SlideShare a Scribd company logo
Electrical-A
Presented by……
Enrollnment No:
130940109040
130940109044
130940109050
130940109043
130940109044
130940109045
130940109046
130940109052

Guidance by…..
Vaishali G. mohadikar
Vinita G. Patel
Multiple ppt
Multiple Integrals
Double Integrals

Triple Integrals

Spherical
Coordinates
Cylindrical
Coordinates
Multiple ppt
Double integrals
Definition:

The expression:

y2

x2

y y1 x x1

f ( x, y )dx.dy

is called a double integral and provided the four limits
on the integral are all constant the order in which the
integrations are performed does not matter.
If the limits on one of the integrals involve the other
variable then the order in which the integrations are
performed is crucial.
T h e d o u b le t e g r ao f f o ve r t h e r e ct a n g le is
in
l
R

f (x ,y )d A
R

f (x ,y )d A
R

lim

|P|

0

m

n

i 1 j 1

f (xi*j, y i*j )Δ Δi j


Then, by Fubini’s Theorem

,

f ( x, y ) dA
D

F ( x , y ) dA
R
b

d

a

c

F ( x, y ) dy dx


We assume that all the following integrals exist.

b
a

f ( x) dx

f x, y

c
a

b

f ( x) dx

c

f ( x) dx

g x, y dA

D

f x, y dA
D

g x, y dA
D


The next property of integrals says that,
if we integrate the constant function f(x, y) = 1 over a
region D, we get the area of D:

1 dA

A D

D
If D = D1 D2, where D1 and D2 don’t overlap except perhaps on their
boundaries, then

f x, y dA
D

f x, y dA
D1

f x, y dA
D2
Example :
1. Evaluate

(x

3y)dA

D

WhereD
Ans :
(x

{(x, y) | -1

3y)dA

1

x
1 x2

-1 2x 2

1, 2x 2

(x

y

1

x 2}

3y)dydx

D

3
x(1 x - 2x )
((1 x 2 ) 2 - (2x 2 ) 2 )dx
-1
2
1
3
3 4
x x 3 - 2x 3
3x 2
x - 4x 4 dx
-1
2
2
1 2 1 4 3
1 5 1
3
1
3
( x - x
x x - x )
1-1 2
2
4
2
2
2
1

2

2

2
2. Evaluate

xydA w hereD is the region bounded by
D

x - 1 and the parabola y 2

theline y

2x

Sol :
D {(x, y) | -3 x 5, ? y
y2 - 6
{(x, y) |
2
xydA
D

4

y 1

-2

y 2 -6
2

x

2x 6}

y 1, - 2 y 4}

xydxdy 36

6
Consider R {(r, ) | a

r

b,

Polar rectangle
Properties
1. Let R {(r, ) | a
rectangle and 0
f(x, y)dA

r b,
} be a polar
2 If f is continuous on R, then
b
a

f(rcos , rsin )rdrd

R

2. Let D {(r, ) |

, h1 ( ) r

h 2 ( )} be a polor

region. If f is continuous on D then
f(x, y)dA
D

h2 ( )
h1 ( )

f(rcos , rsin )rdrd
Example :
(4y2

1. Evaluate

3x)dA

R

wher R
e
Sol :
R

{(x, y) | y

{(x, y) | y

0, 1 x 2

{(r, ) | 1 r
(4y

2

0, 1 x 2
y2

2, 0

3x)dA

0

15
2

4}

1

(4(rsin ) 2

R

(15sin 2

4}

}
2

0

y2

7cos )d

3rcos )rdrd


Changing The Order of integration

Sometimes the iterated integrals with givan limits bocomes more
compliated.As we know that w.r.t. y, or may be integrated in the
reverse order.
If it is given first to integrate w.r.t. x,then to change it consider a
vertical strip line and determine the limits.
If it is given first to integrate w.r.t. y,then to change it consider a
horizontal strip line and determine the limits.
1 y

(x

3. Evaluate :

22 y

2

2

y)

(x

0 0

I R :x
I R :x

1

n

1

0, x

y, y

n

2

0, x

2

0, y
y, y

2

2

y )dxdy by changing the order of integration.

0

1
1, y

2

Take a horizontal strip line.
the limits are : x y 2 - x
0
1 2 -x

I

(

2

x y

x 1
2

)dydx

0 x

y

1

x

2

y

3

2 x

x

dx

3

0

3

1

0
x
3

1

2x

2

0

2x

3

3

4

7x
3 4

7 3
3x

(2 x)
3

dx

4 1

(2 x)

4
3

12
0

2

(2

x)

(2 x)
3

3

x
x 3
3

dx
Multiple ppt
Triple integrals
The expression:

z2

y2

x2

z z1 y y1 x x1

f ( x, y, z )dx.dy.dz

is called a triple integral and provided the six limits on
the integral are all constant the order in which the
integrations are performed does not matter.
If the limits on the integrals involve some of the
variables then the order in which the integrations are
performed is crucial.
Determination of volumes by multiple integrals

The element of volume is:

V

x. y. z

Giving the volume V as:
x x2 y y2 z z2

V

x. y. z
x x1 y y1 z z1

That is:

x2

y2

z2

V

dx.dy.dz
x x1 y y1 z z1
properties
1. If E {(x, y, z) | (x, y) D, φ1 (x, y)
then

φ 2(x,y)

f(x, y, z)dv
E

D

2. If E {(x, y, z) | a
then

f(x, y, z)dv
E

x

φ1(x,y)

z

φ 2 (x, y)}

f(x, y, z)dz dA

b, g 1 (x)
b

g1(x) φ 2(x,y)

a

g1(x) φ1(x,y)

y

g 2 (x), φ1 (x, y)

f(x, y, z)dzdydx

z

φ 2 (x, y)}
Example: Find the volume of the solid bounded by the
planes z = 0, x = 1, x = 2, y = −1, y = 1 and the surface z
= x2 + y2.
2

V

x2 y 2

1

dx
x 1

dy
y

2

x 1

16
3

dz

1

z 0
3

x2 y

2

y
3

1

x 1

1

x2

dx
y

2

2x2

dx
1

x 1

y 2 dy

1

2
dx
3
3. Find the volume of the tetrahedron bounded by the planes
x 2y, x 0, z 0 and x 2y z 2
Sol :
D {(x, y) | 0 x 1,

x
2-x
y
}
2
2

V

2- x
2
x
0
2

2 - x - 2ydA
D

1
3

1

(2 - x - 2y)dydx
2. Find the volume of the solid bounded by the plane z
and the paraboloid z 1 - x 2 - y 2
Sol : D {(r, ) | 0

r 1, 0

(1 - x 2 - y 2 )dA

V
D
2

1

0

0

2

(1 - r 2 )rdrd

2 }

0
formula for triple integration in cylindrical
coordinates.

f ( x, y, z )dV
E

h2 ( )

u 2 ( r cos , r sin )

h1 ( )

u1 ( r cos , r sin )

f (r cos , r sin , z )rdzdrd

To convert from cylindrical to rectangular
coordinates, we use the equations
1 x=r cosθ y=r sinθ z=z
whereas to convert from rectangular to
cylindrical coordinates, we use

2. r2=x2+y2 tan θ=

z=z

y
x
Multiple ppt
2

2

D

Here we use cylindrical coordinates(r,θ,z)
∴ the limits are:

x

y

i.e. r
0 r
0

2

z

1

z 1
1
2
2π 1 1

I

r

rdzdrdθ

0 0 r
2

1

r

2

(1

r ) drd

0 0

2
0

r

3

3

x

4

1

4
0

2

1
3

1
4

2

x y dV, where D is the solid bounded by the surfaces x y z

Example : Evaluate

2

2

6

2

,z

0,z 1.
Formula for triple integration in spherical coordinates

f ( x, y, z )dV
E
d

b

c

a

f ( p sin cos , p sin som , p cos ) p 2 sin dpd d

where E is a spherical wedge given by

E {( p, , ) a

p b,

,c

d}
p

0

0
x

Example : Evaluate

2

2

y z

2

dV over the volume of the sphere x

D

Here we use spherical co-ordinates (r,θ,z)
∴ The limits are:

0
0

r

1

0

2
2

1
2

r r

I

2

sin drd d

0 0 0

2
0

2

cos

2

1
5

0

r

5

1

5
4
5

0

2

2

y z

2

1.
Multiple ppt

More Related Content

What's hot (20)

PPTX
Multiple intigration ppt
Manish Mor
 
PPT
Fourier series
Naveen Sihag
 
PPT
Legendre functions
Solo Hermelin
 
PDF
First Order Differential Equations
Itishree Dash
 
PPTX
Multiple integral(tripple integral)
jigar sable
 
PPTX
First order linear differential equation
Nofal Umair
 
PPT
complex variable PPT ( SEM 2 / CH -2 / GTU)
tejaspatel1997
 
PPTX
Fourier series and fourier integral
ashuuhsaqwe
 
PPTX
Double integration in polar form with change in variable (harsh gupta)
Harsh Gupta
 
PPTX
Application of differential equation in real life
Tanjil Hasan
 
PPTX
Partial differential equations
aman1894
 
PPTX
Gradient , Directional Derivative , Divergence , Curl
VishalVishwakarma59
 
PPTX
Partial Differentiation
Deep Dalsania
 
PPTX
Laurent Series ........ By Muhammad Umer
sialkot123
 
PPT
Fourier series
Shiv Prasad Gupta
 
PPTX
Ode powerpoint presentation1
Pokkarn Narkhede
 
PPTX
Differential equations
Seyid Kadher
 
PDF
Ideals and factor rings
dianageorge27
 
PDF
Lesson 19: Double Integrals over General Regions
Matthew Leingang
 
PPTX
Numerical solution of ordinary differential equation
Dixi Patel
 
Multiple intigration ppt
Manish Mor
 
Fourier series
Naveen Sihag
 
Legendre functions
Solo Hermelin
 
First Order Differential Equations
Itishree Dash
 
Multiple integral(tripple integral)
jigar sable
 
First order linear differential equation
Nofal Umair
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
tejaspatel1997
 
Fourier series and fourier integral
ashuuhsaqwe
 
Double integration in polar form with change in variable (harsh gupta)
Harsh Gupta
 
Application of differential equation in real life
Tanjil Hasan
 
Partial differential equations
aman1894
 
Gradient , Directional Derivative , Divergence , Curl
VishalVishwakarma59
 
Partial Differentiation
Deep Dalsania
 
Laurent Series ........ By Muhammad Umer
sialkot123
 
Fourier series
Shiv Prasad Gupta
 
Ode powerpoint presentation1
Pokkarn Narkhede
 
Differential equations
Seyid Kadher
 
Ideals and factor rings
dianageorge27
 
Lesson 19: Double Integrals over General Regions
Matthew Leingang
 
Numerical solution of ordinary differential equation
Dixi Patel
 

Viewers also liked (18)

PPTX
Double Integral Powerpoint
oaishnosaj
 
PPT
1574 multiple integral
Dr Fereidoun Dejahang
 
PPTX
Applied Calculus Chapter 3 partial derivatives
J C
 
PPT
Vector calculus
raghu ram
 
PPTX
Integrals and its applications
Poojith Chowdhary
 
PDF
Calculus intro
Pablo Ares Gastesi
 
PPT
Bai giang Dao ham rieng
Nhan Nguyen
 
PDF
Structural analysis (method of joints)
physics101
 
PPTX
Application of partial derivatives with two variables
Sagar Patel
 
ODP
Solving system of equation using substitution powerpoint
syjones14
 
PDF
Sine and Cosine Fresnel Transforms
CSCJournals
 
PPT
Dobule and triple integral
sonendra Gupta
 
PDF
Method of joints
ithayakaniapp
 
PPTX
Divergence,curl,gradient
Kunj Patel
 
DOCX
Application of vector integration
Varuna Kapuge
 
PPTX
Applied Calculus Chapter 1 polar coordinates and vector
J C
 
PPTX
Review of structural analysis
Abba Hassan Musa
 
Double Integral Powerpoint
oaishnosaj
 
1574 multiple integral
Dr Fereidoun Dejahang
 
Applied Calculus Chapter 3 partial derivatives
J C
 
Vector calculus
raghu ram
 
Integrals and its applications
Poojith Chowdhary
 
Calculus intro
Pablo Ares Gastesi
 
Bai giang Dao ham rieng
Nhan Nguyen
 
Structural analysis (method of joints)
physics101
 
Application of partial derivatives with two variables
Sagar Patel
 
Solving system of equation using substitution powerpoint
syjones14
 
Sine and Cosine Fresnel Transforms
CSCJournals
 
Dobule and triple integral
sonendra Gupta
 
Method of joints
ithayakaniapp
 
Divergence,curl,gradient
Kunj Patel
 
Application of vector integration
Varuna Kapuge
 
Applied Calculus Chapter 1 polar coordinates and vector
J C
 
Review of structural analysis
Abba Hassan Musa
 
Ad

Similar to Multiple ppt (20)

DOCX
Triple Integral
HusseinAli272
 
PDF
Triple_Integrals.pdf
SalimSaleh9
 
PDF
Double_Integral.pdf
d00a7ece
 
PPTX
Calculus multiple integral
prashant chelani
 
PDF
Double integration
Abhishek N Nair
 
PPTX
multiple intrigral lit
BRS ENGINEERING
 
PPTX
Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics
Shri Shankaracharya College, Bhilai,Junwani
 
PDF
triple integrals.pdf
FaisalMehmood887349
 
PPTX
10.1-Double-integrals-definition-2.power point
BoazMokaya1
 
PPTX
10.1-Double-integrals-definition-2 (1).pptx
BoazMokaya1
 
PDF
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
GeetanjaliRao6
 
PPT
Application of Cylindrical and Spherical coordinate system in double-triple i...
Sonendra Kumar Gupta
 
PPTX
Multiple Integrals_1.pptx
hackerboy66
 
PDF
Notes up to_ch7_sec3
Leonardo Nosce
 
PDF
Notes up to_ch7_sec3
neenos
 
PPT
26 triple integrals
math267
 
DOCX
Application of Integration
Raymundo Raymund
 
PPTX
Class8 calculus ii
JOSUE DEL AGUILA RIOS
 
PPT
Multiple integrals
Soma Shabbir
 
PPTX
14.6 triple integrals in cylindrical and spherical coordinates
Emiey Shaari
 
Triple Integral
HusseinAli272
 
Triple_Integrals.pdf
SalimSaleh9
 
Double_Integral.pdf
d00a7ece
 
Calculus multiple integral
prashant chelani
 
Double integration
Abhishek N Nair
 
multiple intrigral lit
BRS ENGINEERING
 
Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics
Shri Shankaracharya College, Bhilai,Junwani
 
triple integrals.pdf
FaisalMehmood887349
 
10.1-Double-integrals-definition-2.power point
BoazMokaya1
 
10.1-Double-integrals-definition-2 (1).pptx
BoazMokaya1
 
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
GeetanjaliRao6
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Sonendra Kumar Gupta
 
Multiple Integrals_1.pptx
hackerboy66
 
Notes up to_ch7_sec3
Leonardo Nosce
 
Notes up to_ch7_sec3
neenos
 
26 triple integrals
math267
 
Application of Integration
Raymundo Raymund
 
Class8 calculus ii
JOSUE DEL AGUILA RIOS
 
Multiple integrals
Soma Shabbir
 
14.6 triple integrals in cylindrical and spherical coordinates
Emiey Shaari
 
Ad

Recently uploaded (20)

PDF
Comprehensive Guide to Writing Effective Literature Reviews for Academic Publ...
AJAYI SAMUEL
 
PDF
Federal dollars withheld by district, charter, grant recipient
Mebane Rash
 
PPTX
SCHOOL-BASED SEXUAL HARASSMENT PREVENTION AND RESPONSE WORKSHOP
komlalokoe
 
PPTX
Blanket Order in Odoo 17 Purchase App - Odoo Slides
Celine George
 
PDF
water conservation .pdf by Nandni Kumari XI C
Directorate of Education Delhi
 
PPTX
SAMPLING: DEFINITION,PROCESS,TYPES,SAMPLE SIZE, SAMPLING ERROR.pptx
PRADEEP ABOTHU
 
PPTX
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
PPTX
Gall bladder, Small intestine and Large intestine.pptx
rekhapositivity
 
PDF
IMP NAAC REFORMS 2024 - 10 Attributes.pdf
BHARTIWADEKAR
 
PPTX
Maternal and Child Tracking system & RCH portal
Ms Usha Vadhel
 
PPT
digestive system for Pharm d I year HAP
rekhapositivity
 
PDF
BÀI TẬP BỔ TRỢ THEO LESSON TIẾNG ANH - I-LEARN SMART WORLD 7 - CẢ NĂM - CÓ ĐÁ...
Nguyen Thanh Tu Collection
 
PPTX
HIRSCHSPRUNG'S DISEASE(MEGACOLON): NURSING MANAGMENT.pptx
PRADEEP ABOTHU
 
PPTX
ROLE OF ANTIOXIDANT IN EYE HEALTH MANAGEMENT.pptx
Subham Panja
 
PPTX
CONVULSIVE DISORDERS: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
PDF
FULL DOCUMENT: Read the full Deloitte and Touche audit report on the National...
Kweku Zurek
 
PPTX
Explorando Recursos do Summer '25: Dicas Essenciais - 02
Mauricio Alexandre Silva
 
PDF
07.15.2025 - Managing Your Members Using a Membership Portal.pdf
TechSoup
 
PPTX
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
PPTX
ENGLISH LEARNING ACTIVITY SHE W5Q1.pptxY
CHERIEANNAPRILSULIT1
 
Comprehensive Guide to Writing Effective Literature Reviews for Academic Publ...
AJAYI SAMUEL
 
Federal dollars withheld by district, charter, grant recipient
Mebane Rash
 
SCHOOL-BASED SEXUAL HARASSMENT PREVENTION AND RESPONSE WORKSHOP
komlalokoe
 
Blanket Order in Odoo 17 Purchase App - Odoo Slides
Celine George
 
water conservation .pdf by Nandni Kumari XI C
Directorate of Education Delhi
 
SAMPLING: DEFINITION,PROCESS,TYPES,SAMPLE SIZE, SAMPLING ERROR.pptx
PRADEEP ABOTHU
 
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
Gall bladder, Small intestine and Large intestine.pptx
rekhapositivity
 
IMP NAAC REFORMS 2024 - 10 Attributes.pdf
BHARTIWADEKAR
 
Maternal and Child Tracking system & RCH portal
Ms Usha Vadhel
 
digestive system for Pharm d I year HAP
rekhapositivity
 
BÀI TẬP BỔ TRỢ THEO LESSON TIẾNG ANH - I-LEARN SMART WORLD 7 - CẢ NĂM - CÓ ĐÁ...
Nguyen Thanh Tu Collection
 
HIRSCHSPRUNG'S DISEASE(MEGACOLON): NURSING MANAGMENT.pptx
PRADEEP ABOTHU
 
ROLE OF ANTIOXIDANT IN EYE HEALTH MANAGEMENT.pptx
Subham Panja
 
CONVULSIVE DISORDERS: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
FULL DOCUMENT: Read the full Deloitte and Touche audit report on the National...
Kweku Zurek
 
Explorando Recursos do Summer '25: Dicas Essenciais - 02
Mauricio Alexandre Silva
 
07.15.2025 - Managing Your Members Using a Membership Portal.pdf
TechSoup
 
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
ENGLISH LEARNING ACTIVITY SHE W5Q1.pptxY
CHERIEANNAPRILSULIT1
 

Multiple ppt

  • 3. Multiple Integrals Double Integrals Triple Integrals Spherical Coordinates Cylindrical Coordinates
  • 5. Double integrals Definition: The expression: y2 x2 y y1 x x1 f ( x, y )dx.dy is called a double integral and provided the four limits on the integral are all constant the order in which the integrations are performed does not matter. If the limits on one of the integrals involve the other variable then the order in which the integrations are performed is crucial.
  • 6. T h e d o u b le t e g r ao f f o ve r t h e r e ct a n g le is in l R f (x ,y )d A R f (x ,y )d A R lim |P| 0 m n i 1 j 1 f (xi*j, y i*j )Δ Δi j
  • 7.  Then, by Fubini’s Theorem , f ( x, y ) dA D F ( x , y ) dA R b d a c F ( x, y ) dy dx
  • 8.  We assume that all the following integrals exist. b a f ( x) dx f x, y c a b f ( x) dx c f ( x) dx g x, y dA D f x, y dA D g x, y dA D
  • 9.  The next property of integrals says that, if we integrate the constant function f(x, y) = 1 over a region D, we get the area of D: 1 dA A D D If D = D1 D2, where D1 and D2 don’t overlap except perhaps on their boundaries, then f x, y dA D f x, y dA D1 f x, y dA D2
  • 10. Example : 1. Evaluate (x 3y)dA D WhereD Ans : (x {(x, y) | -1 3y)dA 1 x 1 x2 -1 2x 2 1, 2x 2 (x y 1 x 2} 3y)dydx D 3 x(1 x - 2x ) ((1 x 2 ) 2 - (2x 2 ) 2 )dx -1 2 1 3 3 4 x x 3 - 2x 3 3x 2 x - 4x 4 dx -1 2 2 1 2 1 4 3 1 5 1 3 1 3 ( x - x x x - x ) 1-1 2 2 4 2 2 2 1 2 2 2
  • 11. 2. Evaluate xydA w hereD is the region bounded by D x - 1 and the parabola y 2 theline y 2x Sol : D {(x, y) | -3 x 5, ? y y2 - 6 {(x, y) | 2 xydA D 4 y 1 -2 y 2 -6 2 x 2x 6} y 1, - 2 y 4} xydxdy 36 6
  • 12. Consider R {(r, ) | a r b, Polar rectangle
  • 13. Properties 1. Let R {(r, ) | a rectangle and 0 f(x, y)dA r b, } be a polar 2 If f is continuous on R, then b a f(rcos , rsin )rdrd R 2. Let D {(r, ) | , h1 ( ) r h 2 ( )} be a polor region. If f is continuous on D then f(x, y)dA D h2 ( ) h1 ( ) f(rcos , rsin )rdrd
  • 14. Example : (4y2 1. Evaluate 3x)dA R wher R e Sol : R {(x, y) | y {(x, y) | y 0, 1 x 2 {(r, ) | 1 r (4y 2 0, 1 x 2 y2 2, 0 3x)dA 0 15 2 4} 1 (4(rsin ) 2 R (15sin 2 4} } 2 0 y2 7cos )d 3rcos )rdrd
  • 15.  Changing The Order of integration Sometimes the iterated integrals with givan limits bocomes more compliated.As we know that w.r.t. y, or may be integrated in the reverse order. If it is given first to integrate w.r.t. x,then to change it consider a vertical strip line and determine the limits. If it is given first to integrate w.r.t. y,then to change it consider a horizontal strip line and determine the limits.
  • 16. 1 y (x 3. Evaluate : 22 y 2 2 y) (x 0 0 I R :x I R :x 1 n 1 0, x y, y n 2 0, x 2 0, y y, y 2 2 y )dxdy by changing the order of integration. 0 1 1, y 2 Take a horizontal strip line. the limits are : x y 2 - x 0 1 2 -x I ( 2 x y x 1 2 )dydx 0 x y 1 x 2 y 3 2 x x dx 3 0 3 1 0 x 3 1 2x 2 0 2x 3 3 4 7x 3 4 7 3 3x (2 x) 3 dx 4 1 (2 x) 4 3 12 0 2 (2 x) (2 x) 3 3 x x 3 3 dx
  • 18. Triple integrals The expression: z2 y2 x2 z z1 y y1 x x1 f ( x, y, z )dx.dy.dz is called a triple integral and provided the six limits on the integral are all constant the order in which the integrations are performed does not matter. If the limits on the integrals involve some of the variables then the order in which the integrations are performed is crucial.
  • 19. Determination of volumes by multiple integrals The element of volume is: V x. y. z Giving the volume V as: x x2 y y2 z z2 V x. y. z x x1 y y1 z z1 That is: x2 y2 z2 V dx.dy.dz x x1 y y1 z z1
  • 20. properties 1. If E {(x, y, z) | (x, y) D, φ1 (x, y) then φ 2(x,y) f(x, y, z)dv E D 2. If E {(x, y, z) | a then f(x, y, z)dv E x φ1(x,y) z φ 2 (x, y)} f(x, y, z)dz dA b, g 1 (x) b g1(x) φ 2(x,y) a g1(x) φ1(x,y) y g 2 (x), φ1 (x, y) f(x, y, z)dzdydx z φ 2 (x, y)}
  • 21. Example: Find the volume of the solid bounded by the planes z = 0, x = 1, x = 2, y = −1, y = 1 and the surface z = x2 + y2. 2 V x2 y 2 1 dx x 1 dy y 2 x 1 16 3 dz 1 z 0 3 x2 y 2 y 3 1 x 1 1 x2 dx y 2 2x2 dx 1 x 1 y 2 dy 1 2 dx 3
  • 22. 3. Find the volume of the tetrahedron bounded by the planes x 2y, x 0, z 0 and x 2y z 2 Sol : D {(x, y) | 0 x 1, x 2-x y } 2 2 V 2- x 2 x 0 2 2 - x - 2ydA D 1 3 1 (2 - x - 2y)dydx
  • 23. 2. Find the volume of the solid bounded by the plane z and the paraboloid z 1 - x 2 - y 2 Sol : D {(r, ) | 0 r 1, 0 (1 - x 2 - y 2 )dA V D 2 1 0 0 2 (1 - r 2 )rdrd 2 } 0
  • 24. formula for triple integration in cylindrical coordinates. f ( x, y, z )dV E h2 ( ) u 2 ( r cos , r sin ) h1 ( ) u1 ( r cos , r sin ) f (r cos , r sin , z )rdzdrd To convert from cylindrical to rectangular coordinates, we use the equations 1 x=r cosθ y=r sinθ z=z whereas to convert from rectangular to cylindrical coordinates, we use 2. r2=x2+y2 tan θ= z=z y x
  • 26. 2 2 D Here we use cylindrical coordinates(r,θ,z) ∴ the limits are: x y i.e. r 0 r 0 2 z 1 z 1 1 2 2π 1 1 I r rdzdrdθ 0 0 r 2 1 r 2 (1 r ) drd 0 0 2 0 r 3 3 x 4 1 4 0 2 1 3 1 4 2 x y dV, where D is the solid bounded by the surfaces x y z Example : Evaluate 2 2 6 2 ,z 0,z 1.
  • 27. Formula for triple integration in spherical coordinates f ( x, y, z )dV E d b c a f ( p sin cos , p sin som , p cos ) p 2 sin dpd d where E is a spherical wedge given by E {( p, , ) a p b, ,c d}
  • 28. p 0 0
  • 29. x Example : Evaluate 2 2 y z 2 dV over the volume of the sphere x D Here we use spherical co-ordinates (r,θ,z) ∴ The limits are: 0 0 r 1 0 2 2 1 2 r r I 2 sin drd d 0 0 0 2 0 2 cos 2 1 5 0 r 5 1 5 4 5 0 2 2 y z 2 1.