SlideShare a Scribd company logo
INTRODUCTION TO ADAPTIVE
CONTROL
BY
Mohammed Nawfal Sheet
Hussien Hani Nayef
Muhammad Yasir Adel
Supervised by
Abdullah I. Abdullah
Ali K. Mahmoud
1
Contents
 Adaptive Control
 Why Adaptive Control ?
 MRAC
 MIT Rule
 Design Example
 Lyapunove Rule
 Design example
2
3
Adaptive Control
Adaptive control is the control method used by a controller which must adapt to
a controlled system with parameters which vary, or are initially uncertain. For
example, as an aircraft flies, its mass will slowly decrease as a result of fuel
consumption.
Classification of adaptive control techniques
1.Direct Method:
2.Indirect Method:
3.Hybrid method
Estimate the controller parameters
Estimate the system parameters
‫هي‬
‫طريقة‬
‫التحكم‬
‫المستخدمة‬
‫من‬
‫قبل‬
‫المسيطرة‬
‫والتي‬
‫يجب‬
‫أن‬
‫تتكيف‬
‫لنظام‬
‫متغ‬
‫ير‬
‫المعامالت‬
‫أو‬
‫غير‬
‫مؤكدة‬
‫في‬
‫البداية‬
.
‫على‬
‫سبيل‬
‫المثال‬
،
‫عندما‬
‫تطير‬
‫طائرة‬
‫ستنخفض‬
‫كتلتها‬
‫ببطء‬
‫نتيجة‬
‫الستهالك‬
‫الوقود‬
.
‫التكيفي‬ ‫التحكم‬
4
2.System dynamics experience unpredictable parameter variations
as the control operation goes on
1.Systems to be controlled have parameter uncertainty
Why Adaptive Control ?
Examples
1.Robot manipulation
2.Ship steering
3.Aircraft control
1
.
‫متغيرة‬ ‫معامالت‬ ‫لديها‬ ‫عليها‬ ‫السيطرة‬ ‫يجب‬ ‫التي‬ ‫النظم‬
2
.
‫يمك‬ ‫ال‬ ‫التي‬ ‫المعامالت‬ ‫لتغيرات‬ ‫تتغير‬ ‫النظام‬ ‫استجابة‬
‫التنبؤ‬ ‫ن‬
‫التحكم‬ ‫عملية‬ ‫الستمرار‬ ‫بها‬
‫التكيفي‬ ‫التحكم‬ ‫لماذا‬
5
Fig.1 Block diagram of MRAC
Goal :Is to design a controller so that our process track the reference model
An adaptive controller is a controller with adjustable parameters and a
mechanism of adjusting the parameters
MRAC
‫لض‬ ‫وآلية‬ ‫للتعديل‬ ‫قابلة‬ ‫معامالت‬ ‫ذات‬ ‫تحكم‬ ‫وحدة‬ ‫هي‬ ‫التكيفية‬ ‫التحكم‬ ‫وحدة‬
‫بط‬
‫المعامالت‬
‫التكيفي‬ ‫التحكم‬ ‫نموذج‬ ‫مرجع‬
6
Adjustment of system parameters in a MRAC can be
obtained in two ways.
GRADIENT METHOD (MIT RULE)
LYPNOV STABILITY THEORY
MRAC IS COMPOSED OF
 Plant containing unknown parameters
 Reference model
 Adjustable parameters containing control law
 Ordinary feed back loop
m
y
y
e 

Tracking error:
Introduce the cost function J:   2
2
1
e
J 

Where θ is a vector of controller parameters. Change the parameters in the
direction of the negative gradient of e2.
7
Fig.2 :
1.MIT RULE













e
e
J
dt
d


e is called the sensitivity derivative. It indicates how the error is
influenced by the adjustable parameters θ.
Example 1:
Process: bu
y
a
dt
dy



Model: c
m
m
m
m
u
b
y
a
dt
dy



Controller: y
u
u c 2
1 
 

Closed loop system:
    c
c u
b
y
b
a
y
u
b
ay
bu
y
a
dt
dy
1
2
2
1 


 










Define the MIT Rule
8
Ideal controller parameters for perfect model-following
b
a
a
b
b m
m 

 0
2
0
1 ; 

Derivation of adaptive law
Error: m
y
y
e 

where
c
u
b
a
s
b
y
2
1





 
  c
c
u
b
y
b
a
s
u
b
sy
b
a
y
s
1
2
1
2











Sensitivity derivatives
c
u
b
a
s
b
e
2
1 
 




 
y
b
a
s
b
u
b
a
s
b
e
c
2
2
2
1
2
2 


 









c
m
m
c
m
m
u
b
y
a
u
b
b
b
y
b
a
a
b
a
dt
dy

















 



y
s
dt
dy

9
Approximate    
m
a
s
b
a
s 


 2

where
e
u
a
s
a
s
e
u
a
s
b
t
c
m
m
c
m














 















 



1
1
e
y
a
s
a
s
e
y
a
s
b
t m
m
m






























 



2
2
m
a
b




10
11
Fig.3
12
Example 2:
Let the second order system be described by
13
14
Applying the MIT rule, the update rules for each Theta was written. The block
diagram for the system with the derived controller is shown on Figure 4.
Fig. 4: MRAC system with MIT-Rule
uc
15
The MIT rule is applied to the second order system. The simulation model is
shown in Figure 5.
Fig. 5: Simulink diagram of Model Reference Adaptive Controller with MIT rule.
16
The time response characteristics for the plant and the reference model are
shown in Figure 6.
Figure 6. Time response with θ1 and θ2 for MIT rule.
17
18
Fig. 8. Output error (y-ym) for MIT
19 2.LYPNOV STABILITY THEORY
The Lyapunov stability method is an important class of adaptive control. This method
attempts to find the Lyapunov function and an adaptation mechanism in such a way that
the error between plant and model goes to zero
Fig. 9 Block diagram model reference adaptive control for lyapunov rule
20 Considering, 2nd order Reference Model
And a 2nd order Plant Model:
By subtracting the equation (1) from equation (2), we get,
21 Replacing in equation (5) from equation (3), we get, u
Integrating equation (9) with respect to t, we get,
22
Let the Lyapunov function for the error dynamics,
This function is zero when e is zero and the controller parameters are equal to the correct
values.
For a valid Lyapunov function, time derivative of lyapunov function must be negative.
The derivative is given by e
23
24
Fig.10 Structure Diagram of MRAC for Lyapunov Rule.
r
25
The lyapunove rule is applied to the second order system. The simulation
model is shown in Figure 11.
Fig. 11: Simulink diagram of Model Reference Adaptive Controller
with lyapunove rule.
26 The time response characteristics for the plant and the reference model are shown
in Figure 12.
Figure 12. Time response with θ1 and θ2 for Lyapunov rule.
27
28
Fig. 14 Output error (y-ym) for Lyapunov rule
29
30
Fig. 16 Output error (y-ym) for MIT and Lyapunov rule
31
Rule
Peak Time
(second)
Maximum
Overshoot
(%)
Settling
Time
(second)
θ1 θ2
Lyapunov 1.2 0 0 3.8 0.71 -0.28
MIT Rule 1.2 0 0 4 0.81 -0.18
TABLE I
Time Response Specifications with Lyapunove and MIT for Different
Adaptation Gain.

More Related Content

PDF
Model Reference Adaptation Systems (MRAS)
Mohamed Mohamed El-Sayed
 
PDF
Gain Scheduling (GS)
Mohamed Mohamed El-Sayed
 
PDF
Ch1 introduction to control
Elaf A.Saeed
 
PPT
Chapter 8 Root Locus Techniques
guesta0c38c3
 
PPTX
Control System Design
Hitesh Sharma
 
PDF
Analysis and Design of PID controller with control parameters in MATLAB and S...
MIbrar4
 
PPTX
Types of nonlinearities
nida unapprochablestair
 
PPTX
UNIT 1 CSE NEW.PPTX
BalajiDhanabal
 
Model Reference Adaptation Systems (MRAS)
Mohamed Mohamed El-Sayed
 
Gain Scheduling (GS)
Mohamed Mohamed El-Sayed
 
Ch1 introduction to control
Elaf A.Saeed
 
Chapter 8 Root Locus Techniques
guesta0c38c3
 
Control System Design
Hitesh Sharma
 
Analysis and Design of PID controller with control parameters in MATLAB and S...
MIbrar4
 
Types of nonlinearities
nida unapprochablestair
 
UNIT 1 CSE NEW.PPTX
BalajiDhanabal
 

What's hot (20)

PPT
Chapter 7 1
Kiya Alemayehu
 
PDF
Class 32 performance criteria for tuning controllers
Manipal Institute of Technology
 
PDF
Dcs lec01 - introduction to discrete-time control systems
Amr E. Mohamed
 
PPTX
Pole Placement in Digital Control
Mahesh Vadhavaniya profmjv
 
PPTX
Lecture 8-9 block-diagram_representation_of_control_systems
Saifullah Memon
 
PDF
Class 15 control action and controllers
Manipal Institute of Technology
 
PPTX
Lag lead compensator design in frequency domain 7th lecture
Khalaf Gaeid Alshammery
 
PDF
6. steady state error
shurjeel amjad
 
PPT
State space analysis, eign values and eign vectors
Shilpa Shukla
 
PPTX
Ppt on control system
ABDULRAHMANALGHANIM
 
PPTX
Introduction to control system 2
turna67
 
PDF
Class 33 advanced control strategies - cascade control
Manipal Institute of Technology
 
PDF
Digital control systems
avenkatram
 
PDF
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Amr E. Mohamed
 
PDF
Ch5 transient and steady state response analyses(control)
Elaf A.Saeed
 
PDF
Stability Analysis in Time Domain using Routh - Hurwitz Criterion
International Institute of Information Technology (I²IT)
 
PPTX
Root locus method
Ravi Patel
 
PPTX
RH CRITERIA
ramola007
 
PPTX
PLC LADDER DIAGRAM
Shruti Bhatnagar Dasgupta
 
PPTX
Control system
Ashvani Shukla
 
Chapter 7 1
Kiya Alemayehu
 
Class 32 performance criteria for tuning controllers
Manipal Institute of Technology
 
Dcs lec01 - introduction to discrete-time control systems
Amr E. Mohamed
 
Pole Placement in Digital Control
Mahesh Vadhavaniya profmjv
 
Lecture 8-9 block-diagram_representation_of_control_systems
Saifullah Memon
 
Class 15 control action and controllers
Manipal Institute of Technology
 
Lag lead compensator design in frequency domain 7th lecture
Khalaf Gaeid Alshammery
 
6. steady state error
shurjeel amjad
 
State space analysis, eign values and eign vectors
Shilpa Shukla
 
Ppt on control system
ABDULRAHMANALGHANIM
 
Introduction to control system 2
turna67
 
Class 33 advanced control strategies - cascade control
Manipal Institute of Technology
 
Digital control systems
avenkatram
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Amr E. Mohamed
 
Ch5 transient and steady state response analyses(control)
Elaf A.Saeed
 
Stability Analysis in Time Domain using Routh - Hurwitz Criterion
International Institute of Information Technology (I²IT)
 
Root locus method
Ravi Patel
 
RH CRITERIA
ramola007
 
PLC LADDER DIAGRAM
Shruti Bhatnagar Dasgupta
 
Control system
Ashvani Shukla
 
Ad

Similar to Model Reference Adaptive Control.ppt (20)

PDF
control adaptive and nonlinear
Moufid Bouhentala
 
PDF
17 swarnkarpankaj 154-162
Alexander Decker
 
PPTX
K10854 Adaptive simulation
Shraddhey Bhandari
 
PPT
Msc lecture07
9495547111
 
PDF
Saturated Switching Systems 1st Edition Abdellah Benzaouia Auth
miarapavuk2g
 
PDF
Iaetsd modelling and controller design of cart inverted pendulum system using...
Iaetsd Iaetsd
 
PPT
1 mrac for inverted pendulum
nazir1988
 
PDF
Decentralized supervisory based switching control for uncertain multivariable...
ISA Interchange
 
PDF
Design and Implementation of Model Reference Adaptive Controller using Coeffi...
IOSR Journals
 
PPTX
A Fuzzy-based Modified Gain Adaptive Scheme for Model Reference Adaptive Control
arabindakumarpal
 
PDF
Am06 complete 16-sep06
Nemo Pham
 
PDF
Download full ebook of Adaptive Control Kwanho You instant download pdf
tezembladis92
 
PDF
Predictive Control for Linear and Hybrid Systems 1st Edition Francesco Borrelli
gaddideeja
 
PPTX
some adaptive control schemes implementations using matlab
Laila Gharib
 
PDF
Robust and Optimal Control
CHIH-PEI WEN
 
PPTX
pc-lec4.pptx pid controller presentation
suveshbansal404
 
PDF
Optimal control systems
Mohamed Mohamed El-Sayed
 
PDF
Modern Antiwindup Synthesis Control Augmentation For Actuator Saturation Cour...
murachbacker
 
PDF
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
hirokazutanaka
 
control adaptive and nonlinear
Moufid Bouhentala
 
17 swarnkarpankaj 154-162
Alexander Decker
 
K10854 Adaptive simulation
Shraddhey Bhandari
 
Msc lecture07
9495547111
 
Saturated Switching Systems 1st Edition Abdellah Benzaouia Auth
miarapavuk2g
 
Iaetsd modelling and controller design of cart inverted pendulum system using...
Iaetsd Iaetsd
 
1 mrac for inverted pendulum
nazir1988
 
Decentralized supervisory based switching control for uncertain multivariable...
ISA Interchange
 
Design and Implementation of Model Reference Adaptive Controller using Coeffi...
IOSR Journals
 
A Fuzzy-based Modified Gain Adaptive Scheme for Model Reference Adaptive Control
arabindakumarpal
 
Am06 complete 16-sep06
Nemo Pham
 
Download full ebook of Adaptive Control Kwanho You instant download pdf
tezembladis92
 
Predictive Control for Linear and Hybrid Systems 1st Edition Francesco Borrelli
gaddideeja
 
some adaptive control schemes implementations using matlab
Laila Gharib
 
Robust and Optimal Control
CHIH-PEI WEN
 
pc-lec4.pptx pid controller presentation
suveshbansal404
 
Optimal control systems
Mohamed Mohamed El-Sayed
 
Modern Antiwindup Synthesis Control Augmentation For Actuator Saturation Cour...
murachbacker
 
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
hirokazutanaka
 
Ad

Recently uploaded (20)

PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PDF
Zero Carbon Building Performance standard
BassemOsman1
 
PDF
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
PPTX
easa module 3 funtamental electronics.pptx
tryanothert7
 
PPTX
Inventory management chapter in automation and robotics.
atisht0104
 
PDF
Introduction to Data Science: data science process
ShivarkarSandip
 
PPTX
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
PDF
LEAP-1B presedntation xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
hatem173148
 
PDF
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
PDF
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
PPT
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
PDF
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
PDF
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
PDF
Zero carbon Building Design Guidelines V4
BassemOsman1
 
PDF
Software Testing Tools - names and explanation
shruti533256
 
PPTX
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
PDF
July 2025: Top 10 Read Articles Advanced Information Technology
ijait
 
PPT
SCOPE_~1- technology of green house and poyhouse
bala464780
 
PDF
JUAL EFIX C5 IMU GNSS GEODETIC PERFECT BASE OR ROVER
Budi Minds
 
PPTX
Tunnel Ventilation System in Kanpur Metro
220105053
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
Zero Carbon Building Performance standard
BassemOsman1
 
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
easa module 3 funtamental electronics.pptx
tryanothert7
 
Inventory management chapter in automation and robotics.
atisht0104
 
Introduction to Data Science: data science process
ShivarkarSandip
 
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
LEAP-1B presedntation xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
hatem173148
 
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
Zero carbon Building Design Guidelines V4
BassemOsman1
 
Software Testing Tools - names and explanation
shruti533256
 
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
July 2025: Top 10 Read Articles Advanced Information Technology
ijait
 
SCOPE_~1- technology of green house and poyhouse
bala464780
 
JUAL EFIX C5 IMU GNSS GEODETIC PERFECT BASE OR ROVER
Budi Minds
 
Tunnel Ventilation System in Kanpur Metro
220105053
 

Model Reference Adaptive Control.ppt

  • 1. INTRODUCTION TO ADAPTIVE CONTROL BY Mohammed Nawfal Sheet Hussien Hani Nayef Muhammad Yasir Adel Supervised by Abdullah I. Abdullah Ali K. Mahmoud 1
  • 2. Contents  Adaptive Control  Why Adaptive Control ?  MRAC  MIT Rule  Design Example  Lyapunove Rule  Design example 2
  • 3. 3 Adaptive Control Adaptive control is the control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain. For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consumption. Classification of adaptive control techniques 1.Direct Method: 2.Indirect Method: 3.Hybrid method Estimate the controller parameters Estimate the system parameters ‫هي‬ ‫طريقة‬ ‫التحكم‬ ‫المستخدمة‬ ‫من‬ ‫قبل‬ ‫المسيطرة‬ ‫والتي‬ ‫يجب‬ ‫أن‬ ‫تتكيف‬ ‫لنظام‬ ‫متغ‬ ‫ير‬ ‫المعامالت‬ ‫أو‬ ‫غير‬ ‫مؤكدة‬ ‫في‬ ‫البداية‬ . ‫على‬ ‫سبيل‬ ‫المثال‬ ، ‫عندما‬ ‫تطير‬ ‫طائرة‬ ‫ستنخفض‬ ‫كتلتها‬ ‫ببطء‬ ‫نتيجة‬ ‫الستهالك‬ ‫الوقود‬ . ‫التكيفي‬ ‫التحكم‬
  • 4. 4 2.System dynamics experience unpredictable parameter variations as the control operation goes on 1.Systems to be controlled have parameter uncertainty Why Adaptive Control ? Examples 1.Robot manipulation 2.Ship steering 3.Aircraft control 1 . ‫متغيرة‬ ‫معامالت‬ ‫لديها‬ ‫عليها‬ ‫السيطرة‬ ‫يجب‬ ‫التي‬ ‫النظم‬ 2 . ‫يمك‬ ‫ال‬ ‫التي‬ ‫المعامالت‬ ‫لتغيرات‬ ‫تتغير‬ ‫النظام‬ ‫استجابة‬ ‫التنبؤ‬ ‫ن‬ ‫التحكم‬ ‫عملية‬ ‫الستمرار‬ ‫بها‬ ‫التكيفي‬ ‫التحكم‬ ‫لماذا‬
  • 5. 5 Fig.1 Block diagram of MRAC Goal :Is to design a controller so that our process track the reference model An adaptive controller is a controller with adjustable parameters and a mechanism of adjusting the parameters MRAC ‫لض‬ ‫وآلية‬ ‫للتعديل‬ ‫قابلة‬ ‫معامالت‬ ‫ذات‬ ‫تحكم‬ ‫وحدة‬ ‫هي‬ ‫التكيفية‬ ‫التحكم‬ ‫وحدة‬ ‫بط‬ ‫المعامالت‬ ‫التكيفي‬ ‫التحكم‬ ‫نموذج‬ ‫مرجع‬
  • 6. 6 Adjustment of system parameters in a MRAC can be obtained in two ways. GRADIENT METHOD (MIT RULE) LYPNOV STABILITY THEORY MRAC IS COMPOSED OF  Plant containing unknown parameters  Reference model  Adjustable parameters containing control law  Ordinary feed back loop
  • 7. m y y e   Tracking error: Introduce the cost function J:   2 2 1 e J   Where θ is a vector of controller parameters. Change the parameters in the direction of the negative gradient of e2. 7 Fig.2 : 1.MIT RULE
  • 8.              e e J dt d   e is called the sensitivity derivative. It indicates how the error is influenced by the adjustable parameters θ. Example 1: Process: bu y a dt dy    Model: c m m m m u b y a dt dy    Controller: y u u c 2 1     Closed loop system:     c c u b y b a y u b ay bu y a dt dy 1 2 2 1                Define the MIT Rule 8
  • 9. Ideal controller parameters for perfect model-following b a a b b m m    0 2 0 1 ;   Derivation of adaptive law Error: m y y e   where c u b a s b y 2 1          c c u b y b a s u b sy b a y s 1 2 1 2            Sensitivity derivatives c u b a s b e 2 1          y b a s b u b a s b e c 2 2 2 1 2 2               c m m c m m u b y a u b b b y b a a b a dt dy                       y s dt dy  9
  • 10. Approximate     m a s b a s     2  where e u a s a s e u a s b t c m m c m                                     1 1 e y a s a s e y a s b t m m m                                    2 2 m a b     10
  • 12. 12 Example 2: Let the second order system be described by
  • 13. 13
  • 14. 14 Applying the MIT rule, the update rules for each Theta was written. The block diagram for the system with the derived controller is shown on Figure 4. Fig. 4: MRAC system with MIT-Rule uc
  • 15. 15 The MIT rule is applied to the second order system. The simulation model is shown in Figure 5. Fig. 5: Simulink diagram of Model Reference Adaptive Controller with MIT rule.
  • 16. 16 The time response characteristics for the plant and the reference model are shown in Figure 6. Figure 6. Time response with θ1 and θ2 for MIT rule.
  • 17. 17
  • 18. 18 Fig. 8. Output error (y-ym) for MIT
  • 19. 19 2.LYPNOV STABILITY THEORY The Lyapunov stability method is an important class of adaptive control. This method attempts to find the Lyapunov function and an adaptation mechanism in such a way that the error between plant and model goes to zero Fig. 9 Block diagram model reference adaptive control for lyapunov rule
  • 20. 20 Considering, 2nd order Reference Model And a 2nd order Plant Model: By subtracting the equation (1) from equation (2), we get,
  • 21. 21 Replacing in equation (5) from equation (3), we get, u Integrating equation (9) with respect to t, we get,
  • 22. 22 Let the Lyapunov function for the error dynamics, This function is zero when e is zero and the controller parameters are equal to the correct values. For a valid Lyapunov function, time derivative of lyapunov function must be negative. The derivative is given by e
  • 23. 23
  • 24. 24 Fig.10 Structure Diagram of MRAC for Lyapunov Rule. r
  • 25. 25 The lyapunove rule is applied to the second order system. The simulation model is shown in Figure 11. Fig. 11: Simulink diagram of Model Reference Adaptive Controller with lyapunove rule.
  • 26. 26 The time response characteristics for the plant and the reference model are shown in Figure 12. Figure 12. Time response with θ1 and θ2 for Lyapunov rule.
  • 27. 27
  • 28. 28 Fig. 14 Output error (y-ym) for Lyapunov rule
  • 29. 29
  • 30. 30 Fig. 16 Output error (y-ym) for MIT and Lyapunov rule
  • 31. 31 Rule Peak Time (second) Maximum Overshoot (%) Settling Time (second) θ1 θ2 Lyapunov 1.2 0 0 3.8 0.71 -0.28 MIT Rule 1.2 0 0 4 0.81 -0.18 TABLE I Time Response Specifications with Lyapunove and MIT for Different Adaptation Gain.