SlideShare a Scribd company logo
Micro-Differential Evolution with Extra
Moves Along the Axes
Fabio Caraffini, Ferrante Neri and Ilpo Poikolainen1
De Montfort University
United Kingdom
18.04.2013
(SSCI2013, Singapore)
1
University of Jyv¨askyl¨a
Outline
Background: DE vs µDE
µDEA: a Micro-Differential Evolution with Extra Moves Along
the Axes
Numerical Results
Conclusions and Future Developments
Differential Evolution (DE)
DE 2 is a population-based algorithm composed by:
Mutation (linear combination of
individuals)
Crossover (EAs like)
Selection (SIAs like)
In this study we made use of:
DE/rand/1/exp
2
Storn and Price (1995)
DE vs µDE
How to tune the population size?
large population size:
Increases landscape exploration minimising the probability of
premature convergence in a local optimum
Is preferable in noisy problems
Improves algorithm stability
“micro” population size:
Has been widely used in various engineering applications3
Has a modest memory footprint
Converges quickly
3
S. Rahnamayan and H. R. Tizhoosh, ”Image thresholding using micro opposition-based differential evolution”
Improving µDE
idea: supply an alternative kind of perturbation to the one
performed by the µPopulation
Exploration: starting from the best individual, we perform
wide movements along the coordinate axes covering the whole
search space
Exploitation: the perturbation step decreases during the
optimisation process
Improving µDE
A modified Hill-Descend Operator:
The variables are perturbed one-by-one
For each coordinate i, xnew [i] = xbest[i] − ρ
(ρ exploratory radius)
If xnew does not outperform xbest, a half step in
the opposite direction xnew [i] = xbest[i] + ρ
2 is
performed
If an improvement occurs, xnew is the new starting
point, otherwise ρ is halved
µDEA
Parameters setting
Population Size = 5
Scale Factor F = 0.7
Exp Xover Inheritance Factor
αe = 0.5
Activation Probability η = 0.25
Extra Moves Iterations = 20
Initial Exploratory Radius ρ = 40%
of the width of the decision space
Numerical Results
We considered a set of 76 problems:
The CEC2005 benchmark 30 dimensions (25 test problems)
The BBOB2010 benchmark 100 dimensions (24 test problems)
The CEC2008 benchmark 1000 dimensions (7 test problems)
The CEC2010 benchmark 1000 dimensions (20 test problems)
We compared µDEA against µDE, JADE4, SADE5 and
MDE-pBX6by means of average value and standard deviation over
100 runs, the Wilcoxon Rank-Sum test and the Holm-Bonferroni
procedure.
4
Zhang, Sanderson. JADE: Adaptive Differential Evolution With Optional External Archive.
5
Qin, Suganthan. Self-adaptive differential evolution algorithm for numerical optimization.
6
Islam, Das, Ghosh, Roy, Suganthan: An Adaptive Differential Evolution Algorithm With Novel Mutation and
Crossover Strategies for Global Numerical Optimization.
Numerical Results
Table : Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference =µDEA) for µDEA
against µDE on CEC2005 in 30 dimensions.
µDEA µDE
f1 −4.50e + 02 ± 2.18e − 13 −3.98e + 02 ± 5.14e + 02 +
f2 −4.50e + 02 ± 2.43e − 12 −4.29e + 02 ± 1.28e + 02 +
f3 1.83e + 05 ± 1.05e + 05 1.66e + 07 ± 5.61e + 06 +
f4 6.74e + 04 ± 1.60e + 04 7.59e + 02 ± 1.22e + 03 -
f5 7.20e + 03 ± 2.22e + 03 9.49e + 03 ± 2.07e + 03 +
f6 8.52e + 02 ± 1.03e + 03 2.79e + 07 ± 1.94e + 08 =
f7 −1.80e + 02 ± 1.35e − 02 2.99e + 11 ± 1.20e + 12 +
f8 −1.20e + 02 ± 4.75e − 03 −1.19e + 02 ± 5.98e − 02 +
f9 −1.17e + 02 ± 1.16e + 00 −1.16e + 02 ± 1.78e + 00 =
f10 2.62e + 02 ± 2.05e + 01 2.56e + 02 ± 1.89e + 01 -
f11 1.18e + 02 ± 3.55e + 00 1.21e + 02 ± 2.50e + 00 +
f12 1.49e + 03 ± 2.90e + 03 1.55e + 04 ± 6.55e + 03 +
f13 −1.22e + 02 ± 1.45e + 00 −1.27e + 02 ± 1.20e + 00 -
f14 −2.86e + 02 ± 2.78e − 01 −2.87e + 02 ± 2.60e − 01 -
f15 1.45e + 03 ± 2.89e + 00 1.45e + 03 ± 4.25e + 00 -
f16 1.59e + 03 ± 1.56e + 01 1.58e + 03 ± 1.20e + 01 =
f17 1.74e + 03 ± 1.81e + 01 1.61e + 03 ± 1.13e + 01 -
f18 9.10e + 02 ± 5.26e − 12 9.10e + 02 ± 5.41e − 02 +
f19 9.10e + 02 ± 5.82e − 12 9.10e + 02 ± 1.64e − 01 +
f20 9.10e + 02 ± 5.61e − 12 9.10e + 02 ± 4.18e − 01 +
f21 1.72e + 03 ± 1.09e + 01 1.72e + 03 ± 8.91e + 00 +
f22 2.60e + 03 ± 5.80e + 01 2.54e + 03 ± 4.93e + 01 -
f23 1.73e + 03 ± 9.39e + 00 1.72e + 03 ± 8.43e + 00 -
f24 1.71e + 03 ± 1.44e + 01 1.71e + 03 ± 9.66e + 00 =
f 1.88e + 03 ± 3.40e + 02 1.91e + 03 ± 1.37e + 02 =
Numerical Results
Table : Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum
Test (reference = µDEA) for µDEA against µDE on CEC2010 in 1000
dimensions.
µDEA µDE
f1 4.44e − 18 ± 7.20e − 19 4.45e + 07 ± 1.87e + 08 +
f2 5.71e + 03 ± 3.66e + 02 5.26e + 02 ± 4.45e + 01 -
f3 2.47e − 02 ± 9.79e − 02 2.88e + 00 ± 8.15e − 01 +
f4 2.07e + 13 ± 3.99e + 12 3.12e + 13 ± 7.40e + 12 +
f5 4.49e + 08 ± 1.16e + 08 6.32e + 08 ± 8.94e + 07 +
f6 1.90e + 07 ± 3.01e + 06 2.04e + 07 ± 2.15e + 05 +
f7 1.92e + 10 ± 4.99e + 09 1.83e + 10 ± 3.99e + 09 =
f8 2.36e + 10 ± 1.22e + 10 2.70e + 11 ± 1.71e + 12 +
f9 1.71e + 08 ± 7.24e + 06 4.55e + 08 ± 2.53e + 08 +
f10 7.23e + 03 ± 2.88e + 02 6.95e + 03 ± 2.85e + 02 -
f11 1.48e + 02 ± 4.56e + 01 2.08e + 02 ± 2.18e + 00 +
f12 8.39e + 04 ± 1.48e + 05 3.79e + 05 ± 2.10e + 04 +
f13 2.26e + 05 ± 9.13e + 04 9.57e + 07 ± 4.98e + 08 =
f14 1.33e + 08 ± 2.53e + 08 9.38e + 08 ± 4.51e + 07 +
f15 7.31e + 03 ± 3.08e + 02 1.37e + 04 ± 3.75e + 02 +
f16 2.23e + 02 ± 1.08e + 02 4.11e + 02 ± 2.25e + 00 +
f17 1.14e + 05 ± 2.39e + 05 8.07e + 05 ± 2.43e + 04 +
f18 3.57e + 04 ± 1.21e + 04 3.71e + 08 ± 2.08e + 09 +
f19 5.47e + 05 ± 3.43e + 04 2.82e + 05 ± 2.68e + 04 -
f20 1.49e + 04 ± 1.10e + 03 1.99e + 08 ± 7.66e + 08 +
Numerical Results
0 1e+6 2e+6 3e+6 4e+6 5e+6
10
15
10
10
10
5
10
0
10
5
10
10
Fitness function call
Fitnessvalue[Logarithmicscale]
µDEA
µDE
MDE pBX
SADE
JADE
Figure : Performance trend for f1 of CEC2010 in 1000 dimensions.
Numerical Results
Table : Holm-Bonferroni test on the Fitness, reference algrithm = µDEA
(Rank = 3.24e+00 )
j Optimizer Rank zj pj δ/j Hypothesis
1 SADE 3.68e+00 2.14e+00 9.84e-01 5.00e-02 Accepted
2 MDE-pBX 3.08e+00 -7.54e-01 2.25e-01 2.50e-02 Accepted
3 µDE 2.53e+00 -3.39e+00 3.46e-04 1.67e-02 Rejected
4 JADE 2.46e+00 -3.71e+00 1.05e-04 1.25e-02 Rejected
Conclusions and Future Developments
µDEA improves upon µDE and is competitive against
complex state-of-the-art DE variants
µDEA shows excellent performances over large scale problems
If well coordinated, even two simple components can provide a
high performance over a huge set of different problems
Its modest memory footprint and computational overhead
makes µDEA suitable for real-time embedded applications
(robotic, system control, wireless sensor networks...). It will
be interesting to apply this algorithm to real world
applications in the future.
Thank you for your attention!
Any questions?

More Related Content

PDF
Estimating the initial mean number of views for videos to be on youtube's tre...
Yao Yao
 
PDF
AP Statistics - Confidence Intervals with Means - One Sample
Frances Coronel
 
PDF
Celiskiler matrisi
vbahceci
 
PPTX
Statistics
Mankiran Kaur
 
PDF
Calibration summarydetailed
TheBlackMamba
 
DOCX
Laboratorio 5 ley de crecimiento de una gota de aceite
Elsa Patricia
 
XLS
alltel 3Q04_Highlights
finance27
 
RTF
Grid datareport geoquimica aplicadaff
Anderson Pinedo.1er
 
Estimating the initial mean number of views for videos to be on youtube's tre...
Yao Yao
 
AP Statistics - Confidence Intervals with Means - One Sample
Frances Coronel
 
Celiskiler matrisi
vbahceci
 
Statistics
Mankiran Kaur
 
Calibration summarydetailed
TheBlackMamba
 
Laboratorio 5 ley de crecimiento de una gota de aceite
Elsa Patricia
 
alltel 3Q04_Highlights
finance27
 
Grid datareport geoquimica aplicadaff
Anderson Pinedo.1er
 

Similar to Micro Differential Evolution with Extra Moves alonf the Axes (20)

PDF
Solutions manual for prealgebra 2nd edition by miller
Poppy1824
 
PDF
Basic college mathematics 3rd edition by julie mille neill hyde solutions manual
tokahenrbar
 
PDF
Bioestadistica (Formulas)
Alejandra Neri
 
PDF
Configuration Optimization Tool
Pooyan Jamshidi
 
PPTX
Engineering Data Analysis-ProfCharlton
CharltonInao1
 
PPTX
Design of experiment methodology
CHUN-HAO KUNG
 
PDF
Math Review.pdf
ponsia1
 
PDF
Comparing Machine Learning Algorithms in Text Mining
Andrea Gigli
 
PDF
Solving ode problem using the Galerkin's method
JamesMa54
 
PPTX
doe in other industries
gautam makeshbabu
 
PDF
Multi Objective Optimization of PMEDM Process Parameter by Topsis Method
ijtsrd
 
PDF
Oxbow beyondtoxics report
ToPa 3D
 
PDF
Math review
BenjaminMadrigal4
 
PDF
Optimization of micro machining processes
kulk0003
 
PPTX
statistic project on Hero motocorp
Yug Bokadia
 
DOCX
Kelompok 17 metal mas junda
GhalibAbyan1
 
DOCX
Sratistik data latihan analisis
khanifsyafii
 
PPTX
Measures of Dispersion.pptx ways to measure dispersion:
JeffreyAsuncion3
 
PPTX
Fishers linear discriminant for dimensionality reduction.
Nurul Amin Choudhury
 
PPTX
Attainment2025ADC7aPRIL2025.pp54y54yw54y54y4y4y45y45y45y45y4tx
SuKosh1
 
Solutions manual for prealgebra 2nd edition by miller
Poppy1824
 
Basic college mathematics 3rd edition by julie mille neill hyde solutions manual
tokahenrbar
 
Bioestadistica (Formulas)
Alejandra Neri
 
Configuration Optimization Tool
Pooyan Jamshidi
 
Engineering Data Analysis-ProfCharlton
CharltonInao1
 
Design of experiment methodology
CHUN-HAO KUNG
 
Math Review.pdf
ponsia1
 
Comparing Machine Learning Algorithms in Text Mining
Andrea Gigli
 
Solving ode problem using the Galerkin's method
JamesMa54
 
doe in other industries
gautam makeshbabu
 
Multi Objective Optimization of PMEDM Process Parameter by Topsis Method
ijtsrd
 
Oxbow beyondtoxics report
ToPa 3D
 
Math review
BenjaminMadrigal4
 
Optimization of micro machining processes
kulk0003
 
statistic project on Hero motocorp
Yug Bokadia
 
Kelompok 17 metal mas junda
GhalibAbyan1
 
Sratistik data latihan analisis
khanifsyafii
 
Measures of Dispersion.pptx ways to measure dispersion:
JeffreyAsuncion3
 
Fishers linear discriminant for dimensionality reduction.
Nurul Amin Choudhury
 
Attainment2025ADC7aPRIL2025.pp54y54yw54y54y4y4y45y45y45y45y4tx
SuKosh1
 
Ad

More from Fabio Caraffini (9)

PDF
The Importance of Being Structured
Fabio Caraffini
 
PDF
A seriously simple memetic approach with a high performance
Fabio Caraffini
 
PDF
Three rotational invariant variants of the 3SOME algorithms
Fabio Caraffini
 
PDF
Ri-some algorithm
Fabio Caraffini
 
PDF
Meta-Lamarckian 3some algorithm for real-valued optimization
Fabio Caraffini
 
PDF
Evoknow17 Large Scale Problems in Practice
Fabio Caraffini
 
PDF
Evo star2012 Robot Base Disturbance Optimization with Compact Differential Ev...
Fabio Caraffini
 
PDF
Pechakucha
Fabio Caraffini
 
PDF
DEFENSE
Fabio Caraffini
 
The Importance of Being Structured
Fabio Caraffini
 
A seriously simple memetic approach with a high performance
Fabio Caraffini
 
Three rotational invariant variants of the 3SOME algorithms
Fabio Caraffini
 
Ri-some algorithm
Fabio Caraffini
 
Meta-Lamarckian 3some algorithm for real-valued optimization
Fabio Caraffini
 
Evoknow17 Large Scale Problems in Practice
Fabio Caraffini
 
Evo star2012 Robot Base Disturbance Optimization with Compact Differential Ev...
Fabio Caraffini
 
Pechakucha
Fabio Caraffini
 
Ad

Recently uploaded (20)

PPTX
How do Company Analysis Short Term and Long Term Investment.pptx
auntorkhastagirpujan
 
PDF
Helpful but Terrifying: Older Adults' Perspectives of AI in Remote Healthcare...
Daniela Napoli
 
PPTX
Rotary_Fundraising_Overview_Updated_new video .pptx
allangraemeduncan
 
PPTX
A Power Point Presentaion of 2 test match
katarapiyush21
 
PPTX
Marketing Mix Analysis of Singapore Airlines.pptx
auntorkhastagirpujan
 
PPTX
garment-industry in bangladesh. how bangladeshi industry is doing
tanvirhossain1570
 
PDF
Exploring User Perspectives on Data Collection, Data Sharing Preferences, and...
Daniela Napoli
 
PPTX
Design Tips to Help Non-Visual Visitors Stay Safe Online
Daniela Napoli
 
PDF
COSHH - Sri Ramachandar Bandi HSE in the Oil & Gas Industry (COSHH) Training ...
babufastdeals
 
PPTX
2025-07-27 Abraham 09 (shared slides).pptx
Dale Wells
 
PPTX
GAMABA AWARDEES GINAW BILOG AND SALINTA MONON BY REYMART
purezagambala458
 
PPTX
DPIC Assingment_1.pptx.pptx for presentation
yashwork2607
 
PDF
Chapter-52-Relationship-between-countries-at-different-levels-of-development-...
dinhminhthu1405
 
PPTX
Introduction_to_Python_Presentation.pptx
vikashkumargaya5861
 
PPTX
Raksha Bandhan Celebrations PPT festival
sowmyabapuram
 
PDF
Green Natural Green House Presentation (2).pdf
SaeedOsman6
 
PPTX
THE school_exposure_presentation[1].pptx
sayanmondal3500
 
PPTX
Remote Healthcare Technology Use Cases and the Contextual Integrity of Olde...
Daniela Napoli
 
PPT
strucure of protein geomics for new .ppt
RakeshKumar508211
 
PPTX
Public Speakingbjdsbkjfdkjdasnlkdasnlknadslnbsjknsakjscbnkjbncs.pptx
ranazunairriaz1
 
How do Company Analysis Short Term and Long Term Investment.pptx
auntorkhastagirpujan
 
Helpful but Terrifying: Older Adults' Perspectives of AI in Remote Healthcare...
Daniela Napoli
 
Rotary_Fundraising_Overview_Updated_new video .pptx
allangraemeduncan
 
A Power Point Presentaion of 2 test match
katarapiyush21
 
Marketing Mix Analysis of Singapore Airlines.pptx
auntorkhastagirpujan
 
garment-industry in bangladesh. how bangladeshi industry is doing
tanvirhossain1570
 
Exploring User Perspectives on Data Collection, Data Sharing Preferences, and...
Daniela Napoli
 
Design Tips to Help Non-Visual Visitors Stay Safe Online
Daniela Napoli
 
COSHH - Sri Ramachandar Bandi HSE in the Oil & Gas Industry (COSHH) Training ...
babufastdeals
 
2025-07-27 Abraham 09 (shared slides).pptx
Dale Wells
 
GAMABA AWARDEES GINAW BILOG AND SALINTA MONON BY REYMART
purezagambala458
 
DPIC Assingment_1.pptx.pptx for presentation
yashwork2607
 
Chapter-52-Relationship-between-countries-at-different-levels-of-development-...
dinhminhthu1405
 
Introduction_to_Python_Presentation.pptx
vikashkumargaya5861
 
Raksha Bandhan Celebrations PPT festival
sowmyabapuram
 
Green Natural Green House Presentation (2).pdf
SaeedOsman6
 
THE school_exposure_presentation[1].pptx
sayanmondal3500
 
Remote Healthcare Technology Use Cases and the Contextual Integrity of Olde...
Daniela Napoli
 
strucure of protein geomics for new .ppt
RakeshKumar508211
 
Public Speakingbjdsbkjfdkjdasnlkdasnlknadslnbsjknsakjscbnkjbncs.pptx
ranazunairriaz1
 

Micro Differential Evolution with Extra Moves alonf the Axes

  • 1. Micro-Differential Evolution with Extra Moves Along the Axes Fabio Caraffini, Ferrante Neri and Ilpo Poikolainen1 De Montfort University United Kingdom 18.04.2013 (SSCI2013, Singapore) 1 University of Jyv¨askyl¨a
  • 2. Outline Background: DE vs µDE µDEA: a Micro-Differential Evolution with Extra Moves Along the Axes Numerical Results Conclusions and Future Developments
  • 3. Differential Evolution (DE) DE 2 is a population-based algorithm composed by: Mutation (linear combination of individuals) Crossover (EAs like) Selection (SIAs like) In this study we made use of: DE/rand/1/exp 2 Storn and Price (1995)
  • 4. DE vs µDE How to tune the population size? large population size: Increases landscape exploration minimising the probability of premature convergence in a local optimum Is preferable in noisy problems Improves algorithm stability “micro” population size: Has been widely used in various engineering applications3 Has a modest memory footprint Converges quickly 3 S. Rahnamayan and H. R. Tizhoosh, ”Image thresholding using micro opposition-based differential evolution”
  • 5. Improving µDE idea: supply an alternative kind of perturbation to the one performed by the µPopulation Exploration: starting from the best individual, we perform wide movements along the coordinate axes covering the whole search space Exploitation: the perturbation step decreases during the optimisation process
  • 6. Improving µDE A modified Hill-Descend Operator: The variables are perturbed one-by-one For each coordinate i, xnew [i] = xbest[i] − ρ (ρ exploratory radius) If xnew does not outperform xbest, a half step in the opposite direction xnew [i] = xbest[i] + ρ 2 is performed If an improvement occurs, xnew is the new starting point, otherwise ρ is halved
  • 7. µDEA Parameters setting Population Size = 5 Scale Factor F = 0.7 Exp Xover Inheritance Factor αe = 0.5 Activation Probability η = 0.25 Extra Moves Iterations = 20 Initial Exploratory Radius ρ = 40% of the width of the decision space
  • 8. Numerical Results We considered a set of 76 problems: The CEC2005 benchmark 30 dimensions (25 test problems) The BBOB2010 benchmark 100 dimensions (24 test problems) The CEC2008 benchmark 1000 dimensions (7 test problems) The CEC2010 benchmark 1000 dimensions (20 test problems) We compared µDEA against µDE, JADE4, SADE5 and MDE-pBX6by means of average value and standard deviation over 100 runs, the Wilcoxon Rank-Sum test and the Holm-Bonferroni procedure. 4 Zhang, Sanderson. JADE: Adaptive Differential Evolution With Optional External Archive. 5 Qin, Suganthan. Self-adaptive differential evolution algorithm for numerical optimization. 6 Islam, Das, Ghosh, Roy, Suganthan: An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization.
  • 9. Numerical Results Table : Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference =µDEA) for µDEA against µDE on CEC2005 in 30 dimensions. µDEA µDE f1 −4.50e + 02 ± 2.18e − 13 −3.98e + 02 ± 5.14e + 02 + f2 −4.50e + 02 ± 2.43e − 12 −4.29e + 02 ± 1.28e + 02 + f3 1.83e + 05 ± 1.05e + 05 1.66e + 07 ± 5.61e + 06 + f4 6.74e + 04 ± 1.60e + 04 7.59e + 02 ± 1.22e + 03 - f5 7.20e + 03 ± 2.22e + 03 9.49e + 03 ± 2.07e + 03 + f6 8.52e + 02 ± 1.03e + 03 2.79e + 07 ± 1.94e + 08 = f7 −1.80e + 02 ± 1.35e − 02 2.99e + 11 ± 1.20e + 12 + f8 −1.20e + 02 ± 4.75e − 03 −1.19e + 02 ± 5.98e − 02 + f9 −1.17e + 02 ± 1.16e + 00 −1.16e + 02 ± 1.78e + 00 = f10 2.62e + 02 ± 2.05e + 01 2.56e + 02 ± 1.89e + 01 - f11 1.18e + 02 ± 3.55e + 00 1.21e + 02 ± 2.50e + 00 + f12 1.49e + 03 ± 2.90e + 03 1.55e + 04 ± 6.55e + 03 + f13 −1.22e + 02 ± 1.45e + 00 −1.27e + 02 ± 1.20e + 00 - f14 −2.86e + 02 ± 2.78e − 01 −2.87e + 02 ± 2.60e − 01 - f15 1.45e + 03 ± 2.89e + 00 1.45e + 03 ± 4.25e + 00 - f16 1.59e + 03 ± 1.56e + 01 1.58e + 03 ± 1.20e + 01 = f17 1.74e + 03 ± 1.81e + 01 1.61e + 03 ± 1.13e + 01 - f18 9.10e + 02 ± 5.26e − 12 9.10e + 02 ± 5.41e − 02 + f19 9.10e + 02 ± 5.82e − 12 9.10e + 02 ± 1.64e − 01 + f20 9.10e + 02 ± 5.61e − 12 9.10e + 02 ± 4.18e − 01 + f21 1.72e + 03 ± 1.09e + 01 1.72e + 03 ± 8.91e + 00 + f22 2.60e + 03 ± 5.80e + 01 2.54e + 03 ± 4.93e + 01 - f23 1.73e + 03 ± 9.39e + 00 1.72e + 03 ± 8.43e + 00 - f24 1.71e + 03 ± 1.44e + 01 1.71e + 03 ± 9.66e + 00 = f 1.88e + 03 ± 3.40e + 02 1.91e + 03 ± 1.37e + 02 =
  • 10. Numerical Results Table : Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = µDEA) for µDEA against µDE on CEC2010 in 1000 dimensions. µDEA µDE f1 4.44e − 18 ± 7.20e − 19 4.45e + 07 ± 1.87e + 08 + f2 5.71e + 03 ± 3.66e + 02 5.26e + 02 ± 4.45e + 01 - f3 2.47e − 02 ± 9.79e − 02 2.88e + 00 ± 8.15e − 01 + f4 2.07e + 13 ± 3.99e + 12 3.12e + 13 ± 7.40e + 12 + f5 4.49e + 08 ± 1.16e + 08 6.32e + 08 ± 8.94e + 07 + f6 1.90e + 07 ± 3.01e + 06 2.04e + 07 ± 2.15e + 05 + f7 1.92e + 10 ± 4.99e + 09 1.83e + 10 ± 3.99e + 09 = f8 2.36e + 10 ± 1.22e + 10 2.70e + 11 ± 1.71e + 12 + f9 1.71e + 08 ± 7.24e + 06 4.55e + 08 ± 2.53e + 08 + f10 7.23e + 03 ± 2.88e + 02 6.95e + 03 ± 2.85e + 02 - f11 1.48e + 02 ± 4.56e + 01 2.08e + 02 ± 2.18e + 00 + f12 8.39e + 04 ± 1.48e + 05 3.79e + 05 ± 2.10e + 04 + f13 2.26e + 05 ± 9.13e + 04 9.57e + 07 ± 4.98e + 08 = f14 1.33e + 08 ± 2.53e + 08 9.38e + 08 ± 4.51e + 07 + f15 7.31e + 03 ± 3.08e + 02 1.37e + 04 ± 3.75e + 02 + f16 2.23e + 02 ± 1.08e + 02 4.11e + 02 ± 2.25e + 00 + f17 1.14e + 05 ± 2.39e + 05 8.07e + 05 ± 2.43e + 04 + f18 3.57e + 04 ± 1.21e + 04 3.71e + 08 ± 2.08e + 09 + f19 5.47e + 05 ± 3.43e + 04 2.82e + 05 ± 2.68e + 04 - f20 1.49e + 04 ± 1.10e + 03 1.99e + 08 ± 7.66e + 08 +
  • 11. Numerical Results 0 1e+6 2e+6 3e+6 4e+6 5e+6 10 15 10 10 10 5 10 0 10 5 10 10 Fitness function call Fitnessvalue[Logarithmicscale] µDEA µDE MDE pBX SADE JADE Figure : Performance trend for f1 of CEC2010 in 1000 dimensions.
  • 12. Numerical Results Table : Holm-Bonferroni test on the Fitness, reference algrithm = µDEA (Rank = 3.24e+00 ) j Optimizer Rank zj pj δ/j Hypothesis 1 SADE 3.68e+00 2.14e+00 9.84e-01 5.00e-02 Accepted 2 MDE-pBX 3.08e+00 -7.54e-01 2.25e-01 2.50e-02 Accepted 3 µDE 2.53e+00 -3.39e+00 3.46e-04 1.67e-02 Rejected 4 JADE 2.46e+00 -3.71e+00 1.05e-04 1.25e-02 Rejected
  • 13. Conclusions and Future Developments µDEA improves upon µDE and is competitive against complex state-of-the-art DE variants µDEA shows excellent performances over large scale problems If well coordinated, even two simple components can provide a high performance over a huge set of different problems Its modest memory footprint and computational overhead makes µDEA suitable for real-time embedded applications (robotic, system control, wireless sensor networks...). It will be interesting to apply this algorithm to real world applications in the future.
  • 14. Thank you for your attention! Any questions?