SlideShare a Scribd company logo
Multiplying
Polynomials
   Part 1
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                           2
                               (   2
                         3x 2x − 7x + 5   )
by the monomial
outside the
parenthesis.
The number of terms
inside the parenthesis
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                     )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2       2



parenthesis.
The number of terms
inside the parenthesis
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                     )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2       2



parenthesis.
The number of terms
inside the parenthesis
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                         )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2           2



parenthesis.
The number of terms
inside the parenthesis
                                         2
                                             (
                                   3x 2x − 7x + 5    2
                                                             )
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                             )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2               2



parenthesis.
The number of terms
inside the parenthesis
                                         2
                                             (
                                   3x 2x − 7x + 5    2
                                                                 )
will be the same as                          4
                                     6x − 21x + 15x      3           2

after multiplying.
Multiply a Polynomial by a
           Monomial
Review this Cool Math site to learn about
multiplying a polynomial by a monomial.
Do the Try It and Your Turn problems in
your notebook and check your answers on
the next slides.
Try It - Page 1
 Multiply:         4
                       (
                  6x 2x + 32
                               )
Try It - Page 1
    Multiply:               4
                                (
                           6x 2x + 32
                                        )
Distribute the monomial.
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
  Multiply each term.
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
  Multiply each term.
                                     6           4
                             12x + 18x
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
  Multiply each term.
                                     6           4
                             12x + 18x
Verify your answer has same number of terms
  as inside original ( ). Both have 2 terms.
Your Turn - Page 2
 multiply:
Your Turn - Page 2
 multiply:
                3
                    (   5   2
             10x 2x + 1 − 3x + x   )
Your Turn - Page 2
    multiply:
                              3
                                  (   5   2
                           10x 2x + 1 − 3x + x   )
Distribute the monomial.
Your Turn - Page 2
    multiply:
                              3
                                  (
                           10x 2x + 1 − 3x + x5           2
                                                                  )
Distribute the monomial.

           ( )
   10x 2x + 10x (1) + 10x −3x + 10x ( x )
       3     5        3               3
                                          (       2
                                                      )       3
Your Turn - Page 2
    multiply:
                             3
                                 (
                          10x 2x + 1 − 3x + x5           2
                                                                 )
           ( )
   10x 2x + 10x (1) + 10x −3x + 10x ( x )
       3    5         3              3
                                         (       2
                                                     )       3


Multiply each term.
Your Turn - Page 2
    multiply:
                                 3
                                     (
                           10x 2x + 1 − 3x + x   5                   2
                                                                             )
           ( )
   10x 2x + 10x (1) + 10x −3x + 10x ( x )
       3    5         3                  3
                                             (           2
                                                             )           3


Multiply each term.          8                       3           5               4
                          20x + 10x − 30x + 10x
Your Turn - Page 2
     multiply:
                                  3
                                      (
                            10x 2x + 1 − 3x + x   5                   2
                                                                              )
            ( )
    10x 2x + 10x (1) + 10x −3x + 10x ( x )
        3    5         3                  3
                                              (           2
                                                              )           3


                              8                       3           5               4
  Put in descending        20x + 10x − 30x + 10x
   order and verify
  number of terms.
(Both have 4 terms.)
Your Turn - Page 2
     multiply:
                                      3
                                          (
                             10x 2x + 1 − 3x + x      5                       2
                                                                                      )
            ( )
    10x 2x + 10x (1) + 10x −3x + 10x ( x )
        3    5         3                      3
                                                  (           2
                                                                  )               3


                                  8                       3               5               4
  Put in descending        20x + 10x − 30x + 10x
   order and verify
  number of terms.            8                       5               4               3
(Both have 4 terms.)
                           20x − 30x + 10x + 10x
Try It - Page 2
 Multiply:
               2   5
                       (   2   2     4
             4x w w − x + 6xw − 1 + 3x w   8
                                               )
Try It - Page 2
      Multiply:
                           2   5
                                   (   2   2   4
                     4x w w − x + 6xw − 1 + 3x w   8
                                                       )
Distribute the monomial.
Try It - Page 2
       Multiply:
                                  2       5
                                              (
                              4x w w − x + 6xw − 1 + 3x w 2           2               4   8
                                                                                              )
Distribute the monomial.
                  5
                      (   2
                              )       2   5
                                              (   2
                                                      )
 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w
   2   5      2                                               2   5       2   5
                                                                                  (   4   8
                                                                                              )
Try It - Page 2
      Multiply:
                                2       5
                                            (
                            4x w w − x + 6xw − 1 + 3x w 2           2               4   8
                                                                                            )
                5
                    (   2
                            )       2   5
                                            (   2
                                                    )
4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w
  2   5     2                                               2   5       2   5
                                                                                (   4   8
                                                                                            )
Multiply each term.
Try It - Page 2
      Multiply:
                                              2       5
                                                          (
                                      4x w w − x + 6xw − 1 + 3x w         2               2                   4       8
                                                                                                                           )
                      5
                          (       2
                                      )
4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w
  2   5           2                               2   5
                                                          (       2
                                                                      )       2   5               2   5
                                                                                                          (       4   8
                                                                                                                          )
Multiply each term.

          2   6               4           5                   3       7               2       5               6       13
      4x w − 4x w + 24x w − 4x w + 12x w
Verify answer has 5 terms like original parenthesis.
Try this one...
 Multiply:          (   2
                  3x 2x − 5x + 7   )
Try this one...
    Multiply:                (   2
                           3x 2x − 5x + 7   )
Distribute the monomial.
Try this one...
    Multiply:                    (   2
                               3x 2x − 5x + 7   )
Distribute the monomial.

                     ( )
                  3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 )
                           2
Try this one...
   Multiply:                 (   2
                           3x 2x − 5x + 7   )

                      ( )
                 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 )
                       2


Multiply each term.
Try this one...
   Multiply:                 (   2
                           3x 2x − 5x + 7   )

                      ( )
                 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 )
                       2


Multiply each term.

                             3       2
                           6x − 15x + 21x
Try this one...
 Multiply:        2 2
                        (   3
             −2a b a + 3a b − 4b2   3   5
                                            )
Try this one...
    Multiply:              2 2
                                 (   3
                     −2a b a + 3a b − 4b 2   3   5
                                                     )
Distribute the monomial.
Try this one...
    Multiply:                2 2
                                   (   3
                      −2a b a + 3a b − 4b  2    3    5
                                                         )
Distribute the monomial.

  ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b )
       2 2    3        2 2         2   3       2 2       5
Try this one...
   Multiply:                2 2
                                  (   3
                      −2a b a + 3a b − 4b 2    3    5
                                                        )
( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b )
     2 2    3         2 2         2   3       2 2       5



Multiply each term.
Try this one...
   Multiply:                 2 2
                                   (   3
                      −2a b a + 3a b − 4b          2    3            5
                                                                         )
( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b )
     2 2    3          2 2         2   3               2 2               5



Multiply each term.

                             5 2           4   5             2   7
                      −2a b − 6a b + 8a b
Great job working all those
problems!

Proceed to Multiplying
Polynomials Part 2.

More Related Content

KEY
Module 9 Topic 2 multiplying polynomials - part 1
Lori Rapp
 
PDF
Topic 2 multiplying polynomials - part 1
Annie cox
 
KEY
Notes 12.1 multiplying polynomials
Lori Rapp
 
PPTX
Multiplying Polynomials
Mary Ann Villanueva
 
PPTX
Addition and subtraction in polynomials
saidyein
 
PDF
Multiplying polynomials
cvaughn911
 
PPT
Multiplying polynomials
swartzje
 
PPT
Multiplying polynomials
chrystal_brinson
 
Module 9 Topic 2 multiplying polynomials - part 1
Lori Rapp
 
Topic 2 multiplying polynomials - part 1
Annie cox
 
Notes 12.1 multiplying polynomials
Lori Rapp
 
Multiplying Polynomials
Mary Ann Villanueva
 
Addition and subtraction in polynomials
saidyein
 
Multiplying polynomials
cvaughn911
 
Multiplying polynomials
swartzje
 
Multiplying polynomials
chrystal_brinson
 

What's hot (20)

PPT
Factorising for 3um
mathssng3
 
PPT
Adding and subtracting polynomials
chrystal_brinson
 
PDF
Chapter 04
ramiz100111
 
PDF
Int Math 2 Section 2-5 1011
Jimbo Lamb
 
PPT
Adding Polynomials
chulitt
 
PPT
Multiplying Polynomials
nina
 
PDF
Factoring lesson
Jaqueline Vallejo
 
KEY
Notes 12.1 identifying, adding & subtracting polynomials
Lori Rapp
 
PPT
Multiplying Polynomials I
Iris
 
PPTX
Antiderivatives nako sa calculus official
Zerick Lucernas
 
PDF
9-9 Notes
Jimbo Lamb
 
PPT
Adding and subtracting polynomials
holmsted
 
PPSX
Lesson 6 subtraction of polynomials
Alex Morron
 
PPT
11X1 T09 03 second derivative
Nigel Simmons
 
PPT
Review of multiplying polynomials
dlaughter
 
PPTX
9.4
nglaze10
 
PPT
Chapter 2.5
nglaze10
 
PPT
9.4.1
nglaze10
 
PPT
Factoring notes
Michelle Barnhill
 
Factorising for 3um
mathssng3
 
Adding and subtracting polynomials
chrystal_brinson
 
Chapter 04
ramiz100111
 
Int Math 2 Section 2-5 1011
Jimbo Lamb
 
Adding Polynomials
chulitt
 
Multiplying Polynomials
nina
 
Factoring lesson
Jaqueline Vallejo
 
Notes 12.1 identifying, adding & subtracting polynomials
Lori Rapp
 
Multiplying Polynomials I
Iris
 
Antiderivatives nako sa calculus official
Zerick Lucernas
 
9-9 Notes
Jimbo Lamb
 
Adding and subtracting polynomials
holmsted
 
Lesson 6 subtraction of polynomials
Alex Morron
 
11X1 T09 03 second derivative
Nigel Simmons
 
Review of multiplying polynomials
dlaughter
 
Chapter 2.5
nglaze10
 
9.4.1
nglaze10
 
Factoring notes
Michelle Barnhill
 
Ad

Similar to Multiplying polynomials - part 1 (20)

PPTX
11.3
nglaze10
 
PPT
Prashant tiwari ppt.on
Prashant tiwari
 
PPTX
Multiplying Polynomials.pptx
JennilynBalusdan2
 
PPT
9.1
nglaze10
 
PPT
Polynomials and factoring
Shilpi Singh
 
PPTX
Multiplying Polynomials
guest6e4b21
 
PPTX
Feb 19
khyps13
 
PPTX
Multiplying_Polynomials_Grade7_Enhanced.pptx
RichelleCantong
 
PPTX
Polynomials
Ver Louie Gautani
 
PPTX
9.1 and 9.2
nscross40
 
KEY
Unit 1 - dividing a polynomial by a monomial
Lori Rapp
 
PPT
POLYNOMIALS - Add Subtract Multiply
swartzje
 
KEY
Topic 4 dividing a polynomial by a monomial
Lori Rapp
 
PPT
FOIL
Yvette Lee
 
PPT
polynomials.ppt new class VIII maths lesson
kv1rcf
 
PPTX
9.1 and 9.2
nscross40
 
PPTX
Multiplying-and-dividing-polynomials.pptx
regiebalios23
 
PPTX
Multiplying polynomials
NCVPS
 
DOC
Polynomial
Educación
 
DOC
Polynomial
Educación
 
11.3
nglaze10
 
Prashant tiwari ppt.on
Prashant tiwari
 
Multiplying Polynomials.pptx
JennilynBalusdan2
 
Polynomials and factoring
Shilpi Singh
 
Multiplying Polynomials
guest6e4b21
 
Feb 19
khyps13
 
Multiplying_Polynomials_Grade7_Enhanced.pptx
RichelleCantong
 
Polynomials
Ver Louie Gautani
 
9.1 and 9.2
nscross40
 
Unit 1 - dividing a polynomial by a monomial
Lori Rapp
 
POLYNOMIALS - Add Subtract Multiply
swartzje
 
Topic 4 dividing a polynomial by a monomial
Lori Rapp
 
polynomials.ppt new class VIII maths lesson
kv1rcf
 
9.1 and 9.2
nscross40
 
Multiplying-and-dividing-polynomials.pptx
regiebalios23
 
Multiplying polynomials
NCVPS
 
Polynomial
Educación
 
Polynomial
Educación
 
Ad

More from Lori Rapp (20)

PDF
Piecewise functions
Lori Rapp
 
PDF
Normal curve
Lori Rapp
 
PDF
Venn diagrams
Lori Rapp
 
PPT
Circles notes
Lori Rapp
 
PPT
Quadrilateral notes
Lori Rapp
 
KEY
Remainder & Factor Theorems
Lori Rapp
 
KEY
Develop the Area of a Circle Formula
Lori Rapp
 
KEY
Unit 4 hw 8 - pointslope, parallel & perp
Lori Rapp
 
KEY
Sets Notes
Lori Rapp
 
KEY
Absolute Value Inequalities Notes
Lori Rapp
 
KEY
Compound Inequalities Notes
Lori Rapp
 
KEY
Solving Inequalities Notes
Lori Rapp
 
KEY
Solving quadratic equations part 1
Lori Rapp
 
KEY
Introduction to Equations Notes
Lori Rapp
 
KEY
Associative property
Lori Rapp
 
PDF
Real numbers
Lori Rapp
 
KEY
Unit 4 hw 7 - direct variation & linear equation give 2 points
Lori Rapp
 
KEY
Absolute Value Equations
Lori Rapp
 
KEY
Unit 3 hw 7 - literal equations
Lori Rapp
 
KEY
Unit 3 hw 4 - solving equations variable both sides
Lori Rapp
 
Piecewise functions
Lori Rapp
 
Normal curve
Lori Rapp
 
Venn diagrams
Lori Rapp
 
Circles notes
Lori Rapp
 
Quadrilateral notes
Lori Rapp
 
Remainder & Factor Theorems
Lori Rapp
 
Develop the Area of a Circle Formula
Lori Rapp
 
Unit 4 hw 8 - pointslope, parallel & perp
Lori Rapp
 
Sets Notes
Lori Rapp
 
Absolute Value Inequalities Notes
Lori Rapp
 
Compound Inequalities Notes
Lori Rapp
 
Solving Inequalities Notes
Lori Rapp
 
Solving quadratic equations part 1
Lori Rapp
 
Introduction to Equations Notes
Lori Rapp
 
Associative property
Lori Rapp
 
Real numbers
Lori Rapp
 
Unit 4 hw 7 - direct variation & linear equation give 2 points
Lori Rapp
 
Absolute Value Equations
Lori Rapp
 
Unit 3 hw 7 - literal equations
Lori Rapp
 
Unit 3 hw 4 - solving equations variable both sides
Lori Rapp
 

Recently uploaded (20)

PDF
UTS Health Student Promotional Representative_Position Description.pdf
Faculty of Health, University of Technology Sydney
 
PPTX
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
PPTX
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 
PDF
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PPTX
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
PDF
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
DOCX
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 
PPTX
PREVENTIVE PEDIATRIC. pptx
AneetaSharma15
 
PPTX
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
PDF
PG-BPSDMP 2 TAHUN 2025PG-BPSDMP 2 TAHUN 2025.pdf
AshifaRamadhani
 
PPTX
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
PDF
Phylum Arthropoda: Characteristics and Classification, Entomology Lecture
Miraj Khan
 
PDF
What is CFA?? Complete Guide to the Chartered Financial Analyst Program
sp4989653
 
PPTX
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
PPTX
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
PPTX
Software Engineering BSC DS UNIT 1 .pptx
Dr. Pallawi Bulakh
 
PDF
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
PDF
Study Material and notes for Women Empowerment
ComputerScienceSACWC
 
PPTX
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
PPTX
FSSAI (Food Safety and Standards Authority of India) & FDA (Food and Drug Adm...
Dr. Paindla Jyothirmai
 
UTS Health Student Promotional Representative_Position Description.pdf
Faculty of Health, University of Technology Sydney
 
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 
PREVENTIVE PEDIATRIC. pptx
AneetaSharma15
 
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
PG-BPSDMP 2 TAHUN 2025PG-BPSDMP 2 TAHUN 2025.pdf
AshifaRamadhani
 
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
Phylum Arthropoda: Characteristics and Classification, Entomology Lecture
Miraj Khan
 
What is CFA?? Complete Guide to the Chartered Financial Analyst Program
sp4989653
 
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
Software Engineering BSC DS UNIT 1 .pptx
Dr. Pallawi Bulakh
 
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
Study Material and notes for Women Empowerment
ComputerScienceSACWC
 
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
FSSAI (Food Safety and Standards Authority of India) & FDA (Food and Drug Adm...
Dr. Paindla Jyothirmai
 

Multiplying polynomials - part 1

  • 2. Multiply a Polynomial by a Monomial Multiply each term inside the parenthesis 2 ( 2 3x 2x − 7x + 5 ) by the monomial outside the parenthesis. The number of terms inside the parenthesis will be the same as after multiplying.
  • 3. Multiply a Polynomial by a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis will be the same as after multiplying.
  • 4. Multiply a Polynomial by a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis will be the same as after multiplying.
  • 5. Multiply a Polynomial by a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis 2 ( 3x 2x − 7x + 5 2 ) will be the same as after multiplying.
  • 6. Multiply a Polynomial by a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis 2 ( 3x 2x − 7x + 5 2 ) will be the same as 4 6x − 21x + 15x 3 2 after multiplying.
  • 7. Multiply a Polynomial by a Monomial Review this Cool Math site to learn about multiplying a polynomial by a monomial. Do the Try It and Your Turn problems in your notebook and check your answers on the next slides.
  • 8. Try It - Page 1 Multiply: 4 ( 6x 2x + 32 )
  • 9. Try It - Page 1 Multiply: 4 ( 6x 2x + 32 ) Distribute the monomial.
  • 10. Try It - Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3
  • 11. Try It - Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3 Multiply each term.
  • 12. Try It - Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3 Multiply each term. 6 4 12x + 18x
  • 13. Try It - Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3 Multiply each term. 6 4 12x + 18x Verify your answer has same number of terms as inside original ( ). Both have 2 terms.
  • 14. Your Turn - Page 2 multiply:
  • 15. Your Turn - Page 2 multiply: 3 ( 5 2 10x 2x + 1 − 3x + x )
  • 16. Your Turn - Page 2 multiply: 3 ( 5 2 10x 2x + 1 − 3x + x ) Distribute the monomial.
  • 17. Your Turn - Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x5 2 ) Distribute the monomial. ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3
  • 18. Your Turn - Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 Multiply each term.
  • 19. Your Turn - Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x 5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 Multiply each term. 8 3 5 4 20x + 10x − 30x + 10x
  • 20. Your Turn - Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x 5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 8 3 5 4 Put in descending 20x + 10x − 30x + 10x order and verify number of terms. (Both have 4 terms.)
  • 21. Your Turn - Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x 5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 8 3 5 4 Put in descending 20x + 10x − 30x + 10x order and verify number of terms. 8 5 4 3 (Both have 4 terms.) 20x − 30x + 10x + 10x
  • 22. Try It - Page 2 Multiply: 2 5 ( 2 2 4 4x w w − x + 6xw − 1 + 3x w 8 )
  • 23. Try It - Page 2 Multiply: 2 5 ( 2 2 4 4x w w − x + 6xw − 1 + 3x w 8 ) Distribute the monomial.
  • 24. Try It - Page 2 Multiply: 2 5 ( 4x w w − x + 6xw − 1 + 3x w 2 2 4 8 ) Distribute the monomial. 5 ( 2 ) 2 5 ( 2 ) 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w 2 5 2 2 5 2 5 ( 4 8 )
  • 25. Try It - Page 2 Multiply: 2 5 ( 4x w w − x + 6xw − 1 + 3x w 2 2 4 8 ) 5 ( 2 ) 2 5 ( 2 ) 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w 2 5 2 2 5 2 5 ( 4 8 ) Multiply each term.
  • 26. Try It - Page 2 Multiply: 2 5 ( 4x w w − x + 6xw − 1 + 3x w 2 2 4 8 ) 5 ( 2 ) 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w 2 5 2 2 5 ( 2 ) 2 5 2 5 ( 4 8 ) Multiply each term. 2 6 4 5 3 7 2 5 6 13 4x w − 4x w + 24x w − 4x w + 12x w Verify answer has 5 terms like original parenthesis.
  • 27. Try this one... Multiply: ( 2 3x 2x − 5x + 7 )
  • 28. Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) Distribute the monomial.
  • 29. Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) Distribute the monomial. ( ) 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 ) 2
  • 30. Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) ( ) 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 ) 2 Multiply each term.
  • 31. Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) ( ) 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 ) 2 Multiply each term. 3 2 6x − 15x + 21x
  • 32. Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b2 3 5 )
  • 33. Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) Distribute the monomial.
  • 34. Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) Distribute the monomial. ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b ) 2 2 3 2 2 2 3 2 2 5
  • 35. Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b ) 2 2 3 2 2 2 3 2 2 5 Multiply each term.
  • 36. Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b ) 2 2 3 2 2 2 3 2 2 5 Multiply each term. 5 2 4 5 2 7 −2a b − 6a b + 8a b
  • 37. Great job working all those problems! Proceed to Multiplying Polynomials Part 2.

Editor's Notes