This document discusses manifold learning techniques for dimensionality reduction that can uncover the intrinsic structure of high-dimensional data. It introduces Isomap and Locally Linear Embedding (LLE) as two popular manifold learning algorithms. Isomap uses graph-based distances to preserve global structure, while LLE aims to preserve local linear relationships between neighbors. Both techniques find low-dimensional embeddings that best represent the high-dimensional data. Manifold learning provides data compression and enables techniques like object recognition by discovering the underlying manifold structure.