This document surveys and compares three large-scale graph processing platforms: Apache Giraph, Hadoop-MapReduce, and Neo4j. It analyzes their programming models and performance based on previous studies. Hadoop was found to have the worst performance for graph algorithms due to its lack of optimizations for graphs. Giraph was generally the fastest platform due to its in-memory computations and message passing model. Neo4j performed well for small graphs due to its caching but did not scale as well as distributed platforms for large graphs. The document concludes that distributed graph-specific platforms like Giraph outperform generic platforms for most graph problems.