisation for computer vision
zukun
 
PDF
Gephi tutorial: quick start
zukun
 
PDF
EM algorithm and its application in probabilistic latent semantic analysis
zukun
 
PDF
Object recognition with pictorial structures
zukun
 
PDF
Iccv2011 learning spatiotemporal graphs of human activities
zukun
 
My lyn tutorial 2009
zukun
 
ETHZ CV2012: Tutorial openCV
zukun
 
ETHZ CV2012: Information
zukun
 
Siwei lyu: natural image statistics
zukun
 
Lecture9 camera calibration
zukun
 
Brunelli 2008: template matching techniques in computer vision
zukun
 
Modern features-part-4-evaluation
zukun
 
Modern features-part-3-software
zukun
 
Modern features-part-2-descriptors
zukun
 
Modern features-part-1-detectors
zukun
 
Modern features-part-0-intro
zukun
 
Lecture 02 internet video search
zukun
 
Lecture 01 internet video search
zukun
 
Lecture 03 internet video search
zukun
 
Icml2012 tutorial representation_learning
zukun
 
Advances in discrete energy minimisation for computer vision
zukun
 
Gephi tutorial: quick start
zukun
 
EM algorithm and its application in probabilistic latent semantic analysis
zukun
 
Object recognition with pictorial structures
zukun
 
Iccv2011 learning spatiotemporal graphs of human activities
zukun
 

Recently uploaded (20)

PPTX
Capitol Doctoral Presentation -July 2025.pptx
CapitolTechU
 
PPSX
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
PPTX
Presentation: Climate Citizenship Digital Education
Karl Donert
 
PPTX
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
PPTX
How to Manage Access Rights & User Types in Odoo 18
Celine George
 
PPTX
Nutri-QUIZ-Bee-Elementary.pptx...................
ferdinandsanbuenaven
 
PPTX
CONVULSIVE DISORDERS: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
PPT
digestive system for Pharm d I year HAP
rekhapositivity
 
PDF
community health nursing question paper 2.pdf
Prince kumar
 
PDF
IMP NAAC-Reforms-Stakeholder-Consultation-Presentation-on-Draft-Metrics-Unive...
BHARTIWADEKAR
 
PPTX
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
PDF
BÀI TẬP BỔ TRỢ THEO LESSON TIẾNG ANH - I-LEARN SMART WORLD 7 - CẢ NĂM - CÓ ĐÁ...
Nguyen Thanh Tu Collection
 
PPTX
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
PDF
1, 2, 3… E MAIS UM CICLO CHEGA AO FIM!.pdf
Colégio Santa Teresinha
 
PPTX
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
PPTX
Views on Education of Indian Thinkers J.Krishnamurthy..pptx
ShrutiMahanta1
 
PPTX
HEAD INJURY IN CHILDREN: NURSING MANAGEMENGT.pptx
PRADEEP ABOTHU
 
PPTX
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
PDF
IMP NAAC REFORMS 2024 - 10 Attributes.pdf
BHARTIWADEKAR
 
PPTX
PPT on the Development of Education in the Victorian England
Beena E S
 
Capitol Doctoral Presentation -July 2025.pptx
CapitolTechU
 
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
Presentation: Climate Citizenship Digital Education
Karl Donert
 
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
How to Manage Access Rights & User Types in Odoo 18
Celine George
 
Nutri-QUIZ-Bee-Elementary.pptx...................
ferdinandsanbuenaven
 
CONVULSIVE DISORDERS: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
digestive system for Pharm d I year HAP
rekhapositivity
 
community health nursing question paper 2.pdf
Prince kumar
 
IMP NAAC-Reforms-Stakeholder-Consultation-Presentation-on-Draft-Metrics-Unive...
BHARTIWADEKAR
 
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
BÀI TẬP BỔ TRỢ THEO LESSON TIẾNG ANH - I-LEARN SMART WORLD 7 - CẢ NĂM - CÓ ĐÁ...
Nguyen Thanh Tu Collection
 
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
1, 2, 3… E MAIS UM CICLO CHEGA AO FIM!.pdf
Colégio Santa Teresinha
 
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
Views on Education of Indian Thinkers J.Krishnamurthy..pptx
ShrutiMahanta1
 
HEAD INJURY IN CHILDREN: NURSING MANAGEMENGT.pptx
PRADEEP ABOTHU
 
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
IMP NAAC REFORMS 2024 - 10 Attributes.pdf
BHARTIWADEKAR
 
PPT on the Development of Education in the Victorian England
Beena E S
 

Manifold learning with application to object recognition