This document provides an overview of supervised machine learning algorithms for classification, including logistic regression, k-nearest neighbors (KNN), support vector machines (SVM), and decision trees. It discusses key concepts like evaluation metrics, performance measures, and use cases. For logistic regression, it covers the mathematics behind maximum likelihood estimation and gradient descent. For KNN, it explains the algorithm and discusses distance metrics and a numerical example. For SVM, it outlines the concept of finding the optimal hyperplane that maximizes the margin between classes.