SlideShare a Scribd company logo
MySQL
Without the SQL
Oh My!
Dave Stokes
@stoker
david.stokes@oracle.com
Elephantdolphin.blogger.com
Slides -> slideshare.net/DaveStokes
2
Safe Harbor Agreement
THE FOLLOWING IS INTENDED TO OUTLINE OUR GENERAL PRODUCT
DIRECTION. IT IS INTENDED FOR INFORMATION PURPOSES ONLY,
AND MAY NOT BE INCORPORATED INTO ANY CONTRACT. IT IS NOT A
COMMITMENT TO DELIVER ANY MATERIAL, CODE, OR
FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON IN MAKING
PURCHASING DECISIONS. THE DEVELOPMENT, RELEASE, AND
TIMING OF ANY FEATURES OR FUNCTIONALITY DESCRIBED FOR
ORACLE'S PRODUCTS REMAINS AT THE SOLE DISCRETION OF
ORACLE.
3
MySQL Community Edition
4
NoSQL & SQL
5
Together!
MySQL
Document
Store
Relational Databases
6
Relational Databases
● Original Goal was to save data with minimal duplication
● Disks were expensive
● … and slow
● 45 years old
● Introduced the concept of accessing many records with a single command
7
Relational Databases
● Data Integrity
○ Normalization
○ constraints (foreign keys, ...)
● Atomicity, Consistency, Isolation, Durability
○ ACID compliant
○ transactions
● SQL
○ powerful query language 8
Relational Databases
● Need to set up tables BEFORE use
● Relations, indexes, data normalization, query optimizations
● Hard to change on the fly
● Need a DBA or someone who has DBA skills
● This can be a chokepoint
9
NoSQL or Document Store
10
NoSQL or Document Store
● Schemaless
○ No schema design, no normalization, no foreign keys, no data types, …
○ Very quick initial development
● Flexible data structure
○ Embedded arrays or objects
○ Valid solution when natural data can not be modeled optimally into a
relational model
○ Objects persistence without the use of any ORM - *mapping
object-oriented*
11
NoSQL or JSON Document Store
● JSON
● close to frontend
● native in JS
● easy to learn
12
How DBAs see data as opposed to how Developers see data
{
"GNP" : 249704,
"Name" : "Belgium",
"government" : {
"GovernmentForm" :
"Constitutional Monarchy, Federation",
"HeadOfState" : "Philippe I"
},
"_id" : "BEL",
"IndepYear" : 1830,
"demographics" : {
"Population" : 10239000,
"LifeExpectancy" : 77.8000030517578
},
"geography" : {
"Region" : "Western Europe",
"SurfaceArea" : 30518,
"Continent" : "Europe"
}
}
13
What if there was a way to provide both SQL
and NoSQL on one stable platform that has
proven stability on well know technology
with a large Community and a diverse
ecosystem ?
With the MySQL Document
Store it is now an option!
14
A Solution for all
Developers:
schemaless
★ rapid prototyping &
simpler APIs
★ document model
★ transactions
Operations:
★ performance
management/visibility
★ robust replication, backup,
restore
★ comprehensive tooling
ecosystem
★ simpler application schema
upgrades
15
Business Owner:
★ don't lose my data == ACID
trx
★ capture all my data =
extensible/schemaless
★ product on schedule/time to
market = rapid development
Built on the MySQL JSON Data type and Proven MySQL Server Technology 16
★ Provides a schema flexible JSON Document Store
★ No SQL required
★ No need to define all possible attributes, tables, etc.
★ Uses new MySQL X DevAPI
★ Can leverage generated column to extract JSON values
into materialized columns that can be indexed for fast
SQL searches.
Built on the MySQL JSON Data type and Proven MySQL Server Technology 17
★ Document can be ~1GB
○ It's a column in a row of a table
★ Allows use of modern programming styles
○ No more embedded strings of SQL in your
code
○ Easy to read
★ Also works with relational Tables
★ Proven MySQL Technology
★ C++
★ Java
★ .Net
★ Node.js
★ JavaScript
★ Python
★ PHP
○ Working with other Communities to help them support it too 18
Connectors for
★ Command Completion
★ Python, JavaScripts & SQL modes
★ Admin functions
★ New Util object
★ A new high-level session concept that can scale from single MySQL
Server to a multiple server environment
19
New MySQL Shell
★ Non-blocking, asynchronous calls follow common language patterns
★ Send out many queries and process other things until they return
★ Supports CRUD operations
★ Concentrate on basic functions
★ Easily scale from one server to InnoDB cluster w/o changing application!
20
New Model
21
X Protocol built on Google Protobufs
Not an
ORM!!
22
Architecture of both Old and New Protocols
23
How Your Application will work with InnoDB Cluster
But what does this look like in PHP?? 24
JavaScript 25
// Connecting to MySQL Server and working with a Collection
var mysqlx = require('mysqlx');
// Connect to server
var mySession = mysqlx.getSession( {
host: 'localhost', port: 33060,
user: 'user', password: 'password'} );
var myDb = mySession.getSchema('test');
// Create a new collection 'my_collection'
var myColl = myDb.createCollection('my_collection');
// Insert documents
myColl.add({_id: '1', name: 'Sakila', age: 15}).execute();
myColl.add({_id: '2', name: 'Susanne', age: 24}).execute();
myColl.add({_id: '3', name: 'User', age: 39}).execute();
// Find a document
var docs = myColl.find('name like :param1 AND age < :param2').limit(1).
bind('param1','S%').bind('param2',20).execute();
// Print document
print(docs.fetchOne());
// Drop the collection
myDb.dropCollection('my_collection');
No SQL!!
Python 26
# Connecting to MySQL Server and working with a Collection
from mysqlsh import mysqlx
# Connect to server
mySession = mysqlx.get_session( {
'host': 'localhost', 'port': 33060,
'user': 'user', 'password': 'password'} )
myDb = mySession.get_schema('test')
# Create a new collection 'my_collection'
myColl = myDb.create_collection('my_collection')
# Insert documents
myColl.add({'_id': '1', 'name': 'Sakila', 'age': 15}).execute()
myColl.add({'_id': '2', 'name': 'Susanne', 'age': 24}).execute()
myColl.add({'_id': '3', 'name': 'User', 'age': 39}).execute()
# Find a document
docs = myColl.find('name like :param1 AND age < :param2') 
.limit(1) 
.bind('param1','S%') 
.bind('param2',20) 
.execute()
# Print document
doc = docs.fetch_one()
print doc
Node.JS 27
// Connecting to MySQL Server and working with a Collection
var mysqlx = require('@mysql/xdevapi');
var db;
// Connect to server
mysqlx
.getSession({
user: 'user',
password: 'password',
host: 'localhost',
port: '33060',
})
.then(function (session) {
db = session.getSchema('test');
// Create a new collection 'my_collection'
return db.createCollection('my_collection');
})
.then(function (myColl) {
// Insert documents
return Promise
.all([
myColl.add({ name: 'Sakila', age: 15 }).execute(),
myColl.add({ name: 'Susanne', age: 24 }).execute(),
myColl.add({ name: 'User', age: 39 }).execute()
])
.then(function () {
// Find a document
return myColl
.find('name like :name && age < :age')
.bind({ name: 'S%', age: 20 })
.limit(1)
.execute(function (doc) {
// Print document
console.log(doc);
});
});
})
.then(function(docs) {
// Drop the collection
return db.dropCollection('my_collection');
})
.catch(function(err) {
// Handle error
});
C++ 28
// Connect to server
var mySession = MySQLX.GetSession("server=localhost;port=33060;user=user;password=password;");
var myDb = mySession.GetSchema("test");
// Create a new collection "my_collection"
var myColl = myDb.CreateCollection("my_collection");
// Insert documents
myColl.Add(new { name = "Sakila", age = 15}).Execute();
myColl.Add(new { name = "Susanne", age = 24}).Execute();
myColl.Add(new { name = "User", age = 39}).Execute();
// Find a document
var docs = myColl.Find("name like :param1 AND age < :param2").Limit(1)
.Bind("param1", "S%").Bind("param2", 20).Execute();
// Print document
Console.WriteLine(docs.FetchOne());
// Drop the collection
myDb.DropCollection("my_collection");
Java 29
// Connect to server
Session mySession = new
SessionFactory().getSession("mysqlx://localhost:33060/test?user=user&password=password");
Schema myDb = mySession.getSchema("test");
// Create a new collection 'my_collection'
Collection myColl = myDb.createCollection("my_collection");
// Insert documents
myColl.add("{"name":"Sakila", "age":15}").execute();
myColl.add("{"name":"Susanne", "age":24}").execute();
myColl.add("{"name":"User", "age":39}").execute();
// Find a document
DocResult docs = myColl.find("name like :name AND age < :age")
.bind("name", "S%").bind("age", 20).execute();
// Print document
DbDoc doc = docs.fetchOne();
System.out.println(doc);
// Drop the collection
myDB.dropCollection("test", "my_collection");
30
New Shell
Starting using MySQL in few minutes 31
Quickly add a document 32
Find that document 33
Fast modifications 34
Shell info 35
For this example, I will use the well known restaurants collection:
We need to dump the data to a file and
we will use the MySQL Shell
with the Python interpreter to load the data.
Migration from MongoDB to MySQL Document Store
36
Dump and load using MySQL Shell & Python
This example is inspired by @datacharmer's work: https://www.slideshare.net/datacharmer/mysql-documentstore
$ mongo quiet eval 'DBQuery.shellBatchSize=30000;
db.restaurants.find().shellPrint()' 
| perl -pe 's/(?:ObjectId|ISODate)(("[^"]+"))/ $1/g' > all_recs.json
37
Or use new bulk loader in 8.0.13
38Parallel import introduced in 8.0.17
BSON Support
Now, it supports the conversion of the following additional BSON types:
■ Date
■ Timestamp
■ NumberDecimal
■ NumberLong
■ NumberInt
■ Regular Expression
■ Binary
39
> util.importJson("/path_to_file/neighborhoods_mongo.json",
{schema: "test", collection: "neighborhoods",
convertBsonTypes: true});
40
41
Let’s query
Too many records to show here … let’s limit it!
restaurants.find().limit(1)
42
More Examples!
restaurants.find().fields([“name”,”cuisine”]).limit(2)
43
Comparing Syntax: MongoDB vs MYSQL
MongoDB:
> db.restaurants.find({"cuisine": "French",
"borough": { $not: /^Manhattan/} },
{"_id":0, "name": 1,"cuisine": 1, "borough": 1}).limit(2)
MySQL:
>restaurants.find(“cuisine=’French’ AND
borough!=’Manhattan’”).fields([“name”,”cuisine”,”borough”
]).limit(2)
44
CRUD Operations
45
Add a Document
46
Modify a Document
47
Remove a Document
48
Find a Document
49
MySQL Document Store Objects Summary
MySQL Document Store is Fully ACID Compliant 50
MySQL Document Store is Fully ACID Compliant 51
How Does It Work?? 52
What does a collection look like on the server ? 53
Every document has a unique identifier called the document ID, which can be
thought of as the equivalent of a table's primary key. The document ID value can
be manually assigned when adding a document.
If no value is assigned, a document ID is generated and assigned to the
document automatically !
Use getDocumentId() or getDocumentIds() to get _ids(s)
_id
54
Mapping to SQL Examples
createCollection('mycollection')
versus
CREATE TABLE `test`.`mycoll` (
doc JSON,
_id VARCHAR(32)
GENERATED ALWAYS AS (doc->>'$._id') STORED
PRIMARY KEY
) CHARSET utf8mb4;
55
Mapping to SQL Examples
mycollection.add({‘test’: 1234})
versus
INSERT INTO `test`.`mycoll` (doc)
VALUES ( JSON_OBJECT( 'test',1234));
56
More Mapping to SQL Examples
mycollection.find("test > 100")
Versus
SELECT doc
FROM `test`.`mycoll`
WHERE (JSON_EXTRACT(doc,'$.test') >100);
57
58
SQL and JSON Example
It's also possible to create indexes without using SQL syntax 59
SQL and JSON Example (3): explain 60
SQL and JSON Example (3): explain 61
SQL and JSON Example (4): add index 62
SQL and JSON Example (4): add index 63
[
{
"date": {
"$date": 1416009600000
},
"grade": "Z",
"score": 38
},
{
"date": {
"$date": 1398988800000
},
"grade": "A",
"score": 10
},
{
"date": {
"$date": 1362182400000
},
"grade": "A",
"score": 7
},
{
"date": {
"$date": 1328832000000
},
"grade": "A",
"score": 13
}
]
64
Embedded
Arrays of
values can be
messy to
traverse.
SQL and JSON Example (5): arrays 65
$.grades[0]
$.grades[1 to 2]
$.grades[first]
$.grades[last]
$.grades[first to last - 1]
66
Arrays are now simple
NoSQL as SQL 67
JSON_TABLE turns your un-structured
JSON data into a temporary structured
table!
NoSQL as SQL 68
This temporary structured table can
be treated like any other table --
LIMIT, WHERE, GROUP BY ...
69
More Sophisticated Analysis
Find the top 10 restaurants by grade for each cuisine 70
WITH cte1 AS
(SELECT doc->>"$.name" AS name,
doc->>"$.cuisine" AS cuisine,
(SELECT AVG(score) FROM
JSON_TABLE(doc, "$.grades[*]" COLUMNS
(score INT PATH "$.score")) AS r) AS avg_score
FROM restaurants)
SELECT *, RANK() OVER
(PARTITION BY cuisine ORDER BY avg_score DESC) AS `rank`
FROM cte1
ORDER BY `rank`, avg_score DESC LIMIT 10;
This query uses a Common Table Expression (CTE) and a Windowing Function to rank the
average scores of each restaurant, by each cuisine assembled in a JSON_TABLE
No SQL Consumed In This Query!! 71
$schema = $session->getSchema("world");
$table = $schema->getTable("city");
$row = $table->select('Name','District')
->where('District like :district')
->bind(['district' => 'Texas'])
->limit(25)
->execute()->fetchAll();
JSON Validation
72
JSON Validation
The Problem
Unlike strictly types relational databases there is no data normalization or ‘rigor’
applied to that data.
There is also no native way to do range checks
And there is no way have required fields
73
JSON-Schema.org
The Problem
Unlike strictly types relational databases there is no data normalization or ‘rigor’
applied to that data.
There is also no native way to do range checks
And there is no way have required fields
JSON-Shema.org is work to fix that
74
JSON Validation
set @s='{"type": "object",
"properties": {
"myage": {
"type" : "number",
"minimum": 28,
"maximum": 99
}
}
}';
set @d='{ "myage": 33}';
select
JSON_SCHEMA_VALID(@s,@d);
+--------------------------+
| JSON_SCHEMA_VALID(@s,@d) |
+--------------------------+
| 1 |
+--------------------------+
1 row in set (0.00 sec)
75
JSON Validation Report
select JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d))G
*************************** 1. row ***************************
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d)): {
"valid": false,
"reason": "The JSON document location '#/myage' failed requirement 'minimum' at
JSON Schema location '#/properties/myage'",
"schema-location": "#/properties/myage",
"document-location": "#/myage",
"schema-failed-keyword": "minimum"
}
76
JSON Check Constraint
CREATE TABLE `testx` (
`col` JSON,
CONSTRAINT `myage_inRange`
CHECK (JSON_SCHEMA_VALID('{"type": "object",
"properties": {
"myage": {
"type" : "number",
"minimum": 28,
"maximum": 99
}
},"required": ["myage"]
}',
`col`) = 1)
);
77
JSON Check Constraint
mysql> insert into testx values('{"myage":27}');
ERROR 3819 (HY000): Check constraint 'myage_inRange' is violated.
mysql> insert into testx values('{"myage":97}');
Query OK, 1 row affected (0.02 sec)
78
Multi Value Indexes
79
Index JSON Arrays
{ "user":"Bob", "user_id":31, "zipcode":[94477,94536] }
CREATE TABLE customers
( id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
custinfo JSON,
INDEX zips( (CAST(custinfo->'$.zip' AS UNSIGNED ARRAY)) )
);
Mutli Value Indexes allow you to go past the 1:1 relation to index the data in JSON
arrays. And there are three special functions what can make use of MVIs when
used on the right side of a WHERE clause -- MEMBER OF(), JSON_CONTAINS(),
and JSON_OVERLAPS()
80
Conclusion: What Do I Gain?
81
This is the best of the two worlds in one product !
● Data integrity
● ACID Compliant
● Transactions
● SQL
● Schemaless
● flexible data structure
● easy to start (CRUD)
82
Mutable Data!!
Reduce Many to many joins
Replace ‘stub’ tables
Change on the fly, aggregate new data
83
Non JSON Data Transforms to JSON
84
GeoJSON support too!
mysql> SELECT
ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2);
+-------------------------------------------------------------+
| ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2) |
+-------------------------------------------------------------+
| {"type": "Point", "coordinates": [11.11, 12.22]} |
+-------------------------------------------------------------+
85
New in MySQL 8.0
1. True Data Dictionary
2. Default UTF8MB4
3. Windowing Functions, CTEs, Lateral Derived Joins
4. InnoDB SKIPPED LOCK and NOWAIT
5. Instant Add Column
6. Histograms
7. Resource Groups
8. Better optimizer with new temporary table engine
9. True Descending Indexes
10. 3D GIS
11. JSON Enhancements
86
Please buy my book!
If you deal with the JSON
Data Type or have an interest
in the MySQL Document
Store, this text is a great
guide with many examples to
help you understand the
complexities and
opportunities with a native
JSON Data Type – SECOND
EDITION now Available on 87
Test Drive MySQL
Database Service For
Free Today
Get $300 in credits
and try MySQL Database Service
free for 30 days.
https://www.oracle.com/cloud/free/
Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted88
“We have saved around 40% of our
costs and are able to reinvest that
back into the business. And we are
scaling across EMEA, and that’s
basically all because of Oracle.”
—Asser Smidt
CEO and Cofounder, BotSupply
Startups get cloud credits and a 70%
discount for 2 years, global exposure via
marketing, events, digital promotion, and
media, plus access to mentorship,
capital and Oracle’s 430,000+
customers
Customers meet vetted startups in
transformative spaces that help them
stay ahead of their competition
Oracle stays at the competitive edge
of innovation with solutions that
complement its technology stack
Oracle for Startups - enroll at oracle.com/startup
A Virtuous Cycle of Innovation, Everybody Wins.
Thanks!
Contact info:
Dave Stokes
David.Stokes@Oracle.com
@Stoker
slideshare.net/davidmstokes
Elepantdolphin.blogger.com
90

More Related Content

What's hot (20)

PDF
Scalaで実装してみる簡易ブロックチェーン
Hiroshi Ito
 
PDF
ENIB 2015-2016 - CAI Web - S01E01- MongoDB and NoSQL
Horacio Gonzalez
 
PDF
ENIB 2015 2016 - CAI Web S02E03 - Forge JS 2/4 - MongoDB and NoSQL
Horacio Gonzalez
 
PPTX
Redis Use Patterns (DevconTLV June 2014)
Itamar Haber
 
KEY
Redis in Practice
Noah Davis
 
PPTX
MongoDB - Sharded Cluster Tutorial
Jason Terpko
 
PDF
最近 node.js 來勢洶洶, 怎麼辦? 別怕, 我們也有秘密武器 RingoJS!
Liwei Chou
 
PPTX
MongoDB Chunks - Distribution, Splitting, and Merging
Jason Terpko
 
PPTX
NoSQL in SQL - Lior Altarescu
Wix Engineering
 
PPTX
Working with NoSQL in a SQL Database (XDevApi)
Lior Altarescu
 
PDF
Indexing
Mike Dirolf
 
PDF
Node.js - A Quick Tour II
Felix Geisendörfer
 
PPTX
MongoDB: Comparing WiredTiger In-Memory Engine to Redis
Jason Terpko
 
PPTX
Let's Build A Blockchain... in 40 minutes!
Michel Schudel
 
PPTX
Unqlite
Paul Myeongchan Kim
 
PDF
OrientDB
aemadrid
 
PDF
Nodejs - A-quick-tour-v3
Felix Geisendörfer
 
KEY
Node.js - As a networking tool
Felix Geisendörfer
 
PPTX
Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat...
MongoDB
 
PPTX
MongoDB - External Authentication
Jason Terpko
 
Scalaで実装してみる簡易ブロックチェーン
Hiroshi Ito
 
ENIB 2015-2016 - CAI Web - S01E01- MongoDB and NoSQL
Horacio Gonzalez
 
ENIB 2015 2016 - CAI Web S02E03 - Forge JS 2/4 - MongoDB and NoSQL
Horacio Gonzalez
 
Redis Use Patterns (DevconTLV June 2014)
Itamar Haber
 
Redis in Practice
Noah Davis
 
MongoDB - Sharded Cluster Tutorial
Jason Terpko
 
最近 node.js 來勢洶洶, 怎麼辦? 別怕, 我們也有秘密武器 RingoJS!
Liwei Chou
 
MongoDB Chunks - Distribution, Splitting, and Merging
Jason Terpko
 
NoSQL in SQL - Lior Altarescu
Wix Engineering
 
Working with NoSQL in a SQL Database (XDevApi)
Lior Altarescu
 
Indexing
Mike Dirolf
 
Node.js - A Quick Tour II
Felix Geisendörfer
 
MongoDB: Comparing WiredTiger In-Memory Engine to Redis
Jason Terpko
 
Let's Build A Blockchain... in 40 minutes!
Michel Schudel
 
OrientDB
aemadrid
 
Nodejs - A-quick-tour-v3
Felix Geisendörfer
 
Node.js - As a networking tool
Felix Geisendörfer
 
Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat...
MongoDB
 
MongoDB - External Authentication
Jason Terpko
 

Similar to MySQL Without the SQL -- Oh My! (20)

PDF
Open Source World June '21 -- JSON Within a Relational Database
Dave Stokes
 
PDF
Json within a relational database
Dave Stokes
 
PPTX
Discover The Power of NoSQL + MySQL with MySQL
Dave Stokes
 
PDF
MySQL without the SQL -- Cascadia PHP
Dave Stokes
 
PPTX
Making MySQL Agile-ish
Dave Stokes
 
PDF
Node.js and the MySQL Document Store
Rui Quelhas
 
ODP
MySQL Without the MySQL -- Oh My!
Dave Stokes
 
PDF
MySQL Day Paris 2016 - MySQL as a Document Store
Olivier DASINI
 
PDF
MySQL Document Store (Oracle Code Warsaw 2018)
Vittorio Cioe
 
PPTX
MySQL Without the SQL -- Oh My! Longhorn PHP Conference
Dave Stokes
 
PDF
Oracle Code Event - MySQL JSON Document Store
Mark Swarbrick
 
PDF
MySQL document_store
Giuseppe Maxia
 
PDF
MySQL Document Store
Mario Beck
 
PDF
MySQL as a Document Store
Dave Stokes
 
PDF
Introduction to MySQL Document Store
Frederic Descamps
 
PDF
MySQL Document Store - A Document Store with all the benefts of a Transactona...
Olivier DASINI
 
PDF
MySQL Document Store and Node.JS
Reggie Burnett
 
PDF
20171104 hk-py con-mysql-documentstore_v1
Ivan Ma
 
PPTX
A Step by Step Introduction to the MySQL Document Store
Dave Stokes
 
ODP
MongoDB & PHP
Sanjeev Shrestha
 
Open Source World June '21 -- JSON Within a Relational Database
Dave Stokes
 
Json within a relational database
Dave Stokes
 
Discover The Power of NoSQL + MySQL with MySQL
Dave Stokes
 
MySQL without the SQL -- Cascadia PHP
Dave Stokes
 
Making MySQL Agile-ish
Dave Stokes
 
Node.js and the MySQL Document Store
Rui Quelhas
 
MySQL Without the MySQL -- Oh My!
Dave Stokes
 
MySQL Day Paris 2016 - MySQL as a Document Store
Olivier DASINI
 
MySQL Document Store (Oracle Code Warsaw 2018)
Vittorio Cioe
 
MySQL Without the SQL -- Oh My! Longhorn PHP Conference
Dave Stokes
 
Oracle Code Event - MySQL JSON Document Store
Mark Swarbrick
 
MySQL document_store
Giuseppe Maxia
 
MySQL Document Store
Mario Beck
 
MySQL as a Document Store
Dave Stokes
 
Introduction to MySQL Document Store
Frederic Descamps
 
MySQL Document Store - A Document Store with all the benefts of a Transactona...
Olivier DASINI
 
MySQL Document Store and Node.JS
Reggie Burnett
 
20171104 hk-py con-mysql-documentstore_v1
Ivan Ma
 
A Step by Step Introduction to the MySQL Document Store
Dave Stokes
 
MongoDB & PHP
Sanjeev Shrestha
 
Ad

More from Data Con LA (20)

PPTX
Data Con LA 2022 Keynotes
Data Con LA
 
PPTX
Data Con LA 2022 Keynotes
Data Con LA
 
PDF
Data Con LA 2022 Keynote
Data Con LA
 
PPTX
Data Con LA 2022 - Startup Showcase
Data Con LA
 
PPTX
Data Con LA 2022 Keynote
Data Con LA
 
PDF
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA
 
PPTX
Data Con LA 2022 - AI Ethics
Data Con LA
 
PDF
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
PDF
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
PDF
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
PPTX
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
PPTX
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
PDF
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
PDF
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
PDF
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
PDF
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
PPTX
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
PPTX
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
PPTX
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
PPTX
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Startup Showcase
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA
 
Data Con LA 2022 - AI Ethics
Data Con LA
 
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 
Ad

Recently uploaded (20)

PPTX
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
PPTX
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
PPTX
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
PDF
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
PPTX
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PPTX
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
PPTX
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
PDF
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
PDF
Choosing the Right Database for Indexing.pdf
Tamanna
 
PDF
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PPTX
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
PPTX
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
PDF
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
PDF
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
PPTX
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
PDF
Simplifying Document Processing with Docling for AI Applications.pdf
Tamanna
 
PDF
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
PDF
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
Choosing the Right Database for Indexing.pdf
Tamanna
 
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
Simplifying Document Processing with Docling for AI Applications.pdf
Tamanna
 
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 

MySQL Without the SQL -- Oh My!

  • 1. MySQL Without the SQL Oh My! Dave Stokes @stoker [email protected] Elephantdolphin.blogger.com Slides -> slideshare.net/DaveStokes
  • 2. 2
  • 3. Safe Harbor Agreement THE FOLLOWING IS INTENDED TO OUTLINE OUR GENERAL PRODUCT DIRECTION. IT IS INTENDED FOR INFORMATION PURPOSES ONLY, AND MAY NOT BE INCORPORATED INTO ANY CONTRACT. IT IS NOT A COMMITMENT TO DELIVER ANY MATERIAL, CODE, OR FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON IN MAKING PURCHASING DECISIONS. THE DEVELOPMENT, RELEASE, AND TIMING OF ANY FEATURES OR FUNCTIONALITY DESCRIBED FOR ORACLE'S PRODUCTS REMAINS AT THE SOLE DISCRETION OF ORACLE. 3
  • 7. Relational Databases ● Original Goal was to save data with minimal duplication ● Disks were expensive ● … and slow ● 45 years old ● Introduced the concept of accessing many records with a single command 7
  • 8. Relational Databases ● Data Integrity ○ Normalization ○ constraints (foreign keys, ...) ● Atomicity, Consistency, Isolation, Durability ○ ACID compliant ○ transactions ● SQL ○ powerful query language 8
  • 9. Relational Databases ● Need to set up tables BEFORE use ● Relations, indexes, data normalization, query optimizations ● Hard to change on the fly ● Need a DBA or someone who has DBA skills ● This can be a chokepoint 9
  • 10. NoSQL or Document Store 10
  • 11. NoSQL or Document Store ● Schemaless ○ No schema design, no normalization, no foreign keys, no data types, … ○ Very quick initial development ● Flexible data structure ○ Embedded arrays or objects ○ Valid solution when natural data can not be modeled optimally into a relational model ○ Objects persistence without the use of any ORM - *mapping object-oriented* 11
  • 12. NoSQL or JSON Document Store ● JSON ● close to frontend ● native in JS ● easy to learn 12
  • 13. How DBAs see data as opposed to how Developers see data { "GNP" : 249704, "Name" : "Belgium", "government" : { "GovernmentForm" : "Constitutional Monarchy, Federation", "HeadOfState" : "Philippe I" }, "_id" : "BEL", "IndepYear" : 1830, "demographics" : { "Population" : 10239000, "LifeExpectancy" : 77.8000030517578 }, "geography" : { "Region" : "Western Europe", "SurfaceArea" : 30518, "Continent" : "Europe" } } 13
  • 14. What if there was a way to provide both SQL and NoSQL on one stable platform that has proven stability on well know technology with a large Community and a diverse ecosystem ? With the MySQL Document Store it is now an option! 14
  • 15. A Solution for all Developers: schemaless ★ rapid prototyping & simpler APIs ★ document model ★ transactions Operations: ★ performance management/visibility ★ robust replication, backup, restore ★ comprehensive tooling ecosystem ★ simpler application schema upgrades 15 Business Owner: ★ don't lose my data == ACID trx ★ capture all my data = extensible/schemaless ★ product on schedule/time to market = rapid development
  • 16. Built on the MySQL JSON Data type and Proven MySQL Server Technology 16 ★ Provides a schema flexible JSON Document Store ★ No SQL required ★ No need to define all possible attributes, tables, etc. ★ Uses new MySQL X DevAPI ★ Can leverage generated column to extract JSON values into materialized columns that can be indexed for fast SQL searches.
  • 17. Built on the MySQL JSON Data type and Proven MySQL Server Technology 17 ★ Document can be ~1GB ○ It's a column in a row of a table ★ Allows use of modern programming styles ○ No more embedded strings of SQL in your code ○ Easy to read ★ Also works with relational Tables ★ Proven MySQL Technology
  • 18. ★ C++ ★ Java ★ .Net ★ Node.js ★ JavaScript ★ Python ★ PHP ○ Working with other Communities to help them support it too 18 Connectors for
  • 19. ★ Command Completion ★ Python, JavaScripts & SQL modes ★ Admin functions ★ New Util object ★ A new high-level session concept that can scale from single MySQL Server to a multiple server environment 19 New MySQL Shell
  • 20. ★ Non-blocking, asynchronous calls follow common language patterns ★ Send out many queries and process other things until they return ★ Supports CRUD operations ★ Concentrate on basic functions ★ Easily scale from one server to InnoDB cluster w/o changing application! 20 New Model
  • 21. 21 X Protocol built on Google Protobufs Not an ORM!!
  • 22. 22 Architecture of both Old and New Protocols
  • 23. 23 How Your Application will work with InnoDB Cluster
  • 24. But what does this look like in PHP?? 24
  • 25. JavaScript 25 // Connecting to MySQL Server and working with a Collection var mysqlx = require('mysqlx'); // Connect to server var mySession = mysqlx.getSession( { host: 'localhost', port: 33060, user: 'user', password: 'password'} ); var myDb = mySession.getSchema('test'); // Create a new collection 'my_collection' var myColl = myDb.createCollection('my_collection'); // Insert documents myColl.add({_id: '1', name: 'Sakila', age: 15}).execute(); myColl.add({_id: '2', name: 'Susanne', age: 24}).execute(); myColl.add({_id: '3', name: 'User', age: 39}).execute(); // Find a document var docs = myColl.find('name like :param1 AND age < :param2').limit(1). bind('param1','S%').bind('param2',20).execute(); // Print document print(docs.fetchOne()); // Drop the collection myDb.dropCollection('my_collection'); No SQL!!
  • 26. Python 26 # Connecting to MySQL Server and working with a Collection from mysqlsh import mysqlx # Connect to server mySession = mysqlx.get_session( { 'host': 'localhost', 'port': 33060, 'user': 'user', 'password': 'password'} ) myDb = mySession.get_schema('test') # Create a new collection 'my_collection' myColl = myDb.create_collection('my_collection') # Insert documents myColl.add({'_id': '1', 'name': 'Sakila', 'age': 15}).execute() myColl.add({'_id': '2', 'name': 'Susanne', 'age': 24}).execute() myColl.add({'_id': '3', 'name': 'User', 'age': 39}).execute() # Find a document docs = myColl.find('name like :param1 AND age < :param2') .limit(1) .bind('param1','S%') .bind('param2',20) .execute() # Print document doc = docs.fetch_one() print doc
  • 27. Node.JS 27 // Connecting to MySQL Server and working with a Collection var mysqlx = require('@mysql/xdevapi'); var db; // Connect to server mysqlx .getSession({ user: 'user', password: 'password', host: 'localhost', port: '33060', }) .then(function (session) { db = session.getSchema('test'); // Create a new collection 'my_collection' return db.createCollection('my_collection'); }) .then(function (myColl) { // Insert documents return Promise .all([ myColl.add({ name: 'Sakila', age: 15 }).execute(), myColl.add({ name: 'Susanne', age: 24 }).execute(), myColl.add({ name: 'User', age: 39 }).execute() ]) .then(function () { // Find a document return myColl .find('name like :name && age < :age') .bind({ name: 'S%', age: 20 }) .limit(1) .execute(function (doc) { // Print document console.log(doc); }); }); }) .then(function(docs) { // Drop the collection return db.dropCollection('my_collection'); }) .catch(function(err) { // Handle error });
  • 28. C++ 28 // Connect to server var mySession = MySQLX.GetSession("server=localhost;port=33060;user=user;password=password;"); var myDb = mySession.GetSchema("test"); // Create a new collection "my_collection" var myColl = myDb.CreateCollection("my_collection"); // Insert documents myColl.Add(new { name = "Sakila", age = 15}).Execute(); myColl.Add(new { name = "Susanne", age = 24}).Execute(); myColl.Add(new { name = "User", age = 39}).Execute(); // Find a document var docs = myColl.Find("name like :param1 AND age < :param2").Limit(1) .Bind("param1", "S%").Bind("param2", 20).Execute(); // Print document Console.WriteLine(docs.FetchOne()); // Drop the collection myDb.DropCollection("my_collection");
  • 29. Java 29 // Connect to server Session mySession = new SessionFactory().getSession("mysqlx://localhost:33060/test?user=user&password=password"); Schema myDb = mySession.getSchema("test"); // Create a new collection 'my_collection' Collection myColl = myDb.createCollection("my_collection"); // Insert documents myColl.add("{"name":"Sakila", "age":15}").execute(); myColl.add("{"name":"Susanne", "age":24}").execute(); myColl.add("{"name":"User", "age":39}").execute(); // Find a document DocResult docs = myColl.find("name like :name AND age < :age") .bind("name", "S%").bind("age", 20).execute(); // Print document DbDoc doc = docs.fetchOne(); System.out.println(doc); // Drop the collection myDB.dropCollection("test", "my_collection");
  • 31. Starting using MySQL in few minutes 31
  • 32. Quickly add a document 32
  • 36. For this example, I will use the well known restaurants collection: We need to dump the data to a file and we will use the MySQL Shell with the Python interpreter to load the data. Migration from MongoDB to MySQL Document Store 36
  • 37. Dump and load using MySQL Shell & Python This example is inspired by @datacharmer's work: https://www.slideshare.net/datacharmer/mysql-documentstore $ mongo quiet eval 'DBQuery.shellBatchSize=30000; db.restaurants.find().shellPrint()' | perl -pe 's/(?:ObjectId|ISODate)(("[^"]+"))/ $1/g' > all_recs.json 37
  • 38. Or use new bulk loader in 8.0.13 38Parallel import introduced in 8.0.17
  • 39. BSON Support Now, it supports the conversion of the following additional BSON types: ■ Date ■ Timestamp ■ NumberDecimal ■ NumberLong ■ NumberInt ■ Regular Expression ■ Binary 39 > util.importJson("/path_to_file/neighborhoods_mongo.json", {schema: "test", collection: "neighborhoods", convertBsonTypes: true});
  • 40. 40
  • 41. 41 Let’s query Too many records to show here … let’s limit it! restaurants.find().limit(1)
  • 43. 43 Comparing Syntax: MongoDB vs MYSQL MongoDB: > db.restaurants.find({"cuisine": "French", "borough": { $not: /^Manhattan/} }, {"_id":0, "name": 1,"cuisine": 1, "borough": 1}).limit(2) MySQL: >restaurants.find(“cuisine=’French’ AND borough!=’Manhattan’”).fields([“name”,”cuisine”,”borough” ]).limit(2)
  • 49. 49 MySQL Document Store Objects Summary
  • 50. MySQL Document Store is Fully ACID Compliant 50
  • 51. MySQL Document Store is Fully ACID Compliant 51
  • 52. How Does It Work?? 52
  • 53. What does a collection look like on the server ? 53
  • 54. Every document has a unique identifier called the document ID, which can be thought of as the equivalent of a table's primary key. The document ID value can be manually assigned when adding a document. If no value is assigned, a document ID is generated and assigned to the document automatically ! Use getDocumentId() or getDocumentIds() to get _ids(s) _id 54
  • 55. Mapping to SQL Examples createCollection('mycollection') versus CREATE TABLE `test`.`mycoll` ( doc JSON, _id VARCHAR(32) GENERATED ALWAYS AS (doc->>'$._id') STORED PRIMARY KEY ) CHARSET utf8mb4; 55
  • 56. Mapping to SQL Examples mycollection.add({‘test’: 1234}) versus INSERT INTO `test`.`mycoll` (doc) VALUES ( JSON_OBJECT( 'test',1234)); 56
  • 57. More Mapping to SQL Examples mycollection.find("test > 100") Versus SELECT doc FROM `test`.`mycoll` WHERE (JSON_EXTRACT(doc,'$.test') >100); 57
  • 58. 58 SQL and JSON Example
  • 59. It's also possible to create indexes without using SQL syntax 59
  • 60. SQL and JSON Example (3): explain 60
  • 61. SQL and JSON Example (3): explain 61
  • 62. SQL and JSON Example (4): add index 62
  • 63. SQL and JSON Example (4): add index 63
  • 64. [ { "date": { "$date": 1416009600000 }, "grade": "Z", "score": 38 }, { "date": { "$date": 1398988800000 }, "grade": "A", "score": 10 }, { "date": { "$date": 1362182400000 }, "grade": "A", "score": 7 }, { "date": { "$date": 1328832000000 }, "grade": "A", "score": 13 } ] 64 Embedded Arrays of values can be messy to traverse.
  • 65. SQL and JSON Example (5): arrays 65
  • 67. NoSQL as SQL 67 JSON_TABLE turns your un-structured JSON data into a temporary structured table!
  • 68. NoSQL as SQL 68 This temporary structured table can be treated like any other table -- LIMIT, WHERE, GROUP BY ...
  • 70. Find the top 10 restaurants by grade for each cuisine 70 WITH cte1 AS (SELECT doc->>"$.name" AS name, doc->>"$.cuisine" AS cuisine, (SELECT AVG(score) FROM JSON_TABLE(doc, "$.grades[*]" COLUMNS (score INT PATH "$.score")) AS r) AS avg_score FROM restaurants) SELECT *, RANK() OVER (PARTITION BY cuisine ORDER BY avg_score DESC) AS `rank` FROM cte1 ORDER BY `rank`, avg_score DESC LIMIT 10; This query uses a Common Table Expression (CTE) and a Windowing Function to rank the average scores of each restaurant, by each cuisine assembled in a JSON_TABLE
  • 71. No SQL Consumed In This Query!! 71 $schema = $session->getSchema("world"); $table = $schema->getTable("city"); $row = $table->select('Name','District') ->where('District like :district') ->bind(['district' => 'Texas']) ->limit(25) ->execute()->fetchAll();
  • 73. JSON Validation The Problem Unlike strictly types relational databases there is no data normalization or ‘rigor’ applied to that data. There is also no native way to do range checks And there is no way have required fields 73
  • 74. JSON-Schema.org The Problem Unlike strictly types relational databases there is no data normalization or ‘rigor’ applied to that data. There is also no native way to do range checks And there is no way have required fields JSON-Shema.org is work to fix that 74
  • 75. JSON Validation set @s='{"type": "object", "properties": { "myage": { "type" : "number", "minimum": 28, "maximum": 99 } } }'; set @d='{ "myage": 33}'; select JSON_SCHEMA_VALID(@s,@d); +--------------------------+ | JSON_SCHEMA_VALID(@s,@d) | +--------------------------+ | 1 | +--------------------------+ 1 row in set (0.00 sec) 75
  • 76. JSON Validation Report select JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d))G *************************** 1. row *************************** JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d)): { "valid": false, "reason": "The JSON document location '#/myage' failed requirement 'minimum' at JSON Schema location '#/properties/myage'", "schema-location": "#/properties/myage", "document-location": "#/myage", "schema-failed-keyword": "minimum" } 76
  • 77. JSON Check Constraint CREATE TABLE `testx` ( `col` JSON, CONSTRAINT `myage_inRange` CHECK (JSON_SCHEMA_VALID('{"type": "object", "properties": { "myage": { "type" : "number", "minimum": 28, "maximum": 99 } },"required": ["myage"] }', `col`) = 1) ); 77
  • 78. JSON Check Constraint mysql> insert into testx values('{"myage":27}'); ERROR 3819 (HY000): Check constraint 'myage_inRange' is violated. mysql> insert into testx values('{"myage":97}'); Query OK, 1 row affected (0.02 sec) 78
  • 80. Index JSON Arrays { "user":"Bob", "user_id":31, "zipcode":[94477,94536] } CREATE TABLE customers ( id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY, modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, custinfo JSON, INDEX zips( (CAST(custinfo->'$.zip' AS UNSIGNED ARRAY)) ) ); Mutli Value Indexes allow you to go past the 1:1 relation to index the data in JSON arrays. And there are three special functions what can make use of MVIs when used on the right side of a WHERE clause -- MEMBER OF(), JSON_CONTAINS(), and JSON_OVERLAPS() 80
  • 81. Conclusion: What Do I Gain? 81
  • 82. This is the best of the two worlds in one product ! ● Data integrity ● ACID Compliant ● Transactions ● SQL ● Schemaless ● flexible data structure ● easy to start (CRUD) 82
  • 83. Mutable Data!! Reduce Many to many joins Replace ‘stub’ tables Change on the fly, aggregate new data 83
  • 84. Non JSON Data Transforms to JSON 84
  • 85. GeoJSON support too! mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2); +-------------------------------------------------------------+ | ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2) | +-------------------------------------------------------------+ | {"type": "Point", "coordinates": [11.11, 12.22]} | +-------------------------------------------------------------+ 85
  • 86. New in MySQL 8.0 1. True Data Dictionary 2. Default UTF8MB4 3. Windowing Functions, CTEs, Lateral Derived Joins 4. InnoDB SKIPPED LOCK and NOWAIT 5. Instant Add Column 6. Histograms 7. Resource Groups 8. Better optimizer with new temporary table engine 9. True Descending Indexes 10. 3D GIS 11. JSON Enhancements 86
  • 87. Please buy my book! If you deal with the JSON Data Type or have an interest in the MySQL Document Store, this text is a great guide with many examples to help you understand the complexities and opportunities with a native JSON Data Type – SECOND EDITION now Available on 87
  • 88. Test Drive MySQL Database Service For Free Today Get $300 in credits and try MySQL Database Service free for 30 days. https://www.oracle.com/cloud/free/ Copyright © 2020, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted88
  • 89. “We have saved around 40% of our costs and are able to reinvest that back into the business. And we are scaling across EMEA, and that’s basically all because of Oracle.” —Asser Smidt CEO and Cofounder, BotSupply Startups get cloud credits and a 70% discount for 2 years, global exposure via marketing, events, digital promotion, and media, plus access to mentorship, capital and Oracle’s 430,000+ customers Customers meet vetted startups in transformative spaces that help them stay ahead of their competition Oracle stays at the competitive edge of innovation with solutions that complement its technology stack Oracle for Startups - enroll at oracle.com/startup A Virtuous Cycle of Innovation, Everybody Wins.