SlideShare a Scribd company logo
Solution Architect
Jay Runkel
@jayrunkel
Time Series Data:
Aggregations in Action
Agenda
• Review Traffic Use Case
• Review Schema Design
• Document Retention Model
• Aggregation Queries
• Map Reduce
• Hadoop
Use Case Review
We need to prepare for this
Develop Nationwide traffic monitoring
system
MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop
Traffic sensors to monitor interstate
conditions
• 16,000 sensors
• Measure at one minute intervals
• Speed
• Travel time
• Weather, pavement, and traffic conditions
• Support desktop, mobile, and car navigation
systems
What we want from our data
Charting and Trending
What we want from our data
Historical & Predictive Analysis
What we want from our data
Real Time Traffic Dashboard
Review Schema Design
Document Structure
{ _id: ObjectId("5382ccdd58db8b81730344e2"),
linkId: 900006,
date: ISODate("2014-03-12T17:00:00Z"),
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: ”Snow / Ice Conditions",
pavement: ”Ice Spots",
weather: ”Light Snow"
}
}
Sample Document Structure
Compound, unique
Index identifies the
Individual document
{ _id: ObjectId("5382ccdd58db8b81730344e2"),
linkId: 900006,
date: ISODate("2014-03-12T17:00:00Z"),
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: ”Snow / Ice Conditions",
pavement: ”Icy Spots",
weather: ”Light Snow"
}
}
Sample Document Structure
Saves an extra index
{ _id: “900006:14031217”,
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: ”Snow / Ice Conditions",
pavement: ”Icy Spots",
weather: ”Light Snow"
}
}
{ _id: “900006:14031217”,
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: ”Snow / Ice Conditions",
pavement: ”Icy Spots",
weather: ”Light Snow"
}
}
Sample Document Structure
Range queries:
/^900006:1403/
Regex must be
left-anchored &
case-sensitive
{ _id: “900006:14031217”,
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: ”Snow / Ice Conditions",
pavement: ”Icy Spots",
weather: ”Light Snow"
}
}
Sample Document Structure
Pre-allocated,
60 element array of
per-minute data
Advantages
1. In place updates  efficient
2. Dashboards  simple queries
Dashboards
0
10
20
30
40
50
60
70
MonMar10201404:57:00…
MonMar10201405:28:00…
MonMar10201405:59:00…
MonMar10201406:30:00…
MonMar10201407:01:00…
MonMar10201407:32:00…
MonMar10201408:03:00…
MonMar10201408:34:00…
MonMar10201409:05:00…
MonMar10201409:36:00…
MonMar10201410:07:00…
MonMar10201410:38:00…
MonMar10201411:52:00…
TueMar11201402:35:00…
TueMar11201403:05:00…
TueMar11201403:36:00…
TueMar11201404:23:00…
TueMar11201404:54:00…
TueMar11201405:25:00…
TueMar11201405:56:00…
TueMar11201406:27:00…
TueMar11201406:58:00…
TueMar11201407:29:00…
TueMar11201408:00:00…
TueMar11201408:31:00…
TueMar11201409:05:00…
TueMar11201410:32:00…
TueMar11201411:03:00…
TueMar11201411:34:00…
TueMar11201412:05:00…
TueMar11201412:39:00…
TueMar11201413:10:00…
TueMar11201413:41:00…
TueMar11201414:15:00…
TueMar11201415:54:00…
WedMar12201401:39:00…
WedMar12201402:10:00…
WedMar12201402:41:00…
WedMar12201403:12:00…
WedMar12201404:35:00…
WedMar12201406:58:00…
WedMar12201408:36:00…
WedMar12201409:07:00…
WedMar12201410:15:00…
WedMar12201410:46:00…
db.linkData.find({_id : /^20484087:2014031/})
Supporting Queries From
Navigation Systems
Navigation System Queries
What is the average speed for the last 10 minutes on
50 upcoming road segments?
Current Real-Time Conditions
Last ten minutes of speeds and
times
{ _id : “I-87:10656”,
description : "NYS Thruway Harriman Section Exits 14A - 16",
update : ISODate(“2013-10-10T23:06:37.000Z”),
speeds : [ 52, 49, 45, 51, ... ],
times : [ 237, 224, 246, 233,... ],
pavement: "Wet Spots",
status: "Wet Conditions",
weather: "Light Rain”,
averageSpeed: 50.23,
averageTime: 234,
maxSafeSpeed: 53.1,
location" : {
"type" : "LineString",
"coordinates" : [
[ -74.056, 41.098 ],
[ -74.077, 41.104 ] }
}
{ _id : “I-87:10656”,
description : "NYS Thruway Harriman Section Exits 14A - 16",
update : ISODate(“2013-10-10T23:06:37.000Z”),
speeds : [ 52, 49, 45, 51, ... ],
times : [ 237, 224, 246, 233,... ],
pavement: "Wet Spots",
status: "Wet Conditions",
weather: "Light Rain”,
averageSpeed: 50.23,
averageTime: 234,
maxSafeSpeed: 53.1,
location" : {
"type" : "LineString",
"coordinates" : [
[ -74.056, 41.098 ],
[ -74.077, 41.104 ] }
}
Current Real-Time Conditions
Pre-aggregated
metrics
{ _id : “I-87:10656”,
description : "NYS Thruway Harriman Section Exits 14A - 16",
update : ISODate(“2013-10-10T23:06:37.000Z”),
speeds : [ 52, 49, 45, 51, ... ],
times : [ 237, 224, 246, 233,... ],
pavement: "Wet Spots",
status: "Wet Conditions",
weather: "Light Rain”,
averageSpeed: 50.23,
averageTime: 234,
maxSafeSpeed: 53.1,
location" : {
"type" : "LineString",
"coordinates" : [
[ -74.056, 41.098 ],
[ -74.077, 41.104 ] }
}
Current Real-Time Conditions
Geo-spatially indexed
road segment
db.linksAvg.update(
{"_id" : linkId},
{ "$set" : {"lUpdate" : date},
"$push" : {
"times" : { "$each" : [ time ], "$slice" : -10 },
"speeds" : {"$each" : [ speed ], "$slice" : -10}
}
})
Maintaining the current conditions
Each update pops the last element off the
array and pushes the new value
Document Retention
Document retention
Doc per hour
Doc per day
2 weeks
2 months
1year
Doc per Month
Rollup – 1 day
// daily document
// retained for 2 months
{
_id: "link:date",
// 24 element array
hourly: [
{ speed: { sum: , count: },
time: { sum: , count: }
},
{ speed: { sum: , count: },
time: { sum: , count: }
}
]
}
Analysis With The Aggregation
Framework
Pipelining operations
grep | sort | uniq
Piping command line operations
Pipelining operations
$match $group | $sort|
Piping aggregation operations
Stream of documents Result document
What is the average speed for a
given road segment?
> db.linkData.aggregate(
{ $match: { ”_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, linkId: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$linkId", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Select documents on the target segment
> db.linkData.aggregate(
{ $match: { ”_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, linkId: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$linkId", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Keep only the fields we really need
> db.linkData.aggregate(
{ $match: { ”_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, _id: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$_id", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Loop over the array of data points
> db.linkData.aggregate(
{ $match: { ”_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, _id: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$_id", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Use the handy $avg operator
> db.linkData.aggregate(
{ $match: { ”_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, “_id”: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$_id", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
More Sophisticated Pipelines:
average speed with variance
{ "$project" : {
mean: "$meanSpd",
spdDiffSqrd : {
"$map" : {
"input": {
"$map" : {
"input" : "$speeds",
"as" : "samp",
"in" : { "$subtract" : [ "$$samp", "$meanSpd" ] }
}
},
as: "df", in: { $multiply: [ "$$df", "$$df" ] }
} } } },
{ $unwind: "$spdDiffSqrd" },
{ $group: { _id: mean: "$mean", variance: { $avg: "$spdDiffSqrd" } } }
Analysis With MapReduce
Historic Analysis
How does weather and road conditions affect
traffic?
The Ask: what are the average speeds per
weather, status and pavement
MapReduce
function map() {
for( var i = 0; i < this.data.length; i++ ) {
emit (
this.conditions.weather,
{ speed : this.data[i].speed }
);
emit (
this.conditions.status,
{ speed : this.data[i].speed }
);
emit (
this.conditions.pavement,
{ speed : this.data[i].speed }
);
} }
MapReduce
function map() {
for( var i = 0; i < this.data.length; i++ ) {
emit (
this.conditions.weather,
{ speed : this.data[i].speed }
);
emit (
this.conditions.status,
{ speed : this.data[i].speed }
);
emit (
this.conditions.pavement,
{ speed : this.data[i].speed }
);
} }
“Snow”,
34
MapReduce
function map() {
for( var i = 0; i < this.data.length; i++ ) {
emit (
this.conditions.weather,
{ speed : this.data[i].speed }
);
emit (
this.conditions.status,
{ speed : this.data[i].speed }
);
emit (
this.conditions.pavement,
{ speed : this.data[i].speed }
);
} }
“Icy spots”, 34
MapReduce
function map() {
for( var i = 0; i < this.data.length; i++ ) {
emit (
this.conditions.weather,
{ speed : this.data[i].speed }
);
emit (
this.conditions.status,
{ speed : this.data[i].speed }
);
emit (
this.conditions.pavement,
{ speed : this.data[i].speed }
);
} }
“Delays”, 34
MapReduce
MapReduce
Weather: “Rain”, speed: 44
MapReduce
Weather: “Rain”, speed: 39
MapReduce
Weather: “Rain”, speed: 46
MapReduce
function reduce ( key, values ) {
var result = { count : 1, speedSum : 0 };
values.forEach( function( v ){
result.speedSum += v.speed;
result.count++;
});
return result;
}
MapReduce
function reduce ( key, values ) {
var result = { count : 1, speedSum : 0 };
values.forEach( function( v ){
result.speedSum += v.speed;
result.count++;
});
return result;
}
Results
results: [
{
"_id" : "Generally Clear and Dry Conditions",
"value" : {
"count" : 902,
"speedSum" : 45100
}
},
{
"_id" : "Icy Spots",
"value" : {
"count" : 242,
"speedSum" : 9438
}
},
{
"_id" : "Light Snow",
"value" : {
"count" : 122,
"speedSum" : 7686
}
},
{
"_id" : "No Report",
"value" : {
"count" : 782,
"speedSum" : NaN
}
}
Analysis With Hadoop
(using the MongoDB
Connector)
Processing Large Data Sets
• Need to break data into smaller pieces
• Process data across multiple nodes
Hadoop Hadoop Hadoop Hadoop
Hadoop Hadoop Hadoop HadoopHadoop
Hadoop
Benefits of the Hadoop Connector
• Increased parallelism
• Access to analytics libraries
• Separation of concerns
• Integrates with existing tool chains
MongoDB Hadoop Connector
• Multi-source analytics
• Interactive & Batch
• Data lake
• Online, Real-time
• High concurrency & HA
• Live analytics
Operational
Post
Processingand
MongoDB
Connector for
Hadoop
Questions?
@jayrunkel
jay.runkel@mongodb.com
Part 3 - July 16th, 2:00 PM EST
Sign up for our “Path to Proof” Program
and get expert advice on implementation,
architecture, and configuration.
www.mongodb.com/lp/contact/path-proof-program
MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop
HVDF:
https://github.com/10gen-labs/hvdf
Hadoop Connector:
https://github.com/mongodb/mongo-hadoop
Consulting Engineer, MongoDB Inc.
Bryan Reinero
#ConferenceHashtag
Thank You

More Related Content

What's hot (20)

PPTX
Operational Intelligence with MongoDB Webinar
MongoDB
 
PDF
Analytics with MongoDB Aggregation Framework and Hadoop Connector
Henrik Ingo
 
PDF
Druid
Dori Waldman
 
PPTX
Bucket Your Partitions Wisely (Markus Höfer, codecentric AG) | Cassandra Summ...
DataStax
 
PPTX
Lambda Architecture with Cassandra (Vaibhav Puranik, GumGum) | C* Summit 2016
DataStax
 
PPTX
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
MongoDB
 
PPTX
Webinar: Best Practices for Getting Started with MongoDB
MongoDB
 
PPTX
Advanced Sharding Features in MongoDB 2.4
MongoDB
 
PPTX
MongoDB: Comparing WiredTiger In-Memory Engine to Redis
Jason Terpko
 
PDF
Transforming Mobile Push Notifications with Big Data
plumbee
 
PDF
2015-12-05 Александр Коротков, Иван Панченко - Слабо-структурированные данные...
HappyDev
 
PPTX
Bucket your partitions wisely - Cassandra summit 2016
Markus Höfer
 
PPTX
Druid at naver.com - part 1
Jungsu Heo
 
PDF
MongoDB: Intro & Application for Big Data
Takahiro Inoue
 
PDF
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Altinity Ltd
 
PPTX
MongoDB Chunks - Distribution, Splitting, and Merging
Jason Terpko
 
PDF
Time series databases
Source Ministry
 
PPTX
Back to Basics, webinar 2: La tua prima applicazione MongoDB
MongoDB
 
PDF
Clickhouse Capacity Planning for OLAP Workloads, Mik Kocikowski of CloudFlare
Altinity Ltd
 
PPTX
Conceptos básicos. Seminario web 5: Introducción a Aggregation Framework
MongoDB
 
Operational Intelligence with MongoDB Webinar
MongoDB
 
Analytics with MongoDB Aggregation Framework and Hadoop Connector
Henrik Ingo
 
Bucket Your Partitions Wisely (Markus Höfer, codecentric AG) | Cassandra Summ...
DataStax
 
Lambda Architecture with Cassandra (Vaibhav Puranik, GumGum) | C* Summit 2016
DataStax
 
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
MongoDB
 
Webinar: Best Practices for Getting Started with MongoDB
MongoDB
 
Advanced Sharding Features in MongoDB 2.4
MongoDB
 
MongoDB: Comparing WiredTiger In-Memory Engine to Redis
Jason Terpko
 
Transforming Mobile Push Notifications with Big Data
plumbee
 
2015-12-05 Александр Коротков, Иван Панченко - Слабо-структурированные данные...
HappyDev
 
Bucket your partitions wisely - Cassandra summit 2016
Markus Höfer
 
Druid at naver.com - part 1
Jungsu Heo
 
MongoDB: Intro & Application for Big Data
Takahiro Inoue
 
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Altinity Ltd
 
MongoDB Chunks - Distribution, Splitting, and Merging
Jason Terpko
 
Time series databases
Source Ministry
 
Back to Basics, webinar 2: La tua prima applicazione MongoDB
MongoDB
 
Clickhouse Capacity Planning for OLAP Workloads, Mik Kocikowski of CloudFlare
Altinity Ltd
 
Conceptos básicos. Seminario web 5: Introducción a Aggregation Framework
MongoDB
 

Similar to MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop (20)

PDF
Analytics with Spark
Probst Ludwine
 
PPTX
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
InfluxData
 
PPTX
Everything That Is Really Useful in Oracle Database 12c for Application Devel...
Lucas Jellema
 
PPTX
Weather of the Century: Design and Performance
MongoDB
 
PDF
Monitoring Your ISP Using InfluxDB Cloud and Raspberry Pi
InfluxData
 
PPTX
Big Data for each one of us
OSCON Byrum
 
ODP
Introduction To PostGIS
mleslie
 
PDF
Codepot - Pig i Hive: szybkie wprowadzenie / Pig and Hive crash course
Sages
 
PDF
Visualizing Mobile Broadband with MongoDB
MongoDB
 
PPTX
OrientDB - Time Series and Event Sequences - Codemotion Milan 2014
Luigi Dell'Aquila
 
PPTX
2014 bigdatacamp asya_kamsky
Data Con LA
 
PDF
node.js and the AR.Drone: building a real-time dashboard using socket.io
Steven Beeckman
 
PDF
A Century Of Weather Data - Midwest.io
Randall Hunt
 
PPTX
Example R usage for oracle DBA UKOUG 2013
BertrandDrouvot
 
PPTX
Advancing Scientific Data Support in ArcGIS
The HDF-EOS Tools and Information Center
 
PDF
Nyc open data project ii -- predict where to get and return my citibike
Vivian S. Zhang
 
PDF
Querying Data Pipeline with AWS Athena
Yaroslav Tkachenko
 
PDF
How to Hack a Road Trip with a Webcam, a GSP and Some Fun with Node
pdeschen
 
PPTX
Il tempo vola: rappresentare e manipolare sequenze di eventi e time series co...
Codemotion
 
PDF
Analytic Data Report with MongoDB
Li Jia Li
 
Analytics with Spark
Probst Ludwine
 
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
InfluxData
 
Everything That Is Really Useful in Oracle Database 12c for Application Devel...
Lucas Jellema
 
Weather of the Century: Design and Performance
MongoDB
 
Monitoring Your ISP Using InfluxDB Cloud and Raspberry Pi
InfluxData
 
Big Data for each one of us
OSCON Byrum
 
Introduction To PostGIS
mleslie
 
Codepot - Pig i Hive: szybkie wprowadzenie / Pig and Hive crash course
Sages
 
Visualizing Mobile Broadband with MongoDB
MongoDB
 
OrientDB - Time Series and Event Sequences - Codemotion Milan 2014
Luigi Dell'Aquila
 
2014 bigdatacamp asya_kamsky
Data Con LA
 
node.js and the AR.Drone: building a real-time dashboard using socket.io
Steven Beeckman
 
A Century Of Weather Data - Midwest.io
Randall Hunt
 
Example R usage for oracle DBA UKOUG 2013
BertrandDrouvot
 
Advancing Scientific Data Support in ArcGIS
The HDF-EOS Tools and Information Center
 
Nyc open data project ii -- predict where to get and return my citibike
Vivian S. Zhang
 
Querying Data Pipeline with AWS Athena
Yaroslav Tkachenko
 
How to Hack a Road Trip with a Webcam, a GSP and Some Fun with Node
pdeschen
 
Il tempo vola: rappresentare e manipolare sequenze di eventi e time series co...
Codemotion
 
Analytic Data Report with MongoDB
Li Jia Li
 
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
Ad

Recently uploaded (20)

DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
PDF
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
PPTX
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
PDF
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PPT
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
PDF
ICONIQ State of AI Report 2025 - The Builder's Playbook
Razin Mustafiz
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PDF
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PDF
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PPTX
Digital Circuits, important subject in CS
contactparinay1
 
PDF
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
ICONIQ State of AI Report 2025 - The Builder's Playbook
Razin Mustafiz
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Digital Circuits, important subject in CS
contactparinay1
 
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 

MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop

Editor's Notes

  • #13: Compound unique index on linkId & Interval update field used to identify new documents for aggregation
  • #14: Compound unique index on linkId & Interval update field used to identify new documents for aggregation
  • #15: Compound unique index on linkId & Interval update field used to identify new documents for aggregation
  • #16: Compound unique index on linkId & Interval update field used to identify new documents for aggregation
  • #17: Compound unique index on linkId & Interval update field used to identify new documents for aggregation
  • #19: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #22: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #23: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #24: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #25: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #28: Compound unique index on linkId & Interval update field used to identify new documents for aggregation
  • #32: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #33: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #34: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #35: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #36: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #37: Priority Floating point number between 0..1000 Highest member that is up to date wins Up to date == within 10 seconds of primary If a higher priority member catches up, it will force election and win Slave Delay Lags behind master by configurable time delay Automatically hidden from clients Protects against operator errors Fat fingering Application corrupts data
  • #54: Makes MongoDB a Hadoop-enabled file system Read and write to live data, in-place Copy data between Hadoop and MongoDB Uses MongoDB indexes to filter data Full support for data processing Hive MapReduce Pig Streaming