This document discusses content-based image retrieval (CBIR) for medical images. It proposes using multiple query images instead of a single query image to improve retrieval accuracy. The system works by preprocessing queries, extracting features like texture from the queries, optimizing the features, using classifiers like SVM to categorize images, and then using KNN to retrieve similar images from the database based on feature matching. It claims this approach improves on existing CBIR systems that rely on annotations and have difficulties bridging the semantic gap between low-level features and high-level meanings.