This document provides an overview of multilayer perceptrons (MLPs) and the backpropagation algorithm. It defines MLPs as neural networks with multiple hidden layers that can solve nonlinear problems. The backpropagation algorithm is introduced as a method for training MLPs by propagating error signals backward from the output to inner layers. Key steps include calculating the error at each neuron, determining the gradient to update weights, and using this to minimize overall network error through iterative weight adjustment.