SlideShare a Scribd company logo
Prepared by VOLKAN OBAN
Naive Bayes in R
>library("caret")
>data(iris)
> x = iris[,-5]
> y = iris$Species
> library("caret")
> model = train(x,y,'nb',trControl=trainControl(method='cv',number=10))
> model
Naive Bayes
150 samples
4 predictor
3 classes: 'setosa', 'versicolor', 'virginica'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 135, 135, 135, 135, 135, 135, ...
Resampling results across tuning parameters:
usekernel Accuracy Kappa
FALSE 0.9466667 0.92
TRUE 0.9600000 0.94
Tuning parameter 'fL' was held constant at a value of 0
Tuning parameter 'adjust' was held constant at a value of 1
Accuracy was used to select the optimal model using the
largest value.
The final values used for the model were fL = 0, usekernel =
TRUE and adjust = 1.
> predict(model$finalModel,x)
$class
[1] setosa setosa setosa setosa setosa
[6] setosa setosa setosa setosa setosa
[11] setosa setosa setosa setosa setosa
[16] setosa setosa setosa setosa setosa
[21] setosa setosa setosa setosa setosa
[26] setosa setosa setosa setosa setosa
[31] setosa setosa setosa setosa setosa
[36] setosa setosa setosa setosa setosa
[41] setosa setosa setosa setosa setosa
[46] setosa setosa setosa setosa setosa
[51] versicolor versicolor versicolor versicolor versicolor
[56] versicolor versicolor versicolor versicolor versicolor
[61] versicolor versicolor versicolor versicolor versicolor
[66] versicolor versicolor versicolor versicolor versicolor
[71] virginica versicolor versicolor versicolor versicolor
[76] versicolor versicolor virginica versicolor versicolor
[81] versicolor versicolor versicolor virginica versicolor
[86] versicolor versicolor versicolor versicolor versicolor
[91] versicolor versicolor versicolor versicolor versicolor
[96] versicolor versicolor versicolor versicolor versicolor
[101] virginica virginica virginica virginica virginica
[106] virginica versicolor virginica virginica virginica
[111] virginica virginica virginica virginica virginica
[116] virginica virginica virginica virginica versicolor
[121] virginica virginica virginica virginica virginica
[126] virginica virginica virginica virginica virginica
[131] virginica virginica virginica versicolor virginica
[136] virginica virginica virginica virginica virginica
[141] virginica virginica virginica virginica virginica
[146] virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica
$posterior
setosa versicolor virginica
[1,] 1.000000e+00 3.122328e-09 8.989129e-11
[2,] 9.999999e-01 4.953302e-08 1.361560e-09
[3,] 1.000000e+00 1.949717e-08 1.152761e-09
[4,] 1.000000e+00 1.146273e-08 6.616756e-10
[5,] 1.000000e+00 8.839954e-10 8.567477e-11
[6,] 1.000000e+00 3.818715e-09 5.965843e-09
[7,] 1.000000e+00 7.394006e-09 6.702907e-10
[8,] 1.000000e+00 5.311568e-09 1.920277e-10
[9,] 1.000000e+00 6.502476e-09 3.193962e-10
[10,] 9.999998e-01 1.731985e-07 5.531788e-09
[11,] 1.000000e+00 1.233528e-09 4.372981e-10
[12,] 1.000000e+00 6.936685e-09 4.552987e-10
[13,] 9.999998e-01 2.398420e-07 8.627082e-09
..........
> table(predict(model$finalModel,x)$class,y)
y
setosa versicolor virginica
setosa 50 0 0
versicolor 0 47 3
virginica 0 3 47
> naive_iris <- NaiveBayes(iris$Species ~ ., data = iris)
> plot(naive_iris)
Naive Bayes Example using  R
Ref: http://rischanlab.github.io/NaiveBayes.html
Rischan Mafrur, http://rischanlab.github.io

More Related Content

Viewers also liked (18)

PDF
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
Ā 
PPT
Statistical Test
guestdbf093
Ā 
PDF
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
Ā 
PPTX
Access any data anywhere
Lohith Goudagere Nagaraj
Ā 
PDF
A+ cheat sheet
abnmi
Ā 
PDF
Linux cheat-sheet
Craig Cannon
Ā 
PDF
Python
Vinayak Hegde
Ā 
PDF
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
Ā 
PDF
Advanced R cheat sheet
Dr. Volkan OBAN
Ā 
PDF
Data Exploration and Visualization with R
Yanchang Zhao
Ā 
PPTX
Big Data in Stock Exchange( HFT, Forex, Flash Crashes)
Dmytro Melnychuk
Ā 
PDF
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
NUI Galway
Ā 
PDF
Python3 cheatsheet
Gil Cohen
Ā 
PDF
Python Cheat Sheet
GlowTouch
Ā 
PDF
Cheat sheets for data scientists
Ajay Ohri
Ā 
PDF
R Reference Card for Data Mining
Yanchang Zhao
Ā 
PDF
Regression and Classification with R
Yanchang Zhao
Ā 
PDF
Caret Package for R
kmettler
Ā 
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
Ā 
Statistical Test
guestdbf093
Ā 
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
Ā 
Access any data anywhere
Lohith Goudagere Nagaraj
Ā 
A+ cheat sheet
abnmi
Ā 
Linux cheat-sheet
Craig Cannon
Ā 
Python
Vinayak Hegde
Ā 
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
Ā 
Advanced R cheat sheet
Dr. Volkan OBAN
Ā 
Data Exploration and Visualization with R
Yanchang Zhao
Ā 
Big Data in Stock Exchange( HFT, Forex, Flash Crashes)
Dmytro Melnychuk
Ā 
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
NUI Galway
Ā 
Python3 cheatsheet
Gil Cohen
Ā 
Python Cheat Sheet
GlowTouch
Ā 
Cheat sheets for data scientists
Ajay Ohri
Ā 
R Reference Card for Data Mining
Yanchang Zhao
Ā 
Regression and Classification with R
Yanchang Zhao
Ā 
Caret Package for R
kmettler
Ā 

More from Dr. Volkan OBAN (20)

PDF
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Dr. Volkan OBAN
Ā 
PDF
Covid19py Python Package - Example
Dr. Volkan OBAN
Ā 
PDF
Object detection with Python
Dr. Volkan OBAN
Ā 
PDF
Python - Rastgele Orman(Random Forest) Parametreleri
Dr. Volkan OBAN
Ā 
DOCX
Linear Programming wi̇th R - Examples
Dr. Volkan OBAN
Ā 
DOCX
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
Dr. Volkan OBAN
Ā 
DOCX
k-means Clustering in Python
Dr. Volkan OBAN
Ā 
DOCX
k-means Clustering and Custergram with R
Dr. Volkan OBAN
Ā 
PDF
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
Ā 
DOCX
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
Ā 
PDF
Pandas,scipy,numpy cheatsheet
Dr. Volkan OBAN
Ā 
PPTX
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
Ā 
PPTX
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
Ā 
DOCX
R-ggplot2 package Examples
Dr. Volkan OBAN
Ā 
DOCX
R Machine Learning packages( generally used)
Dr. Volkan OBAN
Ā 
DOCX
Mosaic plot in R.
Dr. Volkan OBAN
Ā 
DOCX
imager package in R and examples..
Dr. Volkan OBAN
Ā 
PDF
R-Data table Cheat Sheet
Dr. Volkan OBAN
Ā 
DOCX
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
Ā 
DOCX
Advanced Data Visualization in R- Somes Examples.
Dr. Volkan OBAN
Ā 
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Dr. Volkan OBAN
Ā 
Covid19py Python Package - Example
Dr. Volkan OBAN
Ā 
Object detection with Python
Dr. Volkan OBAN
Ā 
Python - Rastgele Orman(Random Forest) Parametreleri
Dr. Volkan OBAN
Ā 
Linear Programming wi̇th R - Examples
Dr. Volkan OBAN
Ā 
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
Dr. Volkan OBAN
Ā 
k-means Clustering in Python
Dr. Volkan OBAN
Ā 
k-means Clustering and Custergram with R
Dr. Volkan OBAN
Ā 
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
Ā 
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
Ā 
Pandas,scipy,numpy cheatsheet
Dr. Volkan OBAN
Ā 
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
Ā 
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
Ā 
R-ggplot2 package Examples
Dr. Volkan OBAN
Ā 
R Machine Learning packages( generally used)
Dr. Volkan OBAN
Ā 
Mosaic plot in R.
Dr. Volkan OBAN
Ā 
imager package in R and examples..
Dr. Volkan OBAN
Ā 
R-Data table Cheat Sheet
Dr. Volkan OBAN
Ā 
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
Ā 
Advanced Data Visualization in R- Somes Examples.
Dr. Volkan OBAN
Ā 
Ad

Recently uploaded (20)

PPTX
03_Ariane BERCKMOES_Ethias.pptx_AIBarometer_release_event
FinTech Belgium
Ā 
PDF
A GraphRAG approach for Energy Efficiency Q&A
Marco Brambilla
Ā 
PPTX
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
Ā 
PPTX
SHREYAS25 INTERN-I,II,III PPT (1).pptx pre
swapnilherage
Ā 
PDF
Using AI/ML for Space Biology Research
VICTOR MAESTRE RAMIREZ
Ā 
PPTX
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
Ā 
PDF
Business implication of Artificial Intelligence.pdf
VishalChugh12
Ā 
PDF
apidays Singapore 2025 - The API Playbook for AI by Shin Wee Chuang (PAND AI)
apidays
Ā 
PDF
apidays Singapore 2025 - Building a Federated Future, Alex Szomora (GSMA)
apidays
Ā 
PDF
Research Methodology Overview Introduction
ayeshagul29594
Ā 
PPTX
big data eco system fundamentals of data science
arivukarasi
Ā 
PPTX
apidays Helsinki & North 2025 - Agentic AI: A Friend or Foe?, Merja Kajava (A...
apidays
Ā 
PPTX
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
Ā 
PPTX
apidays Singapore 2025 - Designing for Change, Julie Schiller (Google)
apidays
Ā 
PPTX
What Is Data Integration and Transformation?
subhashenia
Ā 
PPTX
Feb 2021 Ransomware Recovery presentation.pptx
enginsayin1
Ā 
PPTX
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
Ā 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
Ā 
PPTX
01_Nico Vincent_Sailpeak.pptx_AI_Barometer_2025
FinTech Belgium
Ā 
PDF
Optimizing Large Language Models with vLLM and Related Tools.pdf
Tamanna36
Ā 
03_Ariane BERCKMOES_Ethias.pptx_AIBarometer_release_event
FinTech Belgium
Ā 
A GraphRAG approach for Energy Efficiency Q&A
Marco Brambilla
Ā 
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
Ā 
SHREYAS25 INTERN-I,II,III PPT (1).pptx pre
swapnilherage
Ā 
Using AI/ML for Space Biology Research
VICTOR MAESTRE RAMIREZ
Ā 
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
Ā 
Business implication of Artificial Intelligence.pdf
VishalChugh12
Ā 
apidays Singapore 2025 - The API Playbook for AI by Shin Wee Chuang (PAND AI)
apidays
Ā 
apidays Singapore 2025 - Building a Federated Future, Alex Szomora (GSMA)
apidays
Ā 
Research Methodology Overview Introduction
ayeshagul29594
Ā 
big data eco system fundamentals of data science
arivukarasi
Ā 
apidays Helsinki & North 2025 - Agentic AI: A Friend or Foe?, Merja Kajava (A...
apidays
Ā 
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
Ā 
apidays Singapore 2025 - Designing for Change, Julie Schiller (Google)
apidays
Ā 
What Is Data Integration and Transformation?
subhashenia
Ā 
Feb 2021 Ransomware Recovery presentation.pptx
enginsayin1
Ā 
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
Ā 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
Ā 
01_Nico Vincent_Sailpeak.pptx_AI_Barometer_2025
FinTech Belgium
Ā 
Optimizing Large Language Models with vLLM and Related Tools.pdf
Tamanna36
Ā 
Ad

Naive Bayes Example using R

  • 1. Prepared by VOLKAN OBAN Naive Bayes in R >library("caret") >data(iris) > x = iris[,-5] > y = iris$Species > library("caret") > model = train(x,y,'nb',trControl=trainControl(method='cv',number=10)) > model Naive Bayes 150 samples 4 predictor 3 classes: 'setosa', 'versicolor', 'virginica' No pre-processing Resampling: Cross-Validated (10 fold) Summary of sample sizes: 135, 135, 135, 135, 135, 135, ... Resampling results across tuning parameters: usekernel Accuracy Kappa FALSE 0.9466667 0.92 TRUE 0.9600000 0.94 Tuning parameter 'fL' was held constant at a value of 0 Tuning parameter 'adjust' was held constant at a value of 1 Accuracy was used to select the optimal model using the largest value. The final values used for the model were fL = 0, usekernel = TRUE and adjust = 1. > predict(model$finalModel,x) $class [1] setosa setosa setosa setosa setosa [6] setosa setosa setosa setosa setosa [11] setosa setosa setosa setosa setosa [16] setosa setosa setosa setosa setosa [21] setosa setosa setosa setosa setosa [26] setosa setosa setosa setosa setosa [31] setosa setosa setosa setosa setosa [36] setosa setosa setosa setosa setosa [41] setosa setosa setosa setosa setosa [46] setosa setosa setosa setosa setosa [51] versicolor versicolor versicolor versicolor versicolor [56] versicolor versicolor versicolor versicolor versicolor [61] versicolor versicolor versicolor versicolor versicolor [66] versicolor versicolor versicolor versicolor versicolor [71] virginica versicolor versicolor versicolor versicolor [76] versicolor versicolor virginica versicolor versicolor [81] versicolor versicolor versicolor virginica versicolor [86] versicolor versicolor versicolor versicolor versicolor [91] versicolor versicolor versicolor versicolor versicolor [96] versicolor versicolor versicolor versicolor versicolor
  • 2. [101] virginica virginica virginica virginica virginica [106] virginica versicolor virginica virginica virginica [111] virginica virginica virginica virginica virginica [116] virginica virginica virginica virginica versicolor [121] virginica virginica virginica virginica virginica [126] virginica virginica virginica virginica virginica [131] virginica virginica virginica versicolor virginica [136] virginica virginica virginica virginica virginica [141] virginica virginica virginica virginica virginica [146] virginica virginica virginica virginica virginica Levels: setosa versicolor virginica $posterior setosa versicolor virginica [1,] 1.000000e+00 3.122328e-09 8.989129e-11 [2,] 9.999999e-01 4.953302e-08 1.361560e-09 [3,] 1.000000e+00 1.949717e-08 1.152761e-09 [4,] 1.000000e+00 1.146273e-08 6.616756e-10 [5,] 1.000000e+00 8.839954e-10 8.567477e-11 [6,] 1.000000e+00 3.818715e-09 5.965843e-09 [7,] 1.000000e+00 7.394006e-09 6.702907e-10 [8,] 1.000000e+00 5.311568e-09 1.920277e-10 [9,] 1.000000e+00 6.502476e-09 3.193962e-10 [10,] 9.999998e-01 1.731985e-07 5.531788e-09 [11,] 1.000000e+00 1.233528e-09 4.372981e-10 [12,] 1.000000e+00 6.936685e-09 4.552987e-10 [13,] 9.999998e-01 2.398420e-07 8.627082e-09 .......... > table(predict(model$finalModel,x)$class,y) y setosa versicolor virginica setosa 50 0 0 versicolor 0 47 3 virginica 0 3 47 > naive_iris <- NaiveBayes(iris$Species ~ ., data = iris) > plot(naive_iris)
  • 4. Ref: http://rischanlab.github.io/NaiveBayes.html Rischan Mafrur, http://rischanlab.github.io