SlideShare a Scribd company logo
Multi-objective meta-parameter tuning  for mono-objective stochastic metaheuristics Johann Dréo THALES Research & Technology
Introduction Multi-objective method Parameter tuning Stochastic metaheuristics Performance profiles http://www.flickr.com/photos/k23/2792398403/ Dreo & Siarry, 2004
Stochastic metaheuristics
Examples of stochastic metaheuristics
Parameter setting
Meta-parameter tuning
As a mono-objective problem Parameter setting: Improve performance http://www.flickr.com/photos/sigfrid/223626315/
As a multi-objective problem Parameter setting: What is performance ? -> multi-objective problem http://www.flickr.com/photos/jesusdq/345379863/
Multi-objective problem Performance ? Precision Speed Robustness Precision Speed Stability (← benchmark) http://www.flickr.com/photos/matthewfch/1688409628/
Multi-objective problem Performance ? Precision Speed Robustness Precision Speed Stability (← benchmark)
Meta-parameter tuning Mono-objective problem Stochastic metaheuristic
Meta-parameter tuning Multi-objective parameter tuning problem Mono-objective problem Stochastic metaheuristic
Meta-parameter tuning Multi-objective parameter tuning problem Mono-objective problem Stochastic metaheuristic Meta-optimizer
Complexity Difficult Easier 1 time Multi-objective parameter tuning problem Mono-objective problem Stochastic metaheuristic Meta-optimizer
Methodology Speed / Precision Median estimation Mono-objective problem Stochastic metaheuristic NSGA-2
Methodology Speed / Precision Median estimation Mono-objective problem Stochastic metaheuristic NSGA-2
Results plots Speed Precision Performance profile / front
Some results
Example 2 continuous EDA (CEDA, CHEDA) Sampling density parameter Rosenbrock, 2 dimensions Median estimated with 10 runs 10 000 max eval. NSGA-2 20 iter., 50 indiv. 10 runs 3 days computation + Nelder-Mead Search
Example +  simulated annealing stable temperature parameter Rosenbrock, 2 dimensions Median estimated with 10 runs 10 000 max eval. NSGA-2 20 iter., 50 indiv. 10 runs 1 day computation
Example +  genetic algorithm population parameter Rosenbrock, 2 dimensions Median estimated with 10 runs 10 000 max eval. NSGA-2 20 iter., 50 indiv. 10 runs 1 day computation
SA JGEN CEDA CHEDA Speed Precision
Behaviour exploration Speed Precision Genetic algorithm Population size
Performance front Temporal planner, ''Divide & Evolve > CPT'', version ''GOAL'' 2 mutation parameters IPC ''rovers'' problem, instance 06 Median estimated with 10 runs NSGA-2 10 iter., 5 indiv. 30 runs 1 week computation for 1 run
Performance front in Parameters space Speed Precision M1 M2
Previous parameters settings
Conclusion
Drawbacks Computation cost Stochastic  M.-O. algo.  -> supplementary bias http://www.flickr.com/photos/orvaratli/2690949652/
Drawbacks Computation cost Stochastic  M.-O. algo.  -> supplementary bias Valid only for: Algorithm implementation  Problem instance Stopping criterion Error Time t  steps, improvement <  ε http://www.flickr.com/photos/orvaratli/2690949652/
Drawbacks Computation cost Stochastic  M.-O. algo.  -> supplementary bias Valid only for: Algorithm implementation  Problem instance Stopping criterion Error Time t  steps, improvement <  ε Fronts often convex ->  aggregations ? No benchmarking http://www.flickr.com/photos/orvaratli/2690949652/
Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge
Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge Automatic parameter tuning One step before use N parameters -> 1 parameter More degrees of freedom
Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge Automatic parameter tuning One step before use N parameters -> 1 parameter More degrees of freedom Algorithms comparison Statistical tests more meaningful
Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge Automatic parameter tuning One step before use N parameters -> 1 parameter More degrees of freedom Algorithms comparison Statistical tests more meaningful  Behaviour understanding
Perspectives Include robustness Include dispersion estimation Include benchmarking Multi-objective SPO, F-Race Regressions in parameters space Performances / parameters Behaviour models? Links? Fitness Landscape / Performance profiles Run time distribution Taillard's significance plots ... http://www.flickr.com/photos/colourcrazy/2065575762/
[email_address] http://www.flickr.com/photos/earlg/275371357/

More Related Content

Similar to Multi-criteria meta-parameter tuning for mono-objective stochastic metaheuristics (20)

PDF
Scaling Ride-Hailing with Machine Learning on MLflow
Databricks
 
ODP
Performance Optimization of Rails Applications
Serge Smetana
 
PPTX
Ijcai 2020
Viral Gupta
 
PPT
Software Testing Process
guest1f2740
 
PPT
Testing process
Terry Cho
 
PPS
Finite Element Analysis Creo-Simulate Webinar
Santhosh N L
 
PDF
Data Science - How to begin? - DevFest BDM 2019
Maxime Pawlak
 
PDF
Deep Parameters Tuning for Android Mobile Apps
Davide De Chiara
 
PPTX
Fidelity Test Data Management
Agile Testing Alliance
 
PPTX
Self healing test automation with Healenium and Minimization of regression su...
Dmitriy Gumeniuk
 
PDF
Using Optimal Learning to Tune Deep Learning Pipelines
SigOpt
 
PDF
Using Optimal Learning to Tune Deep Learning Pipelines
Scott Clark
 
PDF
Presto Summit 2018 - 07 - Lyft
kbajda
 
PPTX
Automating Test Maintenance as Code and Requirements Change
QA Systems
 
PPTX
DataScience-101
Karthikeyan VK
 
PPTX
Alexandra Johnson, Software Engineer, SigOpt at MLconf ATL 2017
MLconf
 
PDF
Building Dynamic Data Pipelines in Azure Data Factory (Microsoft Ignite 2019)
Cathrine Wilhelmsen
 
PDF
Reproducible AI using MLflow and PyTorch
Databricks
 
PPT
A Pragmatic Approach to Semantic Repositories Benchmarking
Dhaval Thakker
 
PPT
The Next Generation Application Server – How Event Based Processing yields s...
Guy Korland
 
Scaling Ride-Hailing with Machine Learning on MLflow
Databricks
 
Performance Optimization of Rails Applications
Serge Smetana
 
Ijcai 2020
Viral Gupta
 
Software Testing Process
guest1f2740
 
Testing process
Terry Cho
 
Finite Element Analysis Creo-Simulate Webinar
Santhosh N L
 
Data Science - How to begin? - DevFest BDM 2019
Maxime Pawlak
 
Deep Parameters Tuning for Android Mobile Apps
Davide De Chiara
 
Fidelity Test Data Management
Agile Testing Alliance
 
Self healing test automation with Healenium and Minimization of regression su...
Dmitriy Gumeniuk
 
Using Optimal Learning to Tune Deep Learning Pipelines
SigOpt
 
Using Optimal Learning to Tune Deep Learning Pipelines
Scott Clark
 
Presto Summit 2018 - 07 - Lyft
kbajda
 
Automating Test Maintenance as Code and Requirements Change
QA Systems
 
DataScience-101
Karthikeyan VK
 
Alexandra Johnson, Software Engineer, SigOpt at MLconf ATL 2017
MLconf
 
Building Dynamic Data Pipelines in Azure Data Factory (Microsoft Ignite 2019)
Cathrine Wilhelmsen
 
Reproducible AI using MLflow and PyTorch
Databricks
 
A Pragmatic Approach to Semantic Repositories Benchmarking
Dhaval Thakker
 
The Next Generation Application Server – How Event Based Processing yields s...
Guy Korland
 

Recently uploaded (20)

PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PDF
State-Dependent Conformal Perception Bounds for Neuro-Symbolic Verification
Ivan Ruchkin
 
PPTX
AVL ( audio, visuals or led ), technology.
Rajeshwri Panchal
 
PPTX
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
PDF
Market Insight : ETH Dominance Returns
CIFDAQ
 
PPTX
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
PPTX
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
PPTX
Agile Chennai 18-19 July 2025 | Workshop - Enhancing Agile Collaboration with...
AgileNetwork
 
PPTX
Farrell_Programming Logic and Design slides_10e_ch02_PowerPoint.pptx
bashnahara11
 
PDF
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
PPTX
The Future of AI & Machine Learning.pptx
pritsen4700
 
PDF
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
PDF
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
PPTX
Introduction to Flutter by Ayush Desai.pptx
ayushdesai204
 
PDF
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
PDF
Generative AI vs Predictive AI-The Ultimate Comparison Guide
Lily Clark
 
PPTX
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
PDF
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
PDF
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
State-Dependent Conformal Perception Bounds for Neuro-Symbolic Verification
Ivan Ruchkin
 
AVL ( audio, visuals or led ), technology.
Rajeshwri Panchal
 
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
Market Insight : ETH Dominance Returns
CIFDAQ
 
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
Agile Chennai 18-19 July 2025 | Workshop - Enhancing Agile Collaboration with...
AgileNetwork
 
Farrell_Programming Logic and Design slides_10e_ch02_PowerPoint.pptx
bashnahara11
 
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
The Future of AI & Machine Learning.pptx
pritsen4700
 
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
Introduction to Flutter by Ayush Desai.pptx
ayushdesai204
 
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
Generative AI vs Predictive AI-The Ultimate Comparison Guide
Lily Clark
 
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
Ad

Multi-criteria meta-parameter tuning for mono-objective stochastic metaheuristics

  • 1. Multi-objective meta-parameter tuning for mono-objective stochastic metaheuristics Johann Dréo THALES Research & Technology
  • 2. Introduction Multi-objective method Parameter tuning Stochastic metaheuristics Performance profiles http://www.flickr.com/photos/k23/2792398403/ Dreo & Siarry, 2004
  • 4. Examples of stochastic metaheuristics
  • 7. As a mono-objective problem Parameter setting: Improve performance http://www.flickr.com/photos/sigfrid/223626315/
  • 8. As a multi-objective problem Parameter setting: What is performance ? -> multi-objective problem http://www.flickr.com/photos/jesusdq/345379863/
  • 9. Multi-objective problem Performance ? Precision Speed Robustness Precision Speed Stability (← benchmark) http://www.flickr.com/photos/matthewfch/1688409628/
  • 10. Multi-objective problem Performance ? Precision Speed Robustness Precision Speed Stability (← benchmark)
  • 11. Meta-parameter tuning Mono-objective problem Stochastic metaheuristic
  • 12. Meta-parameter tuning Multi-objective parameter tuning problem Mono-objective problem Stochastic metaheuristic
  • 13. Meta-parameter tuning Multi-objective parameter tuning problem Mono-objective problem Stochastic metaheuristic Meta-optimizer
  • 14. Complexity Difficult Easier 1 time Multi-objective parameter tuning problem Mono-objective problem Stochastic metaheuristic Meta-optimizer
  • 15. Methodology Speed / Precision Median estimation Mono-objective problem Stochastic metaheuristic NSGA-2
  • 16. Methodology Speed / Precision Median estimation Mono-objective problem Stochastic metaheuristic NSGA-2
  • 17. Results plots Speed Precision Performance profile / front
  • 19. Example 2 continuous EDA (CEDA, CHEDA) Sampling density parameter Rosenbrock, 2 dimensions Median estimated with 10 runs 10 000 max eval. NSGA-2 20 iter., 50 indiv. 10 runs 3 days computation + Nelder-Mead Search
  • 20. Example + simulated annealing stable temperature parameter Rosenbrock, 2 dimensions Median estimated with 10 runs 10 000 max eval. NSGA-2 20 iter., 50 indiv. 10 runs 1 day computation
  • 21. Example + genetic algorithm population parameter Rosenbrock, 2 dimensions Median estimated with 10 runs 10 000 max eval. NSGA-2 20 iter., 50 indiv. 10 runs 1 day computation
  • 22. SA JGEN CEDA CHEDA Speed Precision
  • 23. Behaviour exploration Speed Precision Genetic algorithm Population size
  • 24. Performance front Temporal planner, ''Divide & Evolve > CPT'', version ''GOAL'' 2 mutation parameters IPC ''rovers'' problem, instance 06 Median estimated with 10 runs NSGA-2 10 iter., 5 indiv. 30 runs 1 week computation for 1 run
  • 25. Performance front in Parameters space Speed Precision M1 M2
  • 28. Drawbacks Computation cost Stochastic M.-O. algo. -> supplementary bias http://www.flickr.com/photos/orvaratli/2690949652/
  • 29. Drawbacks Computation cost Stochastic M.-O. algo. -> supplementary bias Valid only for: Algorithm implementation Problem instance Stopping criterion Error Time t steps, improvement < ε http://www.flickr.com/photos/orvaratli/2690949652/
  • 30. Drawbacks Computation cost Stochastic M.-O. algo. -> supplementary bias Valid only for: Algorithm implementation Problem instance Stopping criterion Error Time t steps, improvement < ε Fronts often convex -> aggregations ? No benchmarking http://www.flickr.com/photos/orvaratli/2690949652/
  • 31. Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge
  • 32. Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge Automatic parameter tuning One step before use N parameters -> 1 parameter More degrees of freedom
  • 33. Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge Automatic parameter tuning One step before use N parameters -> 1 parameter More degrees of freedom Algorithms comparison Statistical tests more meaningful
  • 34. Advantages Performance profiles Objectives space Parameters space Quantification of expert knowledge Automatic parameter tuning One step before use N parameters -> 1 parameter More degrees of freedom Algorithms comparison Statistical tests more meaningful Behaviour understanding
  • 35. Perspectives Include robustness Include dispersion estimation Include benchmarking Multi-objective SPO, F-Race Regressions in parameters space Performances / parameters Behaviour models? Links? Fitness Landscape / Performance profiles Run time distribution Taillard's significance plots ... http://www.flickr.com/photos/colourcrazy/2065575762/