SlideShare a Scribd company logo
MySQL
Without the SQL
Oh My!
Dave Stokes
@stoker
david.stokes@oracle.com
Elephantdolphin.blogger.com
OpensourceDBA.wordpress.com
2
Safe Harbor Agreement
THE FOLLOWING IS INTENDED TO OUTLINE OUR GENERAL PRODUCT
DIRECTION. IT IS INTENDED FOR INFORMATION PURPOSES ONLY, AND MAY
NOT BE INCORPORATED INTO ANY CONTRACT. IT IS NOT A COMMITMENT TO
DELIVER ANY MATERIAL, CODE, OR FUNCTIONALITY, AND SHOULD NOT BE
RELIED UPON IN MAKING PURCHASING DECISIONS. THE DEVELOPMENT,
RELEASE, AND TIMING OF ANY FEATURES OR FUNCTIONALITY DESCRIBED
FOR ORACLE'S PRODUCTS REMAINS AT THE SOLE DISCRETION OF ORACLE.
3
MySQL Community Edition
4
NoSQL & SQL
5
Together!
MySQL
Document
Store
Relational Databases
6
Relational Databases
● Original Goal was to save data with minimal duplication
● Disks were expensive
● … and slow
● 45 years old
● Introduced the concept of accessing many records with a single command
7
Relational Databases
● Data Integrity
○ Normalization
○ constraints (foreign keys, ...)
● Atomicity, Consistency, Isolation, Durability
○ ACID compliant
○ transactions
● SQL
○ powerful query language 8
Relational Databases
● Need to set up tables BEFORE use
● Relations, indexes, data normalization, query optimizations
● Hard to change on the fly
● Need a DBA or someone who has DBA skills
● This can be a chokepoint
9
NoSQL or Document Store
10
NoSQL or Document Store
● Schemaless
○ No schema design, no normalization, no foreign keys, no data types, …
○ Very quick initial development
● Flexible data structure
○ Embedded arrays or objects
○ Valid solution when natural data can not be modeled optimally into a
relational model
○ Objects persistence without the use of any ORM - *mapping object-
oriented*
11
NoSQL or JSON Document Store
● JSON
● close to frontend
● native in JS
● easy to learn
12
How DBAs see data as opposed to how Developers see data
{
"GNP" : 249704,
"Name" : "Belgium",
"government" : {
"GovernmentForm" :
"Constitutional Monarchy, Federation",
"HeadOfState" : "Philippe I"
},
"_id" : "BEL",
"IndepYear" : 1830,
"demographics" : {
"Population" : 10239000,
"LifeExpectancy" : 77.8000030517578
},
"geography" : {
"Region" : "Western Europe",
"SurfaceArea" : 30518,
"Continent" : "Europe"
}
}
13
What if there was a way to provide both
SQL and NoSQL on one stable platform that
has proven stability on well know
technology with a large Community and a
diverse ecosystem ?
With the MySQL Document
Store it is now an option!
14
A Solution for all
Developers:
schemaless
★ rapid prototyping
& simpler APIs
★ document model
★ transactions
Operations:
★ performance
management/visibility
★ robust replication,
backup, restore
★ comprehensive tooling
ecosystem
★ simpler application
schema upgrades 15
Business Owner:
★ don't lose my data ==
ACID trx
★ capture all my data =
extensible/schemaless
★ product on
schedule/time to
market = rapid
development
Built on the MySQL JSON Data type and Proven MySQL Server Technology 16
★ Provides a schema flexible JSON Document Store
★ No SQL required
★ No need to define all possible attributes, tables,
etc.
★ Uses new MySQL X DevAPI
★ Can leverage generated column to extract JSON
values into materialized columns that can be
indexed for fast SQL searches.
Built on the MySQL JSON Data type and Proven MySQL Server Technology 17
★ Document can be ~1GB
○ It's a column in a row of a table
★ Allows use of modern programming styles
○ No more embedded strings of SQL in your code
○ Easy to read
★ Also works with relational Tables
★ Proven MySQL Technology
★ C++
★ Java
★ .Net
★ Node.js
★ JavaScript
★ Python
★ PHP
○ Working with other Communities to help them support it too 18
Connectors for
★ Command Completion
★ Python, JavaScripts & SQL modes
★ Admin functions
★ New Util object
★ A new high-level session concept that can scale from single MySQL
Server to a multiple server environment
19
New MySQL Shell
★ Non-blocking, asynchronous calls follow common language patterns
★ Send out many queries and proicess other things until they return
★ Supports CRUD operations
★ Concentreate on basic funmctions
★ Easily scale from one server to InnoDB cluster w/o changing application!
20
New Model
21
X Protocol built on Google Protobufs
22
Architecture of both Old and New Protocols
23
How Your Application will work with InnoDB Cluster
But what does this look like in PHP?? 24
JavaScript 25
// Connecting to MySQL Server and working with a Collection
var mysqlx = require('mysqlx');
// Connect to server
var mySession = mysqlx.getSession( {
host: 'localhost', port: 33060,
user: 'user', password: 'password'} );
var myDb = mySession.getSchema('test');
// Create a new collection 'my_collection'
var myColl = myDb.createCollection('my_collection');
// Insert documents
myColl.add({_id: '1', name: 'Sakila', age: 15}).execute();
myColl.add({_id: '2', name: 'Susanne', age: 24}).execute();
myColl.add({_id: '3', name: 'User', age: 39}).execute();
// Find a document
var docs = myColl.find('name like :param1 AND age < :param2').limit(1).
bind('param1','S%').bind('param2',20).execute();
// Print document
print(docs.fetchOne());
// Drop the collection
myDb.dropCollection('my_collection');
No SQL!!
Python 26
# Connecting to MySQL Server and working with a Collection
from mysqlsh import mysqlx
# Connect to server
mySession = mysqlx.get_session( {
'host': 'localhost', 'port': 33060,
'user': 'user', 'password': 'password'} )
myDb = mySession.get_schema('test')
# Create a new collection 'my_collection'
myColl = myDb.create_collection('my_collection')
# Insert documents
myColl.add({'_id': '1', 'name': 'Sakila', 'age': 15}).execute()
myColl.add({'_id': '2', 'name': 'Susanne', 'age': 24}).execute()
myColl.add({'_id': '3', 'name': 'User', 'age': 39}).execute()
# Find a document
docs = myColl.find('name like :param1 AND age < :param2') 
.limit(1) 
.bind('param1','S%') 
.bind('param2',20) 
.execute()
# Print document
doc = docs.fetch_one()
print doc
Node.JS 27
// Connecting to MySQL Server and working with a Collection
var mysqlx = require('@mysql/xdevapi');
var db;
// Connect to server
mysqlx
.getSession({
user: 'user',
password: 'password',
host: 'localhost',
port: '33060',
})
.then(function (session) {
db = session.getSchema('test');
// Create a new collection 'my_collection'
return db.createCollection('my_collection');
})
.then(function (myColl) {
// Insert documents
return Promise
.all([
myColl.add({ name: 'Sakila', age: 15 }).execute(),
myColl.add({ name: 'Susanne', age: 24 }).execute(),
myColl.add({ name: 'User', age: 39 }).execute()
])
.then(function () {
// Find a document
return myColl
.find('name like :name && age < :age')
.bind({ name: 'S%', age: 20 })
.limit(1)
.execute(function (doc) {
// Print document
console.log(doc);
});
});
})
.then(function(docs) {
// Drop the collection
return db.dropCollection('my_collection');
})
.catch(function(err) {
// Handle error
});
C++ 28
// Connect to server
var mySession = MySQLX.GetSession("server=localhost;port=33060;user=user;password=password;");
var myDb = mySession.GetSchema("test");
// Create a new collection "my_collection"
var myColl = myDb.CreateCollection("my_collection");
// Insert documents
myColl.Add(new { name = "Sakila", age = 15}).Execute();
myColl.Add(new { name = "Susanne", age = 24}).Execute();
myColl.Add(new { name = "User", age = 39}).Execute();
// Find a document
var docs = myColl.Find("name like :param1 AND age < :param2").Limit(1)
.Bind("param1", "S%").Bind("param2", 20).Execute();
// Print document
Console.WriteLine(docs.FetchOne());
// Drop the collection
myDb.DropCollection("my_collection");
Java 29
// Connect to server
Session mySession = new
SessionFactory().getSession("mysqlx://localhost:33060/test?user=user&password=password");
Schema myDb = mySession.getSchema("test");
// Create a new collection 'my_collection'
Collection myColl = myDb.createCollection("my_collection");
// Insert documents
myColl.add("{"name":"Sakila", "age":15}").execute();
myColl.add("{"name":"Susanne", "age":24}").execute();
myColl.add("{"name":"User", "age":39}").execute();
// Find a document
DocResult docs = myColl.find("name like :name AND age < :age")
.bind("name", "S%").bind("age", 20).execute();
// Print document
DbDoc doc = docs.fetchOne();
System.out.println(doc);
// Drop the collection
myDB.dropCollection("test", "my_collection");
30
New Shell
Starting using MySQL in few minutes 31
Quickly add a document 32
Find that document 33
Fast modifications 34
Shell info 35
For this example, I will use the well known restaurants collection:
We need to dump the data to a file and
we will use the MySQL Shell
with the Python interpreter to load the data.
Migration from MongoDB to MySQL Document Store
36
Dump and load using MySQL Shell & Python
This example is inspired by @datacharmer's work: https://www.slideshare.net/datacharmer/mysql-documentstore
$ mongo quiet eval 'DBQuery.shellBatchSize=30000;
db.restaurants.find().shellPrint()' 
| perl -pe 's/(?:ObjectId|ISODate)(("[^"]+"))/ $1/g' > all_recs.json
37
Or use new bulk loader in 8.0.13
38
BSON Support
Now, it supports the conversion of the following additional BSON types:
■ Date
■ Timestamp
■ NumberDecimal
■ NumberLong
■ NumberInt
■ Regular Expression
■ Binary
39
> util.importJson("/path_to_file/neighborhoods_mongo.json",
{schema: "test", collection: "neighborhoods",
convertBsonTypes: true});
40
41
Let’s query
Too many records to show here … let’s limit it!
restaurants.find().limit(1)
42
More Examples!
restaurants.find().fields([“name”,”cuisine”]).limit(2
)
43
Comparing Syntax: MongoDB vs MYSQL
MongoDB:
> db.restaurants.find({"cuisine": "French",
"borough": { $not: /^Manhattan/} },
{"_id":0, "name": 1,"cuisine": 1, "borough": 1}).limit(2)
MySQL:
>restaurants.find(“cuisine=’French’ AND
borough!=’Manhattan’”).fields([“name”,”cuisine”,”borough”
]).limit(2)
44
CRUD Operations
45
Add a Document
46
Modify a Document
47
Remove a Document
48
Find a Document
49
MySQL Document Store Objects Summary
MySQL Document Store is Fully ACID Compliant 50
MySQL Document Store is Fully ACID Compliant 51
How Does It Work?? 52
What does a collection look like on the server ? 53
Every document has a unique identifier called the document ID, which can be
thought of as the equivalent of a table's primary key. The document ID value can
be manually assigned when adding a document.
If no value is assigned, a document ID is generated and assigned to the
document automatically !
Use getDocumentId() or getDocumentIds() to get _ids(s)
_id
54
Mapping to SQL Examples
createCollection('mycollection')
versus
CREATE TABLE `test`.`mycoll` (
doc JSON,
_id VARCHAR(32)
GENERATED ALWAYS AS (doc->>'$._id') STORED
PRIMARY KEY
) CHARSET utf8mb4;
55
Mapping to SQL Examples
mycollection.add({‘test’: 1234})
versus
INSERT INTO `test`.`mycoll` (doc)
VALUES ( JSON_OBJECT( 'test',1234));
56
More Mapping to SQL Examples
mycollection.find("test > 100")
Versus
SELECT doc
FROM `test`.`mycoll`
WHERE (JSON_EXTRACT(doc,'$.test') >100);
57
58
SQL and JSON Example
It's also possible to create indexes without using SQL syntax 59
SQL and JSON Example (3): explain 60
SQL and JSON Example (3): explain 61
SQL and JSON Example (4): add index 62
SQL and JSON Example (4): add index 63
[
{
"date": {
"$date": 1416009600000
},
"grade": "Z",
"score": 38
},
{
"date": {
"$date": 1398988800000
},
"grade": "A",
"score": 10
},
{
"date": {
"$date": 1362182400000
},
"grade": "A",
"score": 7
},
{
"date": {
"$date": 1328832000000
},
"grade": "A",
"score": 13
}
] 64
Embedded
Arrays of
values can be
messy to
traverse.
SQL and JSON Example (5): arrays 65
$.grades[0]
$.grades[1 to 2]
$.grades[first]
$.grades[last]
$.grades[first to last - 1]
66
Arrays are now simple
NoSQL as SQL 67
JSON_TABLE turns your un-
structured JSON data into a
temporary structured table!
NoSQL as SQL 68
This temporary structured table can
be treated like any other table --
LIMIT, WHERE, GROUP BY ...
69
More Sophisticated Analysis
Find the top 10 restaurants by grade for each cuisine 70
WITH cte1 AS
(SELECT doc->>"$.name" AS name,
doc->>"$.cuisine" AS cuisine,
(SELECT AVG(score) FROM
JSON_TABLE(doc, "$.grades[*]" COLUMNS
(score INT PATH "$.score")) AS r) AS avg_score
FROM restaurants)
SELECT *, RANK() OVER
(PARTITION BY cuisine ORDER BY avg_score DESC) AS `rank`
FROM cte1
ORDER BY `rank`, avg_score DESC LIMIT 10;
This query uses a Common Table Expression (CTE) and a Windowing Function to rank the
average scores of each restaurant, by each cuisine assembled in a JSON_TABLE
No SQL Consumed In This Query!! 71
$schema = $session->getSchema("world");
$table = $schema->getTable("city");
$row = $table->select('Name','District')
->where('District like :district')
->bind(['district' => 'Texas'])
->limit(25)
->execute()->fetchAll();
JSON Validation
72
JSON Validation
The Problem
Unlike strictly types relational databases there is no data normalization or ‘rigor’
applied to that data.
There is also no native way to do range checks
And there is no way have required fields
73
JSON-Schema.org
The Problem
Unlike strictly types relational databases there is no data normalization or ‘rigor’
applied to that data.
There is also no native way to do range checks
And there is no way have required fields
JSON-Shema.org is work to fix that
74
JSON Validation
set @s='{"type": "object",
"properties": {
"myage": {
"type" : "number",
"minimum": 28,
"maximum": 99
}
}
}';
set @d='{ "myage": 33}';
select
JSON_SCHEMA_VALID(@s,@d);
+--------------------------+
| JSON_SCHEMA_VALID(@s,@d) |
+--------------------------+
| 1 |
+--------------------------+
1 row in set (0.00 sec)
75
JSON Validation Report
select JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d))G
*************************** 1. row ***************************
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d)): {
"valid": false,
"reason": "The JSON document location '#/myage' failed requirement 'minimum' at
JSON Schema location '#/properties/myage'",
"schema-location": "#/properties/myage",
"document-location": "#/myage",
"schema-failed-keyword": "minimum"
}
76
JSON Check Constraint
CREATE TABLE `testx` (
`col` JSON,
CONSTRAINT `myage_inRange`
CHECK (JSON_SCHEMA_VALID('{"type": "object",
"properties": {
"myage": {
"type" : "number",
"minimum": 28,
"maximum": 99
}
},"required": ["myage"]
}',
`col`) = 1)
);
77
JSON Check Constraint
mysql> insert into testx values('{"myage":27}');
ERROR 3819 (HY000): Check constraint 'myage_inRange' is violated.
mysql> insert into testx values('{"myage":97}');
Query OK, 1 row affected (0.02 sec)
78
Multi Value Indexes
79
Index JSON Arrays
{ "user":"Bob", "user_id":31, "zipcode":[94477,94536] }
CREATE TABLE customers
( id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
custinfo JSON,
INDEX zips( (CAST(custinfo->'$.zip' AS UNSIGNED ARRAY)) )
);
Mutli Value Indexes allow you to go past the 1:1 relation to index the data in JSON
arrays. And there are three special functions what can make use of MVIs when
used on the right side of a WHERE clause -- MEMBER OF(), JSON_CONTAINS(),
and JSON_OVERLAPS()
80
Conclusion: What Do I Gain?
81
This is the best of the two worlds in one product !
● Data integrity
● ACID Compliant
● Transactions
● SQL
● Schemaless
● flexible data structure
● easy to start (CRUD)
82
Mutable Data!!
Reduce Many to many joins
Replace ‘stub’ tables
Change on the fly, aggregate new data
83
Non JSON Data Transforms to JSON
84
GeoJSON support too!
mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111
12.22222)'),2);
+-------------------------------------------------------------+
| ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2) |
+-------------------------------------------------------------+
| {"type": "Point", "coordinates": [11.11, 12.22]} |
+-------------------------------------------------------------+
85
New in MySQL 8.0
1. True Data Dictionary
2. Default UTF8MB4
3. Windowing Functions, CTEs, Lateral Derived Joins
4. InnoDB SKIPPED LOCK and NOWAIT
5. Instant Add Column
6. Histograms
7. Resource Groups
8. Better optimizer with new temporary table engine
9. True Descending Indexes
10.3D GIS
11.JSON Enhancements
86
Please buy my book!
If you deal with the JSON
Data Type or have an
interest in the MySQL
Document Store, this text is a
great guide with many
examples to help you
understand the complexities
and opportunities with a
native JSON Data Type –
Avalable on Amazon 87
Thanks!
Contact info:
Dave Stokes
David.Stokes@Oracle.com
@Stoker
slideshare.net/davidmstokes
Elepantdolphin.blogger.com
opensourcedba.Wordpress.com
88

More Related Content

What's hot (20)

PDF
ENIB 2015 2016 - CAI Web S02E03 - Forge JS 2/4 - MongoDB and NoSQL
Horacio Gonzalez
 
PPTX
Validating JSON -- Percona Live 2021 presentation
Dave Stokes
 
PDF
Scalaで実装してみる簡易ブロックチェーン
Hiroshi Ito
 
PPTX
Redis Use Patterns (DevconTLV June 2014)
Itamar Haber
 
PPTX
MongoDB - Sharded Cluster Tutorial
Jason Terpko
 
PPTX
MongoDB Chunks - Distribution, Splitting, and Merging
Jason Terpko
 
PDF
Indexing
Mike Dirolf
 
PDF
最近 node.js 來勢洶洶, 怎麼辦? 別怕, 我們也有秘密武器 RingoJS!
Liwei Chou
 
KEY
Redis in Practice
Noah Davis
 
PPTX
NoSQL in SQL - Lior Altarescu
Wix Engineering
 
PPTX
Working with NoSQL in a SQL Database (XDevApi)
Lior Altarescu
 
PPTX
Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat...
MongoDB
 
PDF
MongoDB Performance Tuning
MongoDB
 
PPTX
MongoDB: Comparing WiredTiger In-Memory Engine to Redis
Jason Terpko
 
PDF
OrientDB
aemadrid
 
PPTX
MongoDB Shell Tips & Tricks
MongoDB
 
PDF
Node.js - A Quick Tour II
Felix Geisendörfer
 
PPTX
Let's Build A Blockchain... in 40 minutes!
Michel Schudel
 
PDF
Dirty - How simple is your database?
Felix Geisendörfer
 
KEY
Node.js - As a networking tool
Felix Geisendörfer
 
ENIB 2015 2016 - CAI Web S02E03 - Forge JS 2/4 - MongoDB and NoSQL
Horacio Gonzalez
 
Validating JSON -- Percona Live 2021 presentation
Dave Stokes
 
Scalaで実装してみる簡易ブロックチェーン
Hiroshi Ito
 
Redis Use Patterns (DevconTLV June 2014)
Itamar Haber
 
MongoDB - Sharded Cluster Tutorial
Jason Terpko
 
MongoDB Chunks - Distribution, Splitting, and Merging
Jason Terpko
 
Indexing
Mike Dirolf
 
最近 node.js 來勢洶洶, 怎麼辦? 別怕, 我們也有秘密武器 RingoJS!
Liwei Chou
 
Redis in Practice
Noah Davis
 
NoSQL in SQL - Lior Altarescu
Wix Engineering
 
Working with NoSQL in a SQL Database (XDevApi)
Lior Altarescu
 
Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat...
MongoDB
 
MongoDB Performance Tuning
MongoDB
 
MongoDB: Comparing WiredTiger In-Memory Engine to Redis
Jason Terpko
 
OrientDB
aemadrid
 
MongoDB Shell Tips & Tricks
MongoDB
 
Node.js - A Quick Tour II
Felix Geisendörfer
 
Let's Build A Blockchain... in 40 minutes!
Michel Schudel
 
Dirty - How simple is your database?
Felix Geisendörfer
 
Node.js - As a networking tool
Felix Geisendörfer
 

Similar to MySQL Without the SQL - Oh My! August 2nd presentation at Mid Atlantic Developers Conference (20)

PDF
MySQL Without the SQL -- Oh My!
Data Con LA
 
PDF
Open Source World June '21 -- JSON Within a Relational Database
Dave Stokes
 
PDF
Json within a relational database
Dave Stokes
 
PPTX
Discover The Power of NoSQL + MySQL with MySQL
Dave Stokes
 
PDF
MySQL without the SQL -- Cascadia PHP
Dave Stokes
 
PPTX
Making MySQL Agile-ish
Dave Stokes
 
PDF
Node.js and the MySQL Document Store
Rui Quelhas
 
PDF
MySQL Document Store (Oracle Code Warsaw 2018)
Vittorio Cioe
 
PDF
Oracle Code Event - MySQL JSON Document Store
Mark Swarbrick
 
PPTX
MySQL Without the SQL -- Oh My! Longhorn PHP Conference
Dave Stokes
 
ODP
MySQL Without the MySQL -- Oh My!
Dave Stokes
 
PDF
MySQL Day Paris 2016 - MySQL as a Document Store
Olivier DASINI
 
PDF
Introduction to MySQL Document Store
Frederic Descamps
 
PDF
MySQL document_store
Giuseppe Maxia
 
PDF
MySQL Document Store
Mario Beck
 
PPTX
A Step by Step Introduction to the MySQL Document Store
Dave Stokes
 
PDF
MySQL Document Store - A Document Store with all the benefts of a Transactona...
Olivier DASINI
 
PDF
20171104 hk-py con-mysql-documentstore_v1
Ivan Ma
 
PDF
MySQL as a Document Store
Dave Stokes
 
PDF
Python and MySQL 8.0 Document Store
Frederic Descamps
 
MySQL Without the SQL -- Oh My!
Data Con LA
 
Open Source World June '21 -- JSON Within a Relational Database
Dave Stokes
 
Json within a relational database
Dave Stokes
 
Discover The Power of NoSQL + MySQL with MySQL
Dave Stokes
 
MySQL without the SQL -- Cascadia PHP
Dave Stokes
 
Making MySQL Agile-ish
Dave Stokes
 
Node.js and the MySQL Document Store
Rui Quelhas
 
MySQL Document Store (Oracle Code Warsaw 2018)
Vittorio Cioe
 
Oracle Code Event - MySQL JSON Document Store
Mark Swarbrick
 
MySQL Without the SQL -- Oh My! Longhorn PHP Conference
Dave Stokes
 
MySQL Without the MySQL -- Oh My!
Dave Stokes
 
MySQL Day Paris 2016 - MySQL as a Document Store
Olivier DASINI
 
Introduction to MySQL Document Store
Frederic Descamps
 
MySQL document_store
Giuseppe Maxia
 
MySQL Document Store
Mario Beck
 
A Step by Step Introduction to the MySQL Document Store
Dave Stokes
 
MySQL Document Store - A Document Store with all the benefts of a Transactona...
Olivier DASINI
 
20171104 hk-py con-mysql-documentstore_v1
Ivan Ma
 
MySQL as a Document Store
Dave Stokes
 
Python and MySQL 8.0 Document Store
Frederic Descamps
 
Ad

More from Dave Stokes (20)

PDF
Database basics for new-ish developers -- All Things Open October 18th 2021
Dave Stokes
 
PDF
Php &amp; my sql - how do pdo, mysq-li, and x devapi do what they do
Dave Stokes
 
PDF
Longhorn PHP - MySQL Indexes, Histograms, Locking Options, and Other Ways to ...
Dave Stokes
 
PDF
MySQL 8.0 New Features -- September 27th presentation for Open Source Summit
Dave Stokes
 
PDF
JavaScript and Friends August 20th, 20201 -- MySQL Shell and JavaScript
Dave Stokes
 
PDF
Dutch PHP Conference 2021 - MySQL Indexes and Histograms
Dave Stokes
 
PDF
Midwest PHP Presentation - New MSQL Features
Dave Stokes
 
PDF
Data Love Conference - Window Functions for Database Analytics
Dave Stokes
 
PPTX
Open Source 1010 and Quest InSync presentations March 30th, 2021 on MySQL Ind...
Dave Stokes
 
PPTX
Confoo 2021 -- MySQL New Features
Dave Stokes
 
PPTX
Confoo 2021 - MySQL Indexes & Histograms
Dave Stokes
 
PDF
MySQL Replication Update - DEbconf 2020 presentation
Dave Stokes
 
PDF
MySQL 8.0 Operational Changes
Dave Stokes
 
PPTX
cPanel now supports MySQL 8.0 - My Top Seven Features
Dave Stokes
 
PDF
Confoo 202 - MySQL Group Replication and ReplicaSet
Dave Stokes
 
PPTX
PHP UK 2020 Tutorial: MySQL Indexes, Histograms And other ways To Speed Up Yo...
Dave Stokes
 
PDF
MySQL New Features -- Sunshine PHP 2020 Presentation
Dave Stokes
 
PPTX
MySQL 8.0 from December London Open Source Database Meetup
Dave Stokes
 
PPTX
MySQL 8 - UKOUG Techfest Brighton December 2nd, 2019
Dave Stokes
 
PPTX
Upgrading to MySQL 8.0 webinar slides November 27th, 2019
Dave Stokes
 
Database basics for new-ish developers -- All Things Open October 18th 2021
Dave Stokes
 
Php &amp; my sql - how do pdo, mysq-li, and x devapi do what they do
Dave Stokes
 
Longhorn PHP - MySQL Indexes, Histograms, Locking Options, and Other Ways to ...
Dave Stokes
 
MySQL 8.0 New Features -- September 27th presentation for Open Source Summit
Dave Stokes
 
JavaScript and Friends August 20th, 20201 -- MySQL Shell and JavaScript
Dave Stokes
 
Dutch PHP Conference 2021 - MySQL Indexes and Histograms
Dave Stokes
 
Midwest PHP Presentation - New MSQL Features
Dave Stokes
 
Data Love Conference - Window Functions for Database Analytics
Dave Stokes
 
Open Source 1010 and Quest InSync presentations March 30th, 2021 on MySQL Ind...
Dave Stokes
 
Confoo 2021 -- MySQL New Features
Dave Stokes
 
Confoo 2021 - MySQL Indexes & Histograms
Dave Stokes
 
MySQL Replication Update - DEbconf 2020 presentation
Dave Stokes
 
MySQL 8.0 Operational Changes
Dave Stokes
 
cPanel now supports MySQL 8.0 - My Top Seven Features
Dave Stokes
 
Confoo 202 - MySQL Group Replication and ReplicaSet
Dave Stokes
 
PHP UK 2020 Tutorial: MySQL Indexes, Histograms And other ways To Speed Up Yo...
Dave Stokes
 
MySQL New Features -- Sunshine PHP 2020 Presentation
Dave Stokes
 
MySQL 8.0 from December London Open Source Database Meetup
Dave Stokes
 
MySQL 8 - UKOUG Techfest Brighton December 2nd, 2019
Dave Stokes
 
Upgrading to MySQL 8.0 webinar slides November 27th, 2019
Dave Stokes
 
Ad

Recently uploaded (20)

PPTX
internet básico presentacion es una red global
70965857
 
PPT
Computer Securityyyyyyyy - Chapter 2.ppt
SolomonSB
 
PDF
The-Hidden-Dangers-of-Skipping-Penetration-Testing.pdf.pdf
naksh4thra
 
PDF
Build Fast, Scale Faster: Milvus vs. Zilliz Cloud for Production-Ready AI
Zilliz
 
PPTX
Lec15_Mutability Immutability-converted.pptx
khanjahanzaib1
 
PPTX
一比一原版(LaTech毕业证)路易斯安那理工大学毕业证如何办理
Taqyea
 
PPTX
PM200.pptxghjgfhjghjghjghjghjghjghjghjghjghj
breadpaan921
 
PPTX
ONLINE BIRTH CERTIFICATE APPLICATION SYSYTEM PPT.pptx
ShyamasreeDutta
 
DOCX
Custom vs. Off-the-Shelf Banking Software
KristenCarter35
 
PPTX
L1A Season 1 Guide made by A hegy Eng Grammar fixed
toszolder91
 
PDF
Apple_Environmental_Progress_Report_2025.pdf
yiukwong
 
PPTX
西班牙武康大学毕业证书{UCAMOfferUCAM成绩单水印}原版制作
Taqyea
 
PPTX
Orchestrating things in Angular application
Peter Abraham
 
PPTX
sajflsajfljsdfljslfjslfsdfas;fdsfksadfjlsdflkjslgfs;lfjlsajfl;sajfasfd.pptx
theknightme
 
PPTX
英国假毕业证诺森比亚大学成绩单GPA修改UNN学生卡网上可查学历成绩单
Taqyea
 
PDF
𝐁𝐔𝐊𝐓𝐈 𝐊𝐄𝐌𝐄𝐍𝐀𝐍𝐆𝐀𝐍 𝐊𝐈𝐏𝐄𝐑𝟒𝐃 𝐇𝐀𝐑𝐈 𝐈𝐍𝐈 𝟐𝟎𝟐𝟓
hokimamad0
 
PDF
Azure_DevOps introduction for CI/CD and Agile
henrymails
 
PPTX
04 Output 1 Instruments & Tools (3).pptx
GEDYIONGebre
 
PPT
introductio to computers by arthur janry
RamananMuthukrishnan
 
PPTX
Optimization_Techniques_ML_Presentation.pptx
farispalayi
 
internet básico presentacion es una red global
70965857
 
Computer Securityyyyyyyy - Chapter 2.ppt
SolomonSB
 
The-Hidden-Dangers-of-Skipping-Penetration-Testing.pdf.pdf
naksh4thra
 
Build Fast, Scale Faster: Milvus vs. Zilliz Cloud for Production-Ready AI
Zilliz
 
Lec15_Mutability Immutability-converted.pptx
khanjahanzaib1
 
一比一原版(LaTech毕业证)路易斯安那理工大学毕业证如何办理
Taqyea
 
PM200.pptxghjgfhjghjghjghjghjghjghjghjghjghj
breadpaan921
 
ONLINE BIRTH CERTIFICATE APPLICATION SYSYTEM PPT.pptx
ShyamasreeDutta
 
Custom vs. Off-the-Shelf Banking Software
KristenCarter35
 
L1A Season 1 Guide made by A hegy Eng Grammar fixed
toszolder91
 
Apple_Environmental_Progress_Report_2025.pdf
yiukwong
 
西班牙武康大学毕业证书{UCAMOfferUCAM成绩单水印}原版制作
Taqyea
 
Orchestrating things in Angular application
Peter Abraham
 
sajflsajfljsdfljslfjslfsdfas;fdsfksadfjlsdflkjslgfs;lfjlsajfl;sajfasfd.pptx
theknightme
 
英国假毕业证诺森比亚大学成绩单GPA修改UNN学生卡网上可查学历成绩单
Taqyea
 
𝐁𝐔𝐊𝐓𝐈 𝐊𝐄𝐌𝐄𝐍𝐀𝐍𝐆𝐀𝐍 𝐊𝐈𝐏𝐄𝐑𝟒𝐃 𝐇𝐀𝐑𝐈 𝐈𝐍𝐈 𝟐𝟎𝟐𝟓
hokimamad0
 
Azure_DevOps introduction for CI/CD and Agile
henrymails
 
04 Output 1 Instruments & Tools (3).pptx
GEDYIONGebre
 
introductio to computers by arthur janry
RamananMuthukrishnan
 
Optimization_Techniques_ML_Presentation.pptx
farispalayi
 

MySQL Without the SQL - Oh My! August 2nd presentation at Mid Atlantic Developers Conference

  • 1. MySQL Without the SQL Oh My! Dave Stokes @stoker [email protected] Elephantdolphin.blogger.com OpensourceDBA.wordpress.com
  • 2. 2
  • 3. Safe Harbor Agreement THE FOLLOWING IS INTENDED TO OUTLINE OUR GENERAL PRODUCT DIRECTION. IT IS INTENDED FOR INFORMATION PURPOSES ONLY, AND MAY NOT BE INCORPORATED INTO ANY CONTRACT. IT IS NOT A COMMITMENT TO DELIVER ANY MATERIAL, CODE, OR FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON IN MAKING PURCHASING DECISIONS. THE DEVELOPMENT, RELEASE, AND TIMING OF ANY FEATURES OR FUNCTIONALITY DESCRIBED FOR ORACLE'S PRODUCTS REMAINS AT THE SOLE DISCRETION OF ORACLE. 3
  • 7. Relational Databases ● Original Goal was to save data with minimal duplication ● Disks were expensive ● … and slow ● 45 years old ● Introduced the concept of accessing many records with a single command 7
  • 8. Relational Databases ● Data Integrity ○ Normalization ○ constraints (foreign keys, ...) ● Atomicity, Consistency, Isolation, Durability ○ ACID compliant ○ transactions ● SQL ○ powerful query language 8
  • 9. Relational Databases ● Need to set up tables BEFORE use ● Relations, indexes, data normalization, query optimizations ● Hard to change on the fly ● Need a DBA or someone who has DBA skills ● This can be a chokepoint 9
  • 10. NoSQL or Document Store 10
  • 11. NoSQL or Document Store ● Schemaless ○ No schema design, no normalization, no foreign keys, no data types, … ○ Very quick initial development ● Flexible data structure ○ Embedded arrays or objects ○ Valid solution when natural data can not be modeled optimally into a relational model ○ Objects persistence without the use of any ORM - *mapping object- oriented* 11
  • 12. NoSQL or JSON Document Store ● JSON ● close to frontend ● native in JS ● easy to learn 12
  • 13. How DBAs see data as opposed to how Developers see data { "GNP" : 249704, "Name" : "Belgium", "government" : { "GovernmentForm" : "Constitutional Monarchy, Federation", "HeadOfState" : "Philippe I" }, "_id" : "BEL", "IndepYear" : 1830, "demographics" : { "Population" : 10239000, "LifeExpectancy" : 77.8000030517578 }, "geography" : { "Region" : "Western Europe", "SurfaceArea" : 30518, "Continent" : "Europe" } } 13
  • 14. What if there was a way to provide both SQL and NoSQL on one stable platform that has proven stability on well know technology with a large Community and a diverse ecosystem ? With the MySQL Document Store it is now an option! 14
  • 15. A Solution for all Developers: schemaless ★ rapid prototyping & simpler APIs ★ document model ★ transactions Operations: ★ performance management/visibility ★ robust replication, backup, restore ★ comprehensive tooling ecosystem ★ simpler application schema upgrades 15 Business Owner: ★ don't lose my data == ACID trx ★ capture all my data = extensible/schemaless ★ product on schedule/time to market = rapid development
  • 16. Built on the MySQL JSON Data type and Proven MySQL Server Technology 16 ★ Provides a schema flexible JSON Document Store ★ No SQL required ★ No need to define all possible attributes, tables, etc. ★ Uses new MySQL X DevAPI ★ Can leverage generated column to extract JSON values into materialized columns that can be indexed for fast SQL searches.
  • 17. Built on the MySQL JSON Data type and Proven MySQL Server Technology 17 ★ Document can be ~1GB ○ It's a column in a row of a table ★ Allows use of modern programming styles ○ No more embedded strings of SQL in your code ○ Easy to read ★ Also works with relational Tables ★ Proven MySQL Technology
  • 18. ★ C++ ★ Java ★ .Net ★ Node.js ★ JavaScript ★ Python ★ PHP ○ Working with other Communities to help them support it too 18 Connectors for
  • 19. ★ Command Completion ★ Python, JavaScripts & SQL modes ★ Admin functions ★ New Util object ★ A new high-level session concept that can scale from single MySQL Server to a multiple server environment 19 New MySQL Shell
  • 20. ★ Non-blocking, asynchronous calls follow common language patterns ★ Send out many queries and proicess other things until they return ★ Supports CRUD operations ★ Concentreate on basic funmctions ★ Easily scale from one server to InnoDB cluster w/o changing application! 20 New Model
  • 21. 21 X Protocol built on Google Protobufs
  • 22. 22 Architecture of both Old and New Protocols
  • 23. 23 How Your Application will work with InnoDB Cluster
  • 24. But what does this look like in PHP?? 24
  • 25. JavaScript 25 // Connecting to MySQL Server and working with a Collection var mysqlx = require('mysqlx'); // Connect to server var mySession = mysqlx.getSession( { host: 'localhost', port: 33060, user: 'user', password: 'password'} ); var myDb = mySession.getSchema('test'); // Create a new collection 'my_collection' var myColl = myDb.createCollection('my_collection'); // Insert documents myColl.add({_id: '1', name: 'Sakila', age: 15}).execute(); myColl.add({_id: '2', name: 'Susanne', age: 24}).execute(); myColl.add({_id: '3', name: 'User', age: 39}).execute(); // Find a document var docs = myColl.find('name like :param1 AND age < :param2').limit(1). bind('param1','S%').bind('param2',20).execute(); // Print document print(docs.fetchOne()); // Drop the collection myDb.dropCollection('my_collection'); No SQL!!
  • 26. Python 26 # Connecting to MySQL Server and working with a Collection from mysqlsh import mysqlx # Connect to server mySession = mysqlx.get_session( { 'host': 'localhost', 'port': 33060, 'user': 'user', 'password': 'password'} ) myDb = mySession.get_schema('test') # Create a new collection 'my_collection' myColl = myDb.create_collection('my_collection') # Insert documents myColl.add({'_id': '1', 'name': 'Sakila', 'age': 15}).execute() myColl.add({'_id': '2', 'name': 'Susanne', 'age': 24}).execute() myColl.add({'_id': '3', 'name': 'User', 'age': 39}).execute() # Find a document docs = myColl.find('name like :param1 AND age < :param2') .limit(1) .bind('param1','S%') .bind('param2',20) .execute() # Print document doc = docs.fetch_one() print doc
  • 27. Node.JS 27 // Connecting to MySQL Server and working with a Collection var mysqlx = require('@mysql/xdevapi'); var db; // Connect to server mysqlx .getSession({ user: 'user', password: 'password', host: 'localhost', port: '33060', }) .then(function (session) { db = session.getSchema('test'); // Create a new collection 'my_collection' return db.createCollection('my_collection'); }) .then(function (myColl) { // Insert documents return Promise .all([ myColl.add({ name: 'Sakila', age: 15 }).execute(), myColl.add({ name: 'Susanne', age: 24 }).execute(), myColl.add({ name: 'User', age: 39 }).execute() ]) .then(function () { // Find a document return myColl .find('name like :name && age < :age') .bind({ name: 'S%', age: 20 }) .limit(1) .execute(function (doc) { // Print document console.log(doc); }); }); }) .then(function(docs) { // Drop the collection return db.dropCollection('my_collection'); }) .catch(function(err) { // Handle error });
  • 28. C++ 28 // Connect to server var mySession = MySQLX.GetSession("server=localhost;port=33060;user=user;password=password;"); var myDb = mySession.GetSchema("test"); // Create a new collection "my_collection" var myColl = myDb.CreateCollection("my_collection"); // Insert documents myColl.Add(new { name = "Sakila", age = 15}).Execute(); myColl.Add(new { name = "Susanne", age = 24}).Execute(); myColl.Add(new { name = "User", age = 39}).Execute(); // Find a document var docs = myColl.Find("name like :param1 AND age < :param2").Limit(1) .Bind("param1", "S%").Bind("param2", 20).Execute(); // Print document Console.WriteLine(docs.FetchOne()); // Drop the collection myDb.DropCollection("my_collection");
  • 29. Java 29 // Connect to server Session mySession = new SessionFactory().getSession("mysqlx://localhost:33060/test?user=user&password=password"); Schema myDb = mySession.getSchema("test"); // Create a new collection 'my_collection' Collection myColl = myDb.createCollection("my_collection"); // Insert documents myColl.add("{"name":"Sakila", "age":15}").execute(); myColl.add("{"name":"Susanne", "age":24}").execute(); myColl.add("{"name":"User", "age":39}").execute(); // Find a document DocResult docs = myColl.find("name like :name AND age < :age") .bind("name", "S%").bind("age", 20).execute(); // Print document DbDoc doc = docs.fetchOne(); System.out.println(doc); // Drop the collection myDB.dropCollection("test", "my_collection");
  • 31. Starting using MySQL in few minutes 31
  • 32. Quickly add a document 32
  • 36. For this example, I will use the well known restaurants collection: We need to dump the data to a file and we will use the MySQL Shell with the Python interpreter to load the data. Migration from MongoDB to MySQL Document Store 36
  • 37. Dump and load using MySQL Shell & Python This example is inspired by @datacharmer's work: https://www.slideshare.net/datacharmer/mysql-documentstore $ mongo quiet eval 'DBQuery.shellBatchSize=30000; db.restaurants.find().shellPrint()' | perl -pe 's/(?:ObjectId|ISODate)(("[^"]+"))/ $1/g' > all_recs.json 37
  • 38. Or use new bulk loader in 8.0.13 38
  • 39. BSON Support Now, it supports the conversion of the following additional BSON types: ■ Date ■ Timestamp ■ NumberDecimal ■ NumberLong ■ NumberInt ■ Regular Expression ■ Binary 39 > util.importJson("/path_to_file/neighborhoods_mongo.json", {schema: "test", collection: "neighborhoods", convertBsonTypes: true});
  • 40. 40
  • 41. 41 Let’s query Too many records to show here … let’s limit it! restaurants.find().limit(1)
  • 43. 43 Comparing Syntax: MongoDB vs MYSQL MongoDB: > db.restaurants.find({"cuisine": "French", "borough": { $not: /^Manhattan/} }, {"_id":0, "name": 1,"cuisine": 1, "borough": 1}).limit(2) MySQL: >restaurants.find(“cuisine=’French’ AND borough!=’Manhattan’”).fields([“name”,”cuisine”,”borough” ]).limit(2)
  • 49. 49 MySQL Document Store Objects Summary
  • 50. MySQL Document Store is Fully ACID Compliant 50
  • 51. MySQL Document Store is Fully ACID Compliant 51
  • 52. How Does It Work?? 52
  • 53. What does a collection look like on the server ? 53
  • 54. Every document has a unique identifier called the document ID, which can be thought of as the equivalent of a table's primary key. The document ID value can be manually assigned when adding a document. If no value is assigned, a document ID is generated and assigned to the document automatically ! Use getDocumentId() or getDocumentIds() to get _ids(s) _id 54
  • 55. Mapping to SQL Examples createCollection('mycollection') versus CREATE TABLE `test`.`mycoll` ( doc JSON, _id VARCHAR(32) GENERATED ALWAYS AS (doc->>'$._id') STORED PRIMARY KEY ) CHARSET utf8mb4; 55
  • 56. Mapping to SQL Examples mycollection.add({‘test’: 1234}) versus INSERT INTO `test`.`mycoll` (doc) VALUES ( JSON_OBJECT( 'test',1234)); 56
  • 57. More Mapping to SQL Examples mycollection.find("test > 100") Versus SELECT doc FROM `test`.`mycoll` WHERE (JSON_EXTRACT(doc,'$.test') >100); 57
  • 58. 58 SQL and JSON Example
  • 59. It's also possible to create indexes without using SQL syntax 59
  • 60. SQL and JSON Example (3): explain 60
  • 61. SQL and JSON Example (3): explain 61
  • 62. SQL and JSON Example (4): add index 62
  • 63. SQL and JSON Example (4): add index 63
  • 64. [ { "date": { "$date": 1416009600000 }, "grade": "Z", "score": 38 }, { "date": { "$date": 1398988800000 }, "grade": "A", "score": 10 }, { "date": { "$date": 1362182400000 }, "grade": "A", "score": 7 }, { "date": { "$date": 1328832000000 }, "grade": "A", "score": 13 } ] 64 Embedded Arrays of values can be messy to traverse.
  • 65. SQL and JSON Example (5): arrays 65
  • 67. NoSQL as SQL 67 JSON_TABLE turns your un- structured JSON data into a temporary structured table!
  • 68. NoSQL as SQL 68 This temporary structured table can be treated like any other table -- LIMIT, WHERE, GROUP BY ...
  • 70. Find the top 10 restaurants by grade for each cuisine 70 WITH cte1 AS (SELECT doc->>"$.name" AS name, doc->>"$.cuisine" AS cuisine, (SELECT AVG(score) FROM JSON_TABLE(doc, "$.grades[*]" COLUMNS (score INT PATH "$.score")) AS r) AS avg_score FROM restaurants) SELECT *, RANK() OVER (PARTITION BY cuisine ORDER BY avg_score DESC) AS `rank` FROM cte1 ORDER BY `rank`, avg_score DESC LIMIT 10; This query uses a Common Table Expression (CTE) and a Windowing Function to rank the average scores of each restaurant, by each cuisine assembled in a JSON_TABLE
  • 71. No SQL Consumed In This Query!! 71 $schema = $session->getSchema("world"); $table = $schema->getTable("city"); $row = $table->select('Name','District') ->where('District like :district') ->bind(['district' => 'Texas']) ->limit(25) ->execute()->fetchAll();
  • 73. JSON Validation The Problem Unlike strictly types relational databases there is no data normalization or ‘rigor’ applied to that data. There is also no native way to do range checks And there is no way have required fields 73
  • 74. JSON-Schema.org The Problem Unlike strictly types relational databases there is no data normalization or ‘rigor’ applied to that data. There is also no native way to do range checks And there is no way have required fields JSON-Shema.org is work to fix that 74
  • 75. JSON Validation set @s='{"type": "object", "properties": { "myage": { "type" : "number", "minimum": 28, "maximum": 99 } } }'; set @d='{ "myage": 33}'; select JSON_SCHEMA_VALID(@s,@d); +--------------------------+ | JSON_SCHEMA_VALID(@s,@d) | +--------------------------+ | 1 | +--------------------------+ 1 row in set (0.00 sec) 75
  • 76. JSON Validation Report select JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d))G *************************** 1. row *************************** JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d)): { "valid": false, "reason": "The JSON document location '#/myage' failed requirement 'minimum' at JSON Schema location '#/properties/myage'", "schema-location": "#/properties/myage", "document-location": "#/myage", "schema-failed-keyword": "minimum" } 76
  • 77. JSON Check Constraint CREATE TABLE `testx` ( `col` JSON, CONSTRAINT `myage_inRange` CHECK (JSON_SCHEMA_VALID('{"type": "object", "properties": { "myage": { "type" : "number", "minimum": 28, "maximum": 99 } },"required": ["myage"] }', `col`) = 1) ); 77
  • 78. JSON Check Constraint mysql> insert into testx values('{"myage":27}'); ERROR 3819 (HY000): Check constraint 'myage_inRange' is violated. mysql> insert into testx values('{"myage":97}'); Query OK, 1 row affected (0.02 sec) 78
  • 80. Index JSON Arrays { "user":"Bob", "user_id":31, "zipcode":[94477,94536] } CREATE TABLE customers ( id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY, modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, custinfo JSON, INDEX zips( (CAST(custinfo->'$.zip' AS UNSIGNED ARRAY)) ) ); Mutli Value Indexes allow you to go past the 1:1 relation to index the data in JSON arrays. And there are three special functions what can make use of MVIs when used on the right side of a WHERE clause -- MEMBER OF(), JSON_CONTAINS(), and JSON_OVERLAPS() 80
  • 81. Conclusion: What Do I Gain? 81
  • 82. This is the best of the two worlds in one product ! ● Data integrity ● ACID Compliant ● Transactions ● SQL ● Schemaless ● flexible data structure ● easy to start (CRUD) 82
  • 83. Mutable Data!! Reduce Many to many joins Replace ‘stub’ tables Change on the fly, aggregate new data 83
  • 84. Non JSON Data Transforms to JSON 84
  • 85. GeoJSON support too! mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2); +-------------------------------------------------------------+ | ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2) | +-------------------------------------------------------------+ | {"type": "Point", "coordinates": [11.11, 12.22]} | +-------------------------------------------------------------+ 85
  • 86. New in MySQL 8.0 1. True Data Dictionary 2. Default UTF8MB4 3. Windowing Functions, CTEs, Lateral Derived Joins 4. InnoDB SKIPPED LOCK and NOWAIT 5. Instant Add Column 6. Histograms 7. Resource Groups 8. Better optimizer with new temporary table engine 9. True Descending Indexes 10.3D GIS 11.JSON Enhancements 86
  • 87. Please buy my book! If you deal with the JSON Data Type or have an interest in the MySQL Document Store, this text is a great guide with many examples to help you understand the complexities and opportunities with a native JSON Data Type – Avalable on Amazon 87