SlideShare a Scribd company logo
Yapay Zekâ (AI)
Machine Learning / Deep Learning
Cloud
Computing
Big Data
Powerful
Algorithms
Agent Applications Services Infrastructure
Microsoft AI Portfolio
Cortana Office 365
Dynamics 365
SwiftKey
Pix
Customer Service
and Support
Skype
Calendar.help
Cortana Intelligence
Cognitive Services
Bot Framework
Cortana Devices SDK
Cognitive Toolkit
Azure Machine
Learning
Azure Notebooks
Azure N Series
FPGA
People
Microsoft & Machine Learning / Artificial Intelligence
Agent Applications Services Infrastructure
Microsoft AI Portfolio
Cortana Office 365
Dynamics 365
SwiftKey
Pix
Customer Service
and Support
Skype
Calendar.help
Cortana Intelligence
Cognitive Services
Bot Framework
Cortana Devices SDK
Cognitive Toolkit
Azure Machine
Learning
Azure Notebooks
Azure N Series
FPGA
People
H Y P E R S C A L E ,
E N T E R P R I S E - G R A D E
I N F R A S T R U C T U R E
D E V E L O P E R T O O L S &
S E R V I C E S
O P E N P L A T F O R M F O R
D A T A S C I E N C E
Hardware
Storage management
Software
T H E M L & A I P L A T F O R M
AI Applications (1st & 3rd party) Cognitive Services Bot Framework
Spark AI Batch Training DS VM SQL Server ACS
BLOB Cosmos DB SQL DB/DW ADLS
CPUs FPGA GPUs IoT
Azure Machine Learning
Model deployment & management
Machine Learning toolkits
Experimentation management,
data prep, & collaboration
CNTK
Tensorflow
ML Server
Scikit-Learn
Other Libs.
PROSE
Docker
Cloud – Spark, SQL, other engines
ML Server – Spark, SQL, VMs
Edge
Microsoft & Machine Learning / Artificial Intelligence
Machine Learning & AI Portfolio
When to use what?
What engine(s) do you want to use?
Deployment target
Which experience do you want?
Build your own or consume pre-trained models?
Microsoft ML &
AI products
Build your own
Azure Machine
Learning
Code first
(On-prem)
ML Server
On-prem
Hadoop
SQL Server
(cloud)
AML (Preview)
SQL Server Spark Hadoop Azure Batch DSVM Azure Container
Service
Visual tooling
(cloud)
AML Studio
Consume
Cognitive
services, bots
VISUAL DRAG-AND-DROP CODE-FIRST
Azure Machine Learning Studio & Workbench
Azure Notebooks
Use your favorite IDE
Leverage all types of data
Use what you want
U S E T H E M O S T P O P U L A R I N N O V A T I O N S
U S E A N Y T O O L
U S E A N Y F R A M E W O R K O R L I B R A R Y
Microsoft & Machine Learning / Artificial Intelligence
Microsoft & Machine Learning / Artificial Intelligence
AML Workbench
Sample, understand, and
prep data rapidly
Support for Spark + Python
+ R (roadmap)
Execute jobs locally, on
remote VMs, Spark clusters,
SQL on-premises
Git-backed tracking of
code, config, parameters,
data, run history
• Column statistics : Numeric
• Histogram
• Value Counts
• Box Plot
• Scatter Plot
• Time Series
• Map
Inspectors
Microsoft & Machine Learning / Artificial Intelligence
Spark
SQL Server
Virtual machines
GPUs
Container services
Notebooks
Azure Machine Learning Workbench
Visual Studio Code Tools for AI
Visual Studio Tools for AI
PyCharm
SQL Server
Machine Learning Server
O N - P R E M I S E S
E D G E C O M P U T I N G
Azure IoT Edge
Experimentation and
Model Management
A Z U R E M A C H I N E L E A R N I N G S E R V I C E S T R A I N & D E P LO Y O P T I O N S
A Z U R E
Local machine
Scale up to DSVM
Scale out with Spark on HDInsight
Azure Batch AI (Coming Soon)
ML Server (Coming Soon)
A ZURE ML
EXPERIMENTATION
Command line tools
IDEs
Notebooks in Workbench
VS Code Tools for AI
VS Tools for AI
DOCKER
Single node deployment
(cloud/on-prem)
Azure Container Service
Azure IoT Edge
Microsoft ML Server
Spark clusters
SQL Server (Coming Soon)
A ZURE ML
MODEL MANAGEMENT
http://aka.ms/dsvm
Data Science
Virtual Machines
(DSVM)
Data Science
Virtual Machines
(DSVM) DSVM – Windows Server 2016
DSVM – Linux – Ubuntu
Deep Learning Virtual Machines
Microsoft & Machine Learning / Artificial Intelligence
Yes
Similar
image
Query
image
 Researchers took a traditional machine learning approach
• Example: HoG Detectors
- Histogram of oriented
gradients (HoG) features
- Sliding window detector
- SVM Classifier
- Very fast OpenCV
implementation (<100ms)
Microsoft & Machine Learning / Artificial Intelligence
Deep Neural Network for Computer Vision
cat? YES
dog? NO
car? NO
Convolutional Layers
Fully
Connected
Layers
Complex Objects
& Scenes
(people, animals,
cars, beach
scene, etc.)
Image
Low-Level Features
(lines, edges,
color fields, etc.)
High-Level Features
(corners, contours,
simple shapes)
Object Parts
(wheels, faces,
windows, etc.)
Microsoft & Machine Learning / Artificial Intelligence
Microsoft & Machine Learning / Artificial Intelligence
Microsoft & Machine Learning / Artificial Intelligence
Cognitive Toolkit
Unlock deeper learning
A free, easy-to-use, open-source toolkit that
trains deep learning algorithms to learn like the
human brain.
Microsoft Cognitive Toolkit
Clothing texture dataset:
Can we apply transfer learning to accurately classify clothing texture?
LeopardStriped Dotted
Pre-Built CNN from General Task on Millions of Images
Output
Layer
Stripped
Outputs of penultimate layer of
ImageNet Trained CNN provide excellent
general purpose image features
cat? YES
dog? NO
car? NO
Classi
fier
e.g.
SVM
dotted?
Pre-Built CNN from General Task on Millions of Images
Output
Layer
Stripped
Using a pre-trained DNN, an accurate
model can be achieved with thousands (or
less) of labeled examples instead of millions
cat? YES
dog? NO
car? NO
dotted?
Train one or more
layers in new network
Microsoft & Machine Learning / Artificial Intelligence
Ibrahim KIVANÇ
http://www.ibrahimkivanc.com
@ikivanc
ikivanc@microsoft.com

More Related Content

What's hot (20)

PPTX
Internet of things at the Edge with Azure IoT Edge by sonujose
Sonu Jose
 
PPTX
Azure IoT Hub
Shahriar Hossain
 
PDF
AIoT and edge computing solutions
湯米吳 Tommy Wu
 
PPTX
Exploring IoT Edge
Codit
 
PPTX
Microsoft IoT Overview, Vision and Roadmap
Microsoft Tech Community
 
PPTX
Living on the (IoT) edge (Sam Vanhoutte @TechdaysNL 2017)
Codit
 
PDF
Azure AI Conference Report
Osamu Masutani
 
PDF
#IoTforReal Seminar slidedeck (Codit Belgium - Ghelamco Arena Gent)
Codit
 
PPTX
Azure IPaaS: Integration Evolved! (Glenn Colpaert @TechdaysNL 2017)
Codit
 
PPTX
Blockchain in Practice
Codit
 
PPTX
IoT, ready for business
Jon Mikel Inza
 
PDF
IoTforReal Seminar slidedeck
Codit
 
PPTX
IoTSummit: Create iot devices connected or on the edge using ai and ml
Marco Dal Pino
 
PPTX
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
DevDay Da Nang
 
PDF
Device Twins, Digital Twins and Device Shadow
Estelle Auberix
 
PPTX
Back from Microsoft //Build 2018
SOAT
 
PDF
The role of integration in your cloud-native transformation (Richard Seroter ...
Codit
 
PPTX
Next Generation of Data Integration with Azure Data Factory by Tom Kerkhove
Codit
 
PPTX
Microsoft education for it professionals
Hadshana Kamalanathan
 
PPTX
Maturing IoT solutions with Microsoft Azure (Sam Vanhoutte & Glenn Colpaert a...
Codit
 
Internet of things at the Edge with Azure IoT Edge by sonujose
Sonu Jose
 
Azure IoT Hub
Shahriar Hossain
 
AIoT and edge computing solutions
湯米吳 Tommy Wu
 
Exploring IoT Edge
Codit
 
Microsoft IoT Overview, Vision and Roadmap
Microsoft Tech Community
 
Living on the (IoT) edge (Sam Vanhoutte @TechdaysNL 2017)
Codit
 
Azure AI Conference Report
Osamu Masutani
 
#IoTforReal Seminar slidedeck (Codit Belgium - Ghelamco Arena Gent)
Codit
 
Azure IPaaS: Integration Evolved! (Glenn Colpaert @TechdaysNL 2017)
Codit
 
Blockchain in Practice
Codit
 
IoT, ready for business
Jon Mikel Inza
 
IoTforReal Seminar slidedeck
Codit
 
IoTSummit: Create iot devices connected or on the edge using ai and ml
Marco Dal Pino
 
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
DevDay Da Nang
 
Device Twins, Digital Twins and Device Shadow
Estelle Auberix
 
Back from Microsoft //Build 2018
SOAT
 
The role of integration in your cloud-native transformation (Richard Seroter ...
Codit
 
Next Generation of Data Integration with Azure Data Factory by Tom Kerkhove
Codit
 
Microsoft education for it professionals
Hadshana Kamalanathan
 
Maturing IoT solutions with Microsoft Azure (Sam Vanhoutte & Glenn Colpaert a...
Codit
 

Similar to Microsoft & Machine Learning / Artificial Intelligence (20)

PPTX
Microsoft AI Platform Overview
David Chou
 
PDF
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
Naoki (Neo) SATO
 
PDF
Big Data Adavnced Analytics on Microsoft Azure
Mark Tabladillo
 
PPTX
Machine Learning Pitch Deck
Nicholas Vossburg
 
PPTX
Tour de France Azure PaaS 6/7 Ajouter de l'intelligence
Alex Danvy
 
PPTX
AML_service.pptx
Abhishek878239
 
PPTX
Data analytics on Azure
Elena Lopez
 
PPTX
Designing Artificial Intelligence
David Chou
 
PPTX
2018 11 14 Artificial Intelligence and Machine Learning in Azure
Bruno Capuano
 
PPTX
Machine Learning and AI
James Serra
 
PPTX
Borys Rybak “How to make your data smart with Artificial Intelligence and Mac...
Lviv Startup Club
 
PPTX
AI at Microsoft for HEC
Alex Danvy
 
PDF
Advanced Analytics with Power BI 201808
Mark Tabladillo
 
PPTX
AI for an intelligent cloud and intelligent edge: Discover, deploy, and manag...
James Serra
 
PPTX
Global ai night sept 2019 - Milwaukee
Cameron Vetter
 
PDF
Sergii Baidachnyi ITEM 2018
ITEM
 
PDF
201908 Overview of Automated ML
Mark Tabladillo
 
PDF
Making Data Scientists Productive in Azure
Valdas Maksimavičius
 
PDF
infoShare AI Roadshow 2018 - Tomasz Kopacz (Microsoft) - jakie możliwości daj...
Infoshare
 
PPTX
Ai & Data Analytics 2018 - Azure Databricks for data scientist
Alberto Diaz Martin
 
Microsoft AI Platform Overview
David Chou
 
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
Naoki (Neo) SATO
 
Big Data Adavnced Analytics on Microsoft Azure
Mark Tabladillo
 
Machine Learning Pitch Deck
Nicholas Vossburg
 
Tour de France Azure PaaS 6/7 Ajouter de l'intelligence
Alex Danvy
 
AML_service.pptx
Abhishek878239
 
Data analytics on Azure
Elena Lopez
 
Designing Artificial Intelligence
David Chou
 
2018 11 14 Artificial Intelligence and Machine Learning in Azure
Bruno Capuano
 
Machine Learning and AI
James Serra
 
Borys Rybak “How to make your data smart with Artificial Intelligence and Mac...
Lviv Startup Club
 
AI at Microsoft for HEC
Alex Danvy
 
Advanced Analytics with Power BI 201808
Mark Tabladillo
 
AI for an intelligent cloud and intelligent edge: Discover, deploy, and manag...
James Serra
 
Global ai night sept 2019 - Milwaukee
Cameron Vetter
 
Sergii Baidachnyi ITEM 2018
ITEM
 
201908 Overview of Automated ML
Mark Tabladillo
 
Making Data Scientists Productive in Azure
Valdas Maksimavičius
 
infoShare AI Roadshow 2018 - Tomasz Kopacz (Microsoft) - jakie możliwości daj...
Infoshare
 
Ai & Data Analytics 2018 - Azure Databricks for data scientist
Alberto Diaz Martin
 
Ad

More from İbrahim KIVANÇ (13)

PDF
Blockchain & microsoft
İbrahim KIVANÇ
 
PPTX
Bilmök 2017 - Microsoft Yeni Yesil Yazilim Geliştirme Teknolojileri
İbrahim KIVANÇ
 
PPTX
GDG DevFest Istanbul - Mobile DevOps - Build, Test and Deploy Your Android Ap...
İbrahim KIVANÇ
 
PPTX
Bir Yazılımcı Gözünden UX & UI
İbrahim KIVANÇ
 
PDF
GDG Ankara - Women Tech Makers Etkinliği
İbrahim KIVANÇ
 
PDF
Office 365 Development - Office Add-ins & Microsoft Graph
İbrahim KIVANÇ
 
PDF
4 - Advanced Windows 10 development with the Microsoft Graph
İbrahim KIVANÇ
 
PDF
3 - Getting Started with mobile app development with the Microsoft Graph
İbrahim KIVANÇ
 
PDF
2 - Getting Started with Microsoft Graph
İbrahim KIVANÇ
 
PDF
1 - Office 365 developer overview
İbrahim KIVANÇ
 
PDF
Protohack Istanbul - Microsoft WireFrame ve Storyboarding Araçları
İbrahim KIVANÇ
 
PDF
GDG Ankara - DevFest'15 Etkinliği - Cross Platform Development
İbrahim KIVANÇ
 
PDF
Windows 10 IoT Core - Inovasyon Haftasi - TİM
İbrahim KIVANÇ
 
Blockchain & microsoft
İbrahim KIVANÇ
 
Bilmök 2017 - Microsoft Yeni Yesil Yazilim Geliştirme Teknolojileri
İbrahim KIVANÇ
 
GDG DevFest Istanbul - Mobile DevOps - Build, Test and Deploy Your Android Ap...
İbrahim KIVANÇ
 
Bir Yazılımcı Gözünden UX & UI
İbrahim KIVANÇ
 
GDG Ankara - Women Tech Makers Etkinliği
İbrahim KIVANÇ
 
Office 365 Development - Office Add-ins & Microsoft Graph
İbrahim KIVANÇ
 
4 - Advanced Windows 10 development with the Microsoft Graph
İbrahim KIVANÇ
 
3 - Getting Started with mobile app development with the Microsoft Graph
İbrahim KIVANÇ
 
2 - Getting Started with Microsoft Graph
İbrahim KIVANÇ
 
1 - Office 365 developer overview
İbrahim KIVANÇ
 
Protohack Istanbul - Microsoft WireFrame ve Storyboarding Araçları
İbrahim KIVANÇ
 
GDG Ankara - DevFest'15 Etkinliği - Cross Platform Development
İbrahim KIVANÇ
 
Windows 10 IoT Core - Inovasyon Haftasi - TİM
İbrahim KIVANÇ
 
Ad

Recently uploaded (20)

PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
DOCX
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
Biography of Daniel Podor.pdf
Daniel Podor
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
Biography of Daniel Podor.pdf
Daniel Podor
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 

Microsoft & Machine Learning / Artificial Intelligence

  • 2. Machine Learning / Deep Learning
  • 4. Agent Applications Services Infrastructure Microsoft AI Portfolio Cortana Office 365 Dynamics 365 SwiftKey Pix Customer Service and Support Skype Calendar.help Cortana Intelligence Cognitive Services Bot Framework Cortana Devices SDK Cognitive Toolkit Azure Machine Learning Azure Notebooks Azure N Series FPGA People
  • 6. Agent Applications Services Infrastructure Microsoft AI Portfolio Cortana Office 365 Dynamics 365 SwiftKey Pix Customer Service and Support Skype Calendar.help Cortana Intelligence Cognitive Services Bot Framework Cortana Devices SDK Cognitive Toolkit Azure Machine Learning Azure Notebooks Azure N Series FPGA People
  • 7. H Y P E R S C A L E , E N T E R P R I S E - G R A D E I N F R A S T R U C T U R E D E V E L O P E R T O O L S & S E R V I C E S O P E N P L A T F O R M F O R D A T A S C I E N C E Hardware Storage management Software T H E M L & A I P L A T F O R M AI Applications (1st & 3rd party) Cognitive Services Bot Framework Spark AI Batch Training DS VM SQL Server ACS BLOB Cosmos DB SQL DB/DW ADLS CPUs FPGA GPUs IoT Azure Machine Learning Model deployment & management Machine Learning toolkits Experimentation management, data prep, & collaboration CNTK Tensorflow ML Server Scikit-Learn Other Libs. PROSE Docker Cloud – Spark, SQL, other engines ML Server – Spark, SQL, VMs Edge
  • 9. Machine Learning & AI Portfolio When to use what? What engine(s) do you want to use? Deployment target Which experience do you want? Build your own or consume pre-trained models? Microsoft ML & AI products Build your own Azure Machine Learning Code first (On-prem) ML Server On-prem Hadoop SQL Server (cloud) AML (Preview) SQL Server Spark Hadoop Azure Batch DSVM Azure Container Service Visual tooling (cloud) AML Studio Consume Cognitive services, bots
  • 10. VISUAL DRAG-AND-DROP CODE-FIRST Azure Machine Learning Studio & Workbench
  • 12. Use your favorite IDE Leverage all types of data Use what you want U S E T H E M O S T P O P U L A R I N N O V A T I O N S U S E A N Y T O O L U S E A N Y F R A M E W O R K O R L I B R A R Y
  • 15. AML Workbench Sample, understand, and prep data rapidly Support for Spark + Python + R (roadmap) Execute jobs locally, on remote VMs, Spark clusters, SQL on-premises Git-backed tracking of code, config, parameters, data, run history
  • 16. • Column statistics : Numeric • Histogram • Value Counts • Box Plot • Scatter Plot • Time Series • Map Inspectors
  • 18. Spark SQL Server Virtual machines GPUs Container services Notebooks Azure Machine Learning Workbench Visual Studio Code Tools for AI Visual Studio Tools for AI PyCharm SQL Server Machine Learning Server O N - P R E M I S E S E D G E C O M P U T I N G Azure IoT Edge Experimentation and Model Management A Z U R E M A C H I N E L E A R N I N G S E R V I C E S T R A I N & D E P LO Y O P T I O N S A Z U R E
  • 19. Local machine Scale up to DSVM Scale out with Spark on HDInsight Azure Batch AI (Coming Soon) ML Server (Coming Soon) A ZURE ML EXPERIMENTATION Command line tools IDEs Notebooks in Workbench VS Code Tools for AI VS Tools for AI
  • 20. DOCKER Single node deployment (cloud/on-prem) Azure Container Service Azure IoT Edge Microsoft ML Server Spark clusters SQL Server (Coming Soon) A ZURE ML MODEL MANAGEMENT
  • 22. Data Science Virtual Machines (DSVM) DSVM – Windows Server 2016 DSVM – Linux – Ubuntu Deep Learning Virtual Machines
  • 25.  Researchers took a traditional machine learning approach • Example: HoG Detectors - Histogram of oriented gradients (HoG) features - Sliding window detector - SVM Classifier - Very fast OpenCV implementation (<100ms)
  • 27. Deep Neural Network for Computer Vision cat? YES dog? NO car? NO Convolutional Layers Fully Connected Layers Complex Objects & Scenes (people, animals, cars, beach scene, etc.) Image Low-Level Features (lines, edges, color fields, etc.) High-Level Features (corners, contours, simple shapes) Object Parts (wheels, faces, windows, etc.)
  • 31. Cognitive Toolkit Unlock deeper learning A free, easy-to-use, open-source toolkit that trains deep learning algorithms to learn like the human brain. Microsoft Cognitive Toolkit
  • 32. Clothing texture dataset: Can we apply transfer learning to accurately classify clothing texture? LeopardStriped Dotted
  • 33. Pre-Built CNN from General Task on Millions of Images Output Layer Stripped Outputs of penultimate layer of ImageNet Trained CNN provide excellent general purpose image features cat? YES dog? NO car? NO Classi fier e.g. SVM dotted?
  • 34. Pre-Built CNN from General Task on Millions of Images Output Layer Stripped Using a pre-trained DNN, an accurate model can be achieved with thousands (or less) of labeled examples instead of millions cat? YES dog? NO car? NO dotted? Train one or more layers in new network