SlideShare a Scribd company logo
Sarang Shravagi
Python Developer,ScaleArc
@_sarangs
Let’s Know Each Other
• Why are you attending?
• Do you code?
• OS?
• Programing Language?
• JSON?
• MongoDB?
Agenda
• SQL and NoSQL Database
• What is MongoDB?
• Hands-On and Assignment
• Design Models
• MongoDB Language Driver
• Disaster Recovery
• Handling BigData
Data Patterns & Storage Needs
• Product Information
• User Information
• Purchase Information
• Product Reviews
• Site Interactions
• Social Graph
• Search Index
SQL to NoSQL
Design Paradigm Shift
Database Evolution
SQL Storage
• Was designed when
– Storage and data transfer was costly
– Processing was slow
– Applications were oriented more towards data collection
• Initial adopters were financial institutions
SQL Storage
• Structured
– schema
• Relational
– foreign keys, constraints
• Transactional
– Atomicity, Consistency, Isolation, Durability
• High Availability through robustness
– Minimize failures
• Optimized for Writes
• Typically Scale Up
NoSQL Storage
• Is designed when
– Storage is cheap
– Data transfer is fast
– Much more processing power is available
• Clustering of machines is also possible
– Applications are oriented towards consumption of User
Generated Content
– Better on-screen user experience is in demand
NoSQL Storage
• Semi-structured
– Schemaless
• Consistency,Availability, Partition Tolerance
• High Availability through clustering
– expect failures
• Optimized for Reads
• Typically Scale Out
Different Databases
Half Level Deep
SQL: RDBMS
• MySql, Postgresql, Oracle etc.
• Stores data in tables having columns
– Basic (number, text) data types
• Strong query language
• Transparent values
– Query language can read and filter on them
– Relationship between tables based on values
• Suited for user info and transactions
NoSQL Data Model
NoSQL: Key/Value
NoSQL: Document
• MongoDB, CouchDB etc.
• Object Oriented data models
– Stores data in document objects having fields
– Basic and compound (list, dict) data types
• SQL like queries
• Transparent values
– Can be part of query
• Suited for product info and its reviews
NoSQL: Document
NoSQL: Column Family
• Cassandra, Big Table etc.
• Stores data in columns
• Transparent values
– Can be part of query
• SQL like queries
• Suited for search
NoSQL: Graph
• Neo4j
• Stores data in form of nodes and relationships
• Query is in form of traversal
• In-memory
• Suited for social graph
NoSQL: Graph
What is MongoDB?
MongoDB is a ___________
database
1. Document
2. Open source
3. High performance
4. Horizontally scalable
5. Full featured
1. Document Database
• Not for .PDF & .DOC files
• Adocument is essentially an associative array
• Document = JSON object
• Document = PHPArray
• Document = Python Dict
• Document = Ruby Hash
• etc
Database Landscape
2. Open Source
• MongoDB is an open source project
• On GitHub
• Licensed under theAGPL
• Started & sponsored by MongoDB Inc (formerly
known as 10gen)
• Commercial licenses available
• Contributions welcome
7,000,000+
MongoDB Downloads
150,000+
Online Education Registrants
35,000+
MongoDB Management Service (MMS) Users
30,000+
MongoDB User Group Members
20,000+
MongoDB DaysAttendees
Global Community
3. High Performance
• Written in C++
• Extensive use of memory-mapped files
i.e. read-through write-through memory caching.
• Runs nearly everywhere
• Data serialized as BSON (fast parsing)
• Full support for primary & secondary indexes
• Document model = less work
Better Data
Locality
Performance
In-Memory
Caching
In-Place
Updates
4. Scalability
Auto-Sharding
• Increase capacity as you go
• Commodity and cloud architectures
• Improved operational simplicity and cost visibility
High Availability
• Automated replication and failover
• Multi-data center support
• Improved operational simplicity (e.g., HW swaps)
• Data durability and consistency
Scalability: MongoDB Architecture
5. Full Featured
• Ad Hoc queries
• Real time aggregation
• Rich query capabilities
• Strongly consistent
• Geospatial features
• Support for most programming languages
• Flexible schema
MongoDB is Fully Featured
MongoDB Architecture
Terminology
Do More With Your Data
MongoDB
Rich Queries
• Find Paul’s cars
• Find everybody in London with a car
built between 1970 and 1980
Geospatial
• Find all of the car owners within 5km of
Trafalgar Sq.
Text Search
• Find all the cars described as having
leather seats
Aggregation
• Calculate the average value of Paul’s
car collection
Map Reduce
• What is the ownership pattern of colors
by geography over time? (is purple
trending up in China?)
{
first_name: ‘Paul’,
surname: ‘Miller’,
city: ‘London’,
location: [45.123,47.232],
cars: [
{ model: ‘Bentley’,
year: 1973,
value: 100000, … },
{ model: ‘Rolls Royce’,
year: 1965,
value: 330000, … }
}
}
Hands-On & Assignment
mongodb.org/downloads
$ tar –zxvf mongodb-osx-x86_64-2.6.0.tgz
$ cd mongodb-osx-i386-2.6.0/bin
$ mkdir –p /data/db
$ ./mongod
Running MongoDB
MongoDB: Core Binaries
• mongod
– Database server
• mongo
– Database client shell
• mongos
– Router for Sharding
Getting Help
• For mongo shell
– mongo –help
• Shows options available for running the shell
• Inside mongo shell
– db.help()
• Shows commands available on the object
Database Operations
• Database creation
• Creating/changing collection
• Data insertion
• Data read
• Data update
• Creating indices
• Data deletion
• Dropping collection
MacBook-Pro-:~ $ mongo
MongoDB shell version: 2.6.0
connecting to: test
> db.cms.insert({text: 'Welcome to MongoDB'})
> db.cms.find().pretty()
{
"_id" : ObjectId("51c34130fbd5d7261b4cdb55"),
"text" : "Welcome to MongoDB"
}
Mongo Shell
Diagnostic Tools
• mongostat
• mongoperf
• mongosnif
• mongotop
Import Export Tools
• For objects
– mongodump
– mongorestore
– bsondump
– mongooplog
• For data items
– mongoimport
– mongoexport
Assignment
• Tasks
– assignments.txt
• Data
– students.json
Questions?
Sarang Shravagi
@_sarangs
Thank You
Design Models
First step in any application is
Determine your entities
Entities in our Blogging System
• Users (post authors)
• Article
• Comments
• Tags, Category
• Interactions (views, clicks)
In a relational base app
We would start by doing schema
design
Typical (relational) ERD
In a MongoDB based app
We start building our app
and let the schema evolve
MongoDB ERD
Seek = 5+ ms Read = really really fast
Post
Author
Comment
Disk seeks and data locality
Post
Author
Comment
Comment
Comment
Comment
Comment
Disk seeks and data locality
MongoDB Language Driver
Real applications are not
built in the shell
MongoDB has native
bindings for over 12
languages
Drivers & Ecosystem
Drivers
Support for the most popular
languages and frameworks
Frameworks
Morphia
MEAN Stack
Java
Python
Perl
Ruby
Working With MongoDB
# Python dictionary (or object)
>>> article = { ‘title’ : ‘Schema design in MongoDB’,
‘author’ : ‘sarangs’,
‘section’ : ‘schema’,
‘slug’ : ‘schema-design-in-mongodb’,
‘text’ : ‘Data in MongoDB has a flexible schema.
So, 2 documents needn’t have same structure.
It allows implicit schema to evolve.’,
‘date’ : datetime.utcnow(),
‘tags’ : [‘MongoDB’, ‘schema’] }
>>> db[‘articles’].insert(article)
Design schema.. In application code
>>> img_data = Binary(open(‘article_img.jpg’).read())
>>> article = { ‘title’ : ‘Schema evolutionin MongoDB’,
‘author’ : ‘mattbates’,
‘section’ : ‘schema’,
‘slug’ : ‘schema-evolution-in-mongodb’,
‘text’ : ‘MongoDb has dynamic schema. For good
performance, you would need an implicit
structure and indexes’,
‘date’ : datetime.utcnow(),
‘tags’ : [‘MongoDB’, ‘schema’, ‘migration’],
‘headline_img’ : {
‘img’ : img_data,
‘caption’ : ‘A sample document at the shell’
}}
Let’s add a headline image
>>> article = { ‘title’ : ‘Favourite web application framework’,
‘author’ : ‘sarangs’,
‘section’ : ‘web-dev’,
‘slug’ : ‘web-app-frameworks’,
‘gallery’ : [
{ ‘img_url’ : ‘http://x.com/45rty’, ‘caption’ : ‘Flask’, ..},
..
]
‘date’ : datetime.utcnow(),
‘tags’ : [‘Python’, ‘web’],
}
>>> db[‘articles’].insert(article)
And different types of article
>>> user = {
'user' : 'sarangs',
'email' : ‘sarang.shravagi@gmail.com',
'password' : ‘sarang',
'joined' : datetime.utcnow(),
'location' : { 'city' : 'Mumbai' },
}
} >>> db[‘users’].insert(user)
Users and profiles
Modelling comments (1)
• Two collections – articles and comments
• Use a reference (i.e. foreign key) to link together
• But.. N+1 queries to retrieve article and comments
{
‘_id’: ObjectId(..),
‘title’: ‘Schema design in MongoDB’,
‘author’: ‘mattbates’,
‘date’: ISODate(..),
‘tags’: [‘MongoDB’, ‘schema’],
‘section’: ‘schema’,
‘slug’: ‘schema-design-in-mongodb’,
‘comments’: [ ObjectId(..),…]
}
{ ‘_id’: ObjectId(..),
‘article_id’: 1,
‘text’: ‘Agreat article, helped me
understand schema design’,
‘date’: ISODate(..),,
‘author’: ‘johnsmith’
}
Modelling comments (2)
• Single articles collection –
embed comments in article
documents
• Pros
• Single query, document
designed for the access pattern
• Locality (disk, shard)
• Cons
• Comments array is unbounded;
documents will grow in size
(remember 16MB document
limit)
{
‘_id’: ObjectId(..),
‘title’: ‘Schema design in MongoDB’,
‘author’: ‘mattbates’,
‘date’: ISODate(..),
‘tags’: [‘MongoDB’, ‘schema’],
…
‘comments’: [
{
‘text’: ‘Agreat article,
helped me
understandschema design’,
‘date’: ISODate(..),
‘author’: ‘johnsmith’
},
…
]
}
Modelling comments (3)
• Another option: hybrid of (2) and (3), embed
top x comments (e.g. by date, popularity) into
the article document
• Fixed-size (2.4 feature) comments array
• All other comments ‘overflow’ into a comments
collection (double write) in buckets
• Pros
– Document size is more fixed – fewer moves
– Single query built
– Full comment history with rich query/aggregation
Modelling comments (3)
{
‘_id’: ObjectId(..),
‘title’: ‘Schemadesignin MongoDB’,
‘author’: ‘mattbates’,
‘date’: ISODate(..),
‘tags’:[‘MongoDB’, ‘schema’],
…
‘comments_count’: 45,
‘comments_pages’: 1
‘comments’: [
{
‘text’: ‘Agreat article, helped me
understandschema design’,
‘date’: ISODate(..),
‘author’: ‘johnsmith’
},
…
]
}
Total number of comments
• Integer counter updated by
update operation as
comments added/removed
Number of pages
• Page is a bucket of 100
comments (see next slide..)
Fixed-size comments array
• 10 most recent
• Sorted by date on insertion
Modelling comments (3)
{
‘_id’: ObjectId(..),
‘article_id’: ObjectId(..),
‘page’: 1,
‘count’: 42
‘comments’: [
{
‘text’: ‘Agreat article, helped me
understand schema design’,
‘date’: ISODate(..),
‘author’: ‘johnsmith’
},
…
}
One comment bucket
(page) document
containing up to about 100
comments
Array of 100 comment sub-
documents
Modelling interactions
• Interactions
– Article views
– Comments
– (Social media sharing)
• Requirements
– Time series
– Pre-aggregated in preparation for analytics
Modelling interactions
• Document per article per day –
‘bucketing’
• Daily counter and hourly sub-
document counters for
interactions
• Bounded array (24 hours)
• Single query to retrieve daily
article interactions; ready-made
for graphing and further
aggregation
{
‘_id’: ObjectId(..),
‘article_id’: ObjectId(..),
‘section’: ‘schema’,
‘date’: ISODate(..),
‘daily’: { ‘views’: 45, ‘comments’:
150 }
‘hours’: {
0 : { ‘views’: 10 },
1 : { ‘views’: 2 },
…
23 : { ‘comments’: 14, ‘views’: 10
}
}
}
JSON and RESTful API
Client-side
JSON
(eg AngularJS, (BSON)
Real applications are not built at a shell – let’s build a RESTful
API.
Pymongo
driver
Python web
app
HTTP(S) REST
Examples to follow: Python RESTful API using Flask
microframework
myCMS REST endpoints
Method URI Action
GET /articles Retrieve all articles
GET /articles-by-tag/[tag] Retrieve all articles by tag
GET /articles/[article_id] Retrieve a specific article by article_id
POST /articles Add a new article
GET /articles/[article_id]/comments Retrieve all article comments by
article_id
POST /articles/[article_id]/comments Add a new comment to an article.
POST /users Register a user user
GET /users/[username] Retrieve user’s profile
PUT /users/[username] Update a user’s profile
$ git clone http://www.github.com/mattbates/mycms_mongodb
$ cd mycms-mongodb
$ virtualenv venv
$ source venv/bin/activate
$ pip install –r requirements.txt
$ mkdir –p data/db
$ mongod --dbpath=data/db --fork --logpath=mongod.log
$ python web.py
[$ deactivate]
Getting started with the skeleton
code
@app.route('/cms/api/v1.0/articles', methods=['GET'])
def get_articles():
"""Retrieves all articles in the collection
sorted by date
"""
# query all articles and return a cursor sorted by date
cur = db['articles'].find().sort('date’)
if not cur:
abort(400)
# iterate the cursor and add docs to a dict
articles = [article for article in cur]
return jsonify({'articles' : json.dumps(articles, default=json_util.default)})
RESTful API methods in Python +
Flask
@app.route('/cms/api/v1.0/articles/<string:article_id>/comments', methods = ['POST'])
def add_comment(article_id):
"""Adds a comment to the specified article and a
bucket, as well as updating a view counter
"””
…
page_id = article['last_comment_id'] // 100
…
# push the comment to the latest bucket and $inc the count
page = db['comments'].find_and_modify(
{ 'article_id' : ObjectId(article_id),
'page' : page_id},
{ '$inc' : { 'count' : 1 },
'$push' : {
'comments' : comment } },
fields= {'count' : 1},
upsert=True,
new=True)
RESTful API methods in Python +
Flask
# $inc the page count if bucket size (100) is exceeded
if page['count'] > 100:
db.articles.update(
{ '_id' : article_id,
'comments_pages': article['comments_pages'] },
{ '$inc': { 'comments_pages': 1 } } )
# let's also add to the article itself
# most recent 10 comments only
res = db['articles'].update(
{'_id' : ObjectId(article_id)},
{'$push' : {'comments' : { '$each' : [comment],
'$sort' : {’date' : 1 },
'$slice' : -10}},
'$inc' : {'comment_count' : 1}})
…
RESTful API methods in Python +
Flask
def add_interaction(article_id, type):
"""Record the interaction (view/comment) for the
specified article into the daily bucket and
update an hourly counter
"""
ts = datetime.datetime.utcnow()
# $inc daily and hourly view counters in day/article stats bucket
# note the unacknowledged w=0 write concern for performance
db['interactions'].update(
{ 'article_id' : ObjectId(article_id),
'date' : datetime.datetime(ts.year, ts.month, ts.day)},
{ '$inc' : {
'daily.{}’.format(type) : 1,
'hourly.{}.{}'.format(ts.hour, type) : 1
}},
upsert=True,
w=0)
RESTful API methods in Python +
Flask
$ curl -i http://localhost:5000/cms/api/v1.0/articles
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 335
Server: Werkzeug/0.9.4 Python/2.7.5
Date: Thu, 10 Apr 2014 16:00:51 GMT
{
"articles": "[{"title": "Schema design in MongoDB", "text": "Data in MongoDB
has a flexible schema..", "section": "schema", "author": "sarangs", "date":
{"$date": 1397145312505}, "_id": {"$oid": "5346bef5f2610c064a36a793"},
"slug": "schema-design-in-mongodb", "tags": ["MongoDB", "schema"]}]"}
Testing the API – retrieve articles
$ curl -H "Content-Type: application/json" -X POST -d '{"text":"An interesting
article and a great read."}'
http://localhost:5000/cms/api/v1.0/articles/52ed73a30bd031362b3c6bb3/comment
s
{
"comment": "{"date": {"$date": 1391639269724}, "text": "An interesting
article and a great read."}”
}
Testing the API – comment on an
article
Disaster Recovery
Introduction to Replica Sets and
High Availability
Disasters
• Physical Failure
– Hardware
– Network
• Solution
– Replica Sets
• Provide redundant storage for High Availability
– Real time data synchronization
• Automatic failover for zero down time
Replication
Multi Replication
• Data can be replicated to multiple places
simultaneously
• Odd number of machines are always needed in
a replica set
Single Replication
• If you want to have only one or odd number of
secondary, you need to setup an arbiter
Failover
• When primary fails, remaining machines vote
for electing new primary
Handling Big Data
Introduction to Map/Reduce
and Sharding
Large Data Sets
• Problem 1
– Performance
• Queries go slow
• Solution
– Map/Reduce
Aggregation
Map Reduce
• A way to divide large query computation into
smaller chunks
• May run in multiple processes across multiple
machines
• Think of it as GROUP BY of SQL
Map/Reduce Example
• Map function digs the data and returns required
values
Map/Reduce Example
• Reduce function uses the output of Map
function and generates aggregated value
Large Data Sets
• Problem 2
– Vertical Scaling of Hardware
• Can’t increase machine size beyond a limit
• Solution
– Sharding
Sharding
• Amethod for storing data across multiple machines
• Data is partitioned using Shard Keys
Data Partitioning: Range Based
• Arange of Shard Keys stay in a chunk
Data Partitioning: Hash Bsed
• Ahash function on Shard Keys decides the chunk
Sharded Cluster
Optimizing Shards: Splitting
• In a shard, when size of a chunk increases, the
chunk is divided into two
Optimizing Shards: Balancing
• When number of chunks in a shard increase, a
few chunks are migrated to other shard
Schema iteration
New feature in the backlog?
Documents have dynamic schema so we just iterate
the object schema.
>>> user = { ‘username’: ‘matt’,
‘first’ : ‘Matt’,
‘last’ : ‘Bates’,
‘preferences’: { ‘opt_out’: True } }
>>> user.save(user)
docs.mongodb.org
Online Training at MongoDB
University
For More Information
Resource Location
MongoDB Downloads mongodb.com/download
Free Online Training education.mongodb.com
Webinars and Events mongodb.com/events
White Papers mongodb.com/white-papers
Case Studies mongodb.com/customers
Presentations mongodb.com/presentations
Documentation docs.mongodb.org
Additional Info info@mongodb.com
Resource Location
We've introduced a lot of
concepts here
Schema Design @
Replication @
Indexing @
Sharding @
Questions?
Sarang Shravagi
@_sarangs
Thank You

More Related Content

What's hot (20)

PPTX
Introduction to MongoDB
NodeXperts
 
PPTX
Back to Basics Webinar 1: Introduction to NoSQL
MongoDB
 
PPTX
Introduction to MongoDB
MongoDB
 
PDF
Mongo DB
Edureka!
 
PPTX
Webinar: When to Use MongoDB
MongoDB
 
PPTX
High Performance Applications with MongoDB
MongoDB
 
PPTX
Back to Basics Webinar 1: Introduction to NoSQL
MongoDB
 
PPTX
MongoDB Schema Design by Examples
Hadi Ariawan
 
PPTX
Introducción a NoSQL
MongoDB
 
PPTX
[PASS Summit 2016] Azure DocumentDB: A Deep Dive into Advanced Features
Andrew Liu
 
KEY
MongoDB
Steven Francia
 
PDF
MongoDB and Schema Design
Matias Cascallares
 
PPTX
When to Use MongoDB
MongoDB
 
PPTX
MongoDB Schema Design: Practical Applications and Implications
MongoDB
 
PPTX
MongoDB 101
Abhijeet Vaikar
 
PPTX
Conceptos básicos. Seminario web 2: Su primera aplicación MongoDB
MongoDB
 
PPTX
A Presentation on MongoDB Introduction - Habilelabs
HabileLabs
 
KEY
Practical Ruby Projects With Mongo Db
Alex Sharp
 
KEY
OSCON 2012 MongoDB Tutorial
Steven Francia
 
PPTX
Agility and Scalability with MongoDB
MongoDB
 
Introduction to MongoDB
NodeXperts
 
Back to Basics Webinar 1: Introduction to NoSQL
MongoDB
 
Introduction to MongoDB
MongoDB
 
Mongo DB
Edureka!
 
Webinar: When to Use MongoDB
MongoDB
 
High Performance Applications with MongoDB
MongoDB
 
Back to Basics Webinar 1: Introduction to NoSQL
MongoDB
 
MongoDB Schema Design by Examples
Hadi Ariawan
 
Introducción a NoSQL
MongoDB
 
[PASS Summit 2016] Azure DocumentDB: A Deep Dive into Advanced Features
Andrew Liu
 
MongoDB and Schema Design
Matias Cascallares
 
When to Use MongoDB
MongoDB
 
MongoDB Schema Design: Practical Applications and Implications
MongoDB
 
MongoDB 101
Abhijeet Vaikar
 
Conceptos básicos. Seminario web 2: Su primera aplicación MongoDB
MongoDB
 
A Presentation on MongoDB Introduction - Habilelabs
HabileLabs
 
Practical Ruby Projects With Mongo Db
Alex Sharp
 
OSCON 2012 MongoDB Tutorial
Steven Francia
 
Agility and Scalability with MongoDB
MongoDB
 

Viewers also liked (20)

PPT
稻草雕塑
修毅 廖
 
PDF
How computers can help to share understanding with patients
eduardo guagliardi
 
PDF
What is health information
eduardo guagliardi
 
PDF
Referral or follow up
eduardo guagliardi
 
PDF
Deloitte flyer-highlights-companies-bills2013
Uma Krishna
 
PDF
How decision support tools help define clinical problems
eduardo guagliardi
 
PDF
How computers help make efficient...
eduardo guagliardi
 
PDF
Is a consultation...
eduardo guagliardi
 
PDF
Improving services with informatics tools
eduardo guagliardi
 
PDF
E health and the future, promise or peril
eduardo guagliardi
 
PDF
What is health information
eduardo guagliardi
 
PDF
Glossary of health informatics terms
eduardo guagliardi
 
PDF
Glossary of health informatics terms
eduardo guagliardi
 
PDF
Is a consultation...
eduardo guagliardi
 
PPS
霈€20撟湔 銝 霈€_€_閰巢(music)
winnie3360
 
PDF
Why is this patient here today
eduardo guagliardi
 
PDF
Improving services with informatics tools
eduardo guagliardi
 
PDF
Why is this patient here today?
eduardo guagliardi
 
PPT
петр первый типы речи
ink296
 
PPT
Health powerpoint
Islut
 
稻草雕塑
修毅 廖
 
How computers can help to share understanding with patients
eduardo guagliardi
 
What is health information
eduardo guagliardi
 
Referral or follow up
eduardo guagliardi
 
Deloitte flyer-highlights-companies-bills2013
Uma Krishna
 
How decision support tools help define clinical problems
eduardo guagliardi
 
How computers help make efficient...
eduardo guagliardi
 
Is a consultation...
eduardo guagliardi
 
Improving services with informatics tools
eduardo guagliardi
 
E health and the future, promise or peril
eduardo guagliardi
 
What is health information
eduardo guagliardi
 
Glossary of health informatics terms
eduardo guagliardi
 
Glossary of health informatics terms
eduardo guagliardi
 
Is a consultation...
eduardo guagliardi
 
霈€20撟湔 銝 霈€_€_閰巢(music)
winnie3360
 
Why is this patient here today
eduardo guagliardi
 
Improving services with informatics tools
eduardo guagliardi
 
Why is this patient here today?
eduardo guagliardi
 
петр первый типы речи
ink296
 
Health powerpoint
Islut
 
Ad

Similar to MongoDB Basics (20)

PDF
Mongo db eveningschemadesign
MongoDB APAC
 
PDF
MongoDB Introduction talk at Dr Dobbs Conference, MongoDB Evenings at Bangalo...
Prasoon Kumar
 
PPTX
MongoDB
Anthony Slabinck
 
PDF
10gen MongoDB Video Presentation at WebGeek DevCup
WebGeek Philippines
 
PDF
MongoDB and Ruby on Rails
rfischer20
 
PPTX
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
PPT
MongoDB Tick Data Presentation
MongoDB
 
PPTX
Building your First MEAN App
MongoDB
 
KEY
Introduction to MongoDB
Sean Laurent
 
PPTX
No SQL : Which way to go? Presented at DDDMelbourne 2015
Himanshu Desai
 
PPTX
NoSQL, which way to go?
Ahmed Elharouny
 
PDF
Building your first app with MongoDB
Norberto Leite
 
PPTX
Untangling - fall2017 - week 9
Derek Jacoby
 
PDF
Polyglot Persistence with MongoDB and Neo4j
Corie Pollock
 
PDF
Mongo db first steps with csharp
Serdar Buyuktemiz
 
PDF
Mongodb at-gilt-groupe-seattle-2012-09-14-final
MongoDB
 
PDF
Node.js
Matt Simonis
 
PDF
MongoDB at Gilt Groupe
MongoDB
 
KEY
MongoDB for Genealogy
Steven Francia
 
Mongo db eveningschemadesign
MongoDB APAC
 
MongoDB Introduction talk at Dr Dobbs Conference, MongoDB Evenings at Bangalo...
Prasoon Kumar
 
10gen MongoDB Video Presentation at WebGeek DevCup
WebGeek Philippines
 
MongoDB and Ruby on Rails
rfischer20
 
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
MongoDB Tick Data Presentation
MongoDB
 
Building your First MEAN App
MongoDB
 
Introduction to MongoDB
Sean Laurent
 
No SQL : Which way to go? Presented at DDDMelbourne 2015
Himanshu Desai
 
NoSQL, which way to go?
Ahmed Elharouny
 
Building your first app with MongoDB
Norberto Leite
 
Untangling - fall2017 - week 9
Derek Jacoby
 
Polyglot Persistence with MongoDB and Neo4j
Corie Pollock
 
Mongo db first steps with csharp
Serdar Buyuktemiz
 
Mongodb at-gilt-groupe-seattle-2012-09-14-final
MongoDB
 
Node.js
Matt Simonis
 
MongoDB at Gilt Groupe
MongoDB
 
MongoDB for Genealogy
Steven Francia
 
Ad

Recently uploaded (20)

PDF
Model Project Report_36DR_G&P.pdf for investors understanding
MeetAgrawal23
 
DOC
STABILITY INDICATING METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIM...
jmkeans624
 
DOCX
How Digital Marketplaces are Empowering Emerging MedTech Brands
Ram Gopal Varma
 
PDF
Performancesonore_verdun_EN.pdf
Pont Samuel-De Champlain Bridge
 
PDF
The Origin - A Simple Presentation on any project
RishabhDwivedi43
 
PPTX
Présentation Bruit Verdun - juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
 
PDF
From Draft to DSN - How to Get your Paper In [DSN 2025 Doctoral Forum Keynote]
vschiavoni
 
PPTX
2025-06-29 Abraham 05 (shared slides).pptx
Dale Wells
 
PPTX
Melbourne_Keynote_June_19_2013_without_photos.pptx
BryInfanteRayos
 
PDF
Jotform Presentation Agents: Features and Benefits
Jotform
 
PPTX
Great-Books. Powerpoint presentation. files
tamayocrisgie
 
PDF
Jotform Presentation Agents: Use Cases and Examples
Jotform
 
PPTX
INTRO-TO-EMPOWERMENT-TECHNOLGY grade 11 lesson
ReyAcosta8
 
PDF
Buy Verified Payoneer Accounts — The Ultimate Guide for 2025 (Rank #1 on Goog...
Buy Verified Cash App Accounts
 
PPTX
Lesson 1-3(Learners' copy).pptxucspctopi
KrizeAnneCorneja
 
PPTX
Unit 1, 2 & 3 - Pharmacognosy - Defn_history_scope.pptx
bagewadivarsha2024
 
PDF
Planning the parliament of the future in greece – considerations for a data-d...
Dr. Fotios Fitsilis
 
PPTX
Présentation Bruit Sud-Ouest- juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
 
PPTX
To Live Is For Christ 06 29 2025.pptx
FamilyWorshipCenterD
 
PDF
Performancesonore_sudouest_EN.pdf
Pont Samuel-De Champlain Bridge
 
Model Project Report_36DR_G&P.pdf for investors understanding
MeetAgrawal23
 
STABILITY INDICATING METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIM...
jmkeans624
 
How Digital Marketplaces are Empowering Emerging MedTech Brands
Ram Gopal Varma
 
Performancesonore_verdun_EN.pdf
Pont Samuel-De Champlain Bridge
 
The Origin - A Simple Presentation on any project
RishabhDwivedi43
 
Présentation Bruit Verdun - juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
 
From Draft to DSN - How to Get your Paper In [DSN 2025 Doctoral Forum Keynote]
vschiavoni
 
2025-06-29 Abraham 05 (shared slides).pptx
Dale Wells
 
Melbourne_Keynote_June_19_2013_without_photos.pptx
BryInfanteRayos
 
Jotform Presentation Agents: Features and Benefits
Jotform
 
Great-Books. Powerpoint presentation. files
tamayocrisgie
 
Jotform Presentation Agents: Use Cases and Examples
Jotform
 
INTRO-TO-EMPOWERMENT-TECHNOLGY grade 11 lesson
ReyAcosta8
 
Buy Verified Payoneer Accounts — The Ultimate Guide for 2025 (Rank #1 on Goog...
Buy Verified Cash App Accounts
 
Lesson 1-3(Learners' copy).pptxucspctopi
KrizeAnneCorneja
 
Unit 1, 2 & 3 - Pharmacognosy - Defn_history_scope.pptx
bagewadivarsha2024
 
Planning the parliament of the future in greece – considerations for a data-d...
Dr. Fotios Fitsilis
 
Présentation Bruit Sud-Ouest- juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
 
To Live Is For Christ 06 29 2025.pptx
FamilyWorshipCenterD
 
Performancesonore_sudouest_EN.pdf
Pont Samuel-De Champlain Bridge
 

MongoDB Basics

  • 2. Let’s Know Each Other • Why are you attending? • Do you code? • OS? • Programing Language? • JSON? • MongoDB?
  • 3. Agenda • SQL and NoSQL Database • What is MongoDB? • Hands-On and Assignment • Design Models • MongoDB Language Driver • Disaster Recovery • Handling BigData
  • 4. Data Patterns & Storage Needs • Product Information • User Information • Purchase Information • Product Reviews • Site Interactions • Social Graph • Search Index
  • 5. SQL to NoSQL Design Paradigm Shift
  • 7. SQL Storage • Was designed when – Storage and data transfer was costly – Processing was slow – Applications were oriented more towards data collection • Initial adopters were financial institutions
  • 8. SQL Storage • Structured – schema • Relational – foreign keys, constraints • Transactional – Atomicity, Consistency, Isolation, Durability • High Availability through robustness – Minimize failures • Optimized for Writes • Typically Scale Up
  • 9. NoSQL Storage • Is designed when – Storage is cheap – Data transfer is fast – Much more processing power is available • Clustering of machines is also possible – Applications are oriented towards consumption of User Generated Content – Better on-screen user experience is in demand
  • 10. NoSQL Storage • Semi-structured – Schemaless • Consistency,Availability, Partition Tolerance • High Availability through clustering – expect failures • Optimized for Reads • Typically Scale Out
  • 12. SQL: RDBMS • MySql, Postgresql, Oracle etc. • Stores data in tables having columns – Basic (number, text) data types • Strong query language • Transparent values – Query language can read and filter on them – Relationship between tables based on values • Suited for user info and transactions
  • 15. NoSQL: Document • MongoDB, CouchDB etc. • Object Oriented data models – Stores data in document objects having fields – Basic and compound (list, dict) data types • SQL like queries • Transparent values – Can be part of query • Suited for product info and its reviews
  • 17. NoSQL: Column Family • Cassandra, Big Table etc. • Stores data in columns • Transparent values – Can be part of query • SQL like queries • Suited for search
  • 18. NoSQL: Graph • Neo4j • Stores data in form of nodes and relationships • Query is in form of traversal • In-memory • Suited for social graph
  • 21. MongoDB is a ___________ database 1. Document 2. Open source 3. High performance 4. Horizontally scalable 5. Full featured
  • 22. 1. Document Database • Not for .PDF & .DOC files • Adocument is essentially an associative array • Document = JSON object • Document = PHPArray • Document = Python Dict • Document = Ruby Hash • etc
  • 24. 2. Open Source • MongoDB is an open source project • On GitHub • Licensed under theAGPL • Started & sponsored by MongoDB Inc (formerly known as 10gen) • Commercial licenses available • Contributions welcome
  • 25. 7,000,000+ MongoDB Downloads 150,000+ Online Education Registrants 35,000+ MongoDB Management Service (MMS) Users 30,000+ MongoDB User Group Members 20,000+ MongoDB DaysAttendees Global Community
  • 26. 3. High Performance • Written in C++ • Extensive use of memory-mapped files i.e. read-through write-through memory caching. • Runs nearly everywhere • Data serialized as BSON (fast parsing) • Full support for primary & secondary indexes • Document model = less work
  • 28. 4. Scalability Auto-Sharding • Increase capacity as you go • Commodity and cloud architectures • Improved operational simplicity and cost visibility
  • 29. High Availability • Automated replication and failover • Multi-data center support • Improved operational simplicity (e.g., HW swaps) • Data durability and consistency
  • 31. 5. Full Featured • Ad Hoc queries • Real time aggregation • Rich query capabilities • Strongly consistent • Geospatial features • Support for most programming languages • Flexible schema
  • 32. MongoDB is Fully Featured
  • 35. Do More With Your Data MongoDB Rich Queries • Find Paul’s cars • Find everybody in London with a car built between 1970 and 1980 Geospatial • Find all of the car owners within 5km of Trafalgar Sq. Text Search • Find all the cars described as having leather seats Aggregation • Calculate the average value of Paul’s car collection Map Reduce • What is the ownership pattern of colors by geography over time? (is purple trending up in China?) { first_name: ‘Paul’, surname: ‘Miller’, city: ‘London’, location: [45.123,47.232], cars: [ { model: ‘Bentley’, year: 1973, value: 100000, … }, { model: ‘Rolls Royce’, year: 1965, value: 330000, … } } }
  • 38. $ tar –zxvf mongodb-osx-x86_64-2.6.0.tgz $ cd mongodb-osx-i386-2.6.0/bin $ mkdir –p /data/db $ ./mongod Running MongoDB
  • 39. MongoDB: Core Binaries • mongod – Database server • mongo – Database client shell • mongos – Router for Sharding
  • 40. Getting Help • For mongo shell – mongo –help • Shows options available for running the shell • Inside mongo shell – db.help() • Shows commands available on the object
  • 41. Database Operations • Database creation • Creating/changing collection • Data insertion • Data read • Data update • Creating indices • Data deletion • Dropping collection
  • 42. MacBook-Pro-:~ $ mongo MongoDB shell version: 2.6.0 connecting to: test > db.cms.insert({text: 'Welcome to MongoDB'}) > db.cms.find().pretty() { "_id" : ObjectId("51c34130fbd5d7261b4cdb55"), "text" : "Welcome to MongoDB" } Mongo Shell
  • 43. Diagnostic Tools • mongostat • mongoperf • mongosnif • mongotop
  • 44. Import Export Tools • For objects – mongodump – mongorestore – bsondump – mongooplog • For data items – mongoimport – mongoexport
  • 49. First step in any application is Determine your entities
  • 50. Entities in our Blogging System • Users (post authors) • Article • Comments • Tags, Category • Interactions (views, clicks)
  • 51. In a relational base app We would start by doing schema design
  • 53. In a MongoDB based app We start building our app and let the schema evolve
  • 55. Seek = 5+ ms Read = really really fast Post Author Comment Disk seeks and data locality
  • 58. Real applications are not built in the shell
  • 59. MongoDB has native bindings for over 12 languages
  • 60. Drivers & Ecosystem Drivers Support for the most popular languages and frameworks Frameworks Morphia MEAN Stack Java Python Perl Ruby
  • 62. # Python dictionary (or object) >>> article = { ‘title’ : ‘Schema design in MongoDB’, ‘author’ : ‘sarangs’, ‘section’ : ‘schema’, ‘slug’ : ‘schema-design-in-mongodb’, ‘text’ : ‘Data in MongoDB has a flexible schema. So, 2 documents needn’t have same structure. It allows implicit schema to evolve.’, ‘date’ : datetime.utcnow(), ‘tags’ : [‘MongoDB’, ‘schema’] } >>> db[‘articles’].insert(article) Design schema.. In application code
  • 63. >>> img_data = Binary(open(‘article_img.jpg’).read()) >>> article = { ‘title’ : ‘Schema evolutionin MongoDB’, ‘author’ : ‘mattbates’, ‘section’ : ‘schema’, ‘slug’ : ‘schema-evolution-in-mongodb’, ‘text’ : ‘MongoDb has dynamic schema. For good performance, you would need an implicit structure and indexes’, ‘date’ : datetime.utcnow(), ‘tags’ : [‘MongoDB’, ‘schema’, ‘migration’], ‘headline_img’ : { ‘img’ : img_data, ‘caption’ : ‘A sample document at the shell’ }} Let’s add a headline image
  • 64. >>> article = { ‘title’ : ‘Favourite web application framework’, ‘author’ : ‘sarangs’, ‘section’ : ‘web-dev’, ‘slug’ : ‘web-app-frameworks’, ‘gallery’ : [ { ‘img_url’ : ‘http://x.com/45rty’, ‘caption’ : ‘Flask’, ..}, .. ] ‘date’ : datetime.utcnow(), ‘tags’ : [‘Python’, ‘web’], } >>> db[‘articles’].insert(article) And different types of article
  • 65. >>> user = { 'user' : 'sarangs', 'email' : ‘[email protected]', 'password' : ‘sarang', 'joined' : datetime.utcnow(), 'location' : { 'city' : 'Mumbai' }, } } >>> db[‘users’].insert(user) Users and profiles
  • 66. Modelling comments (1) • Two collections – articles and comments • Use a reference (i.e. foreign key) to link together • But.. N+1 queries to retrieve article and comments { ‘_id’: ObjectId(..), ‘title’: ‘Schema design in MongoDB’, ‘author’: ‘mattbates’, ‘date’: ISODate(..), ‘tags’: [‘MongoDB’, ‘schema’], ‘section’: ‘schema’, ‘slug’: ‘schema-design-in-mongodb’, ‘comments’: [ ObjectId(..),…] } { ‘_id’: ObjectId(..), ‘article_id’: 1, ‘text’: ‘Agreat article, helped me understand schema design’, ‘date’: ISODate(..),, ‘author’: ‘johnsmith’ }
  • 67. Modelling comments (2) • Single articles collection – embed comments in article documents • Pros • Single query, document designed for the access pattern • Locality (disk, shard) • Cons • Comments array is unbounded; documents will grow in size (remember 16MB document limit) { ‘_id’: ObjectId(..), ‘title’: ‘Schema design in MongoDB’, ‘author’: ‘mattbates’, ‘date’: ISODate(..), ‘tags’: [‘MongoDB’, ‘schema’], … ‘comments’: [ { ‘text’: ‘Agreat article, helped me understandschema design’, ‘date’: ISODate(..), ‘author’: ‘johnsmith’ }, … ] }
  • 68. Modelling comments (3) • Another option: hybrid of (2) and (3), embed top x comments (e.g. by date, popularity) into the article document • Fixed-size (2.4 feature) comments array • All other comments ‘overflow’ into a comments collection (double write) in buckets • Pros – Document size is more fixed – fewer moves – Single query built – Full comment history with rich query/aggregation
  • 69. Modelling comments (3) { ‘_id’: ObjectId(..), ‘title’: ‘Schemadesignin MongoDB’, ‘author’: ‘mattbates’, ‘date’: ISODate(..), ‘tags’:[‘MongoDB’, ‘schema’], … ‘comments_count’: 45, ‘comments_pages’: 1 ‘comments’: [ { ‘text’: ‘Agreat article, helped me understandschema design’, ‘date’: ISODate(..), ‘author’: ‘johnsmith’ }, … ] } Total number of comments • Integer counter updated by update operation as comments added/removed Number of pages • Page is a bucket of 100 comments (see next slide..) Fixed-size comments array • 10 most recent • Sorted by date on insertion
  • 70. Modelling comments (3) { ‘_id’: ObjectId(..), ‘article_id’: ObjectId(..), ‘page’: 1, ‘count’: 42 ‘comments’: [ { ‘text’: ‘Agreat article, helped me understand schema design’, ‘date’: ISODate(..), ‘author’: ‘johnsmith’ }, … } One comment bucket (page) document containing up to about 100 comments Array of 100 comment sub- documents
  • 71. Modelling interactions • Interactions – Article views – Comments – (Social media sharing) • Requirements – Time series – Pre-aggregated in preparation for analytics
  • 72. Modelling interactions • Document per article per day – ‘bucketing’ • Daily counter and hourly sub- document counters for interactions • Bounded array (24 hours) • Single query to retrieve daily article interactions; ready-made for graphing and further aggregation { ‘_id’: ObjectId(..), ‘article_id’: ObjectId(..), ‘section’: ‘schema’, ‘date’: ISODate(..), ‘daily’: { ‘views’: 45, ‘comments’: 150 } ‘hours’: { 0 : { ‘views’: 10 }, 1 : { ‘views’: 2 }, … 23 : { ‘comments’: 14, ‘views’: 10 } } }
  • 73. JSON and RESTful API Client-side JSON (eg AngularJS, (BSON) Real applications are not built at a shell – let’s build a RESTful API. Pymongo driver Python web app HTTP(S) REST Examples to follow: Python RESTful API using Flask microframework
  • 74. myCMS REST endpoints Method URI Action GET /articles Retrieve all articles GET /articles-by-tag/[tag] Retrieve all articles by tag GET /articles/[article_id] Retrieve a specific article by article_id POST /articles Add a new article GET /articles/[article_id]/comments Retrieve all article comments by article_id POST /articles/[article_id]/comments Add a new comment to an article. POST /users Register a user user GET /users/[username] Retrieve user’s profile PUT /users/[username] Update a user’s profile
  • 75. $ git clone http://www.github.com/mattbates/mycms_mongodb $ cd mycms-mongodb $ virtualenv venv $ source venv/bin/activate $ pip install –r requirements.txt $ mkdir –p data/db $ mongod --dbpath=data/db --fork --logpath=mongod.log $ python web.py [$ deactivate] Getting started with the skeleton code
  • 76. @app.route('/cms/api/v1.0/articles', methods=['GET']) def get_articles(): """Retrieves all articles in the collection sorted by date """ # query all articles and return a cursor sorted by date cur = db['articles'].find().sort('date’) if not cur: abort(400) # iterate the cursor and add docs to a dict articles = [article for article in cur] return jsonify({'articles' : json.dumps(articles, default=json_util.default)}) RESTful API methods in Python + Flask
  • 77. @app.route('/cms/api/v1.0/articles/<string:article_id>/comments', methods = ['POST']) def add_comment(article_id): """Adds a comment to the specified article and a bucket, as well as updating a view counter "”” … page_id = article['last_comment_id'] // 100 … # push the comment to the latest bucket and $inc the count page = db['comments'].find_and_modify( { 'article_id' : ObjectId(article_id), 'page' : page_id}, { '$inc' : { 'count' : 1 }, '$push' : { 'comments' : comment } }, fields= {'count' : 1}, upsert=True, new=True) RESTful API methods in Python + Flask
  • 78. # $inc the page count if bucket size (100) is exceeded if page['count'] > 100: db.articles.update( { '_id' : article_id, 'comments_pages': article['comments_pages'] }, { '$inc': { 'comments_pages': 1 } } ) # let's also add to the article itself # most recent 10 comments only res = db['articles'].update( {'_id' : ObjectId(article_id)}, {'$push' : {'comments' : { '$each' : [comment], '$sort' : {’date' : 1 }, '$slice' : -10}}, '$inc' : {'comment_count' : 1}}) … RESTful API methods in Python + Flask
  • 79. def add_interaction(article_id, type): """Record the interaction (view/comment) for the specified article into the daily bucket and update an hourly counter """ ts = datetime.datetime.utcnow() # $inc daily and hourly view counters in day/article stats bucket # note the unacknowledged w=0 write concern for performance db['interactions'].update( { 'article_id' : ObjectId(article_id), 'date' : datetime.datetime(ts.year, ts.month, ts.day)}, { '$inc' : { 'daily.{}’.format(type) : 1, 'hourly.{}.{}'.format(ts.hour, type) : 1 }}, upsert=True, w=0) RESTful API methods in Python + Flask
  • 80. $ curl -i http://localhost:5000/cms/api/v1.0/articles HTTP/1.0 200 OK Content-Type: application/json Content-Length: 335 Server: Werkzeug/0.9.4 Python/2.7.5 Date: Thu, 10 Apr 2014 16:00:51 GMT { "articles": "[{"title": "Schema design in MongoDB", "text": "Data in MongoDB has a flexible schema..", "section": "schema", "author": "sarangs", "date": {"$date": 1397145312505}, "_id": {"$oid": "5346bef5f2610c064a36a793"}, "slug": "schema-design-in-mongodb", "tags": ["MongoDB", "schema"]}]"} Testing the API – retrieve articles
  • 81. $ curl -H "Content-Type: application/json" -X POST -d '{"text":"An interesting article and a great read."}' http://localhost:5000/cms/api/v1.0/articles/52ed73a30bd031362b3c6bb3/comment s { "comment": "{"date": {"$date": 1391639269724}, "text": "An interesting article and a great read."}” } Testing the API – comment on an article
  • 82. Disaster Recovery Introduction to Replica Sets and High Availability
  • 83. Disasters • Physical Failure – Hardware – Network • Solution – Replica Sets • Provide redundant storage for High Availability – Real time data synchronization • Automatic failover for zero down time
  • 85. Multi Replication • Data can be replicated to multiple places simultaneously • Odd number of machines are always needed in a replica set
  • 86. Single Replication • If you want to have only one or odd number of secondary, you need to setup an arbiter
  • 87. Failover • When primary fails, remaining machines vote for electing new primary
  • 88. Handling Big Data Introduction to Map/Reduce and Sharding
  • 89. Large Data Sets • Problem 1 – Performance • Queries go slow • Solution – Map/Reduce
  • 91. Map Reduce • A way to divide large query computation into smaller chunks • May run in multiple processes across multiple machines • Think of it as GROUP BY of SQL
  • 92. Map/Reduce Example • Map function digs the data and returns required values
  • 93. Map/Reduce Example • Reduce function uses the output of Map function and generates aggregated value
  • 94. Large Data Sets • Problem 2 – Vertical Scaling of Hardware • Can’t increase machine size beyond a limit • Solution – Sharding
  • 95. Sharding • Amethod for storing data across multiple machines • Data is partitioned using Shard Keys
  • 96. Data Partitioning: Range Based • Arange of Shard Keys stay in a chunk
  • 97. Data Partitioning: Hash Bsed • Ahash function on Shard Keys decides the chunk
  • 99. Optimizing Shards: Splitting • In a shard, when size of a chunk increases, the chunk is divided into two
  • 100. Optimizing Shards: Balancing • When number of chunks in a shard increase, a few chunks are migrated to other shard
  • 101. Schema iteration New feature in the backlog? Documents have dynamic schema so we just iterate the object schema. >>> user = { ‘username’: ‘matt’, ‘first’ : ‘Matt’, ‘last’ : ‘Bates’, ‘preferences’: { ‘opt_out’: True } } >>> user.save(user)
  • 103. Online Training at MongoDB University
  • 104. For More Information Resource Location MongoDB Downloads mongodb.com/download Free Online Training education.mongodb.com Webinars and Events mongodb.com/events White Papers mongodb.com/white-papers Case Studies mongodb.com/customers Presentations mongodb.com/presentations Documentation docs.mongodb.org Additional Info [email protected] Resource Location
  • 105. We've introduced a lot of concepts here