1. The document discusses maximum likelihood estimation and Bayesian parameter estimation for machine learning problems involving parametric densities like the Gaussian.
2. Maximum likelihood estimation finds the parameter values that maximize the probability of obtaining the observed training data. For Gaussian distributions with unknown mean and variance, MLE returns the sample mean and variance.
3. Bayesian parameter estimation treats the parameters as random variables and uses prior distributions and observed data to obtain posterior distributions over the parameters. This allows incorporation of prior knowledge with the training data.