SlideShare a Scribd company logo
Neural Networks
Neural Networks
• Origins: Algorithms that try to mimic the brain.
What is this?
A single neuron in the brain
Input
Output
An artificial neuron: Logistic unit
“Bias unit”
“Input”
“Output”
“Weights”
“Parameters”
Visualization of weights, bias, activation function
bias b only change the
position of the hyperplane
range
determined
by g(.)
Activation - sigmoid
• Squashes the neuron’s pre-
activation between 0 and 1
• Always positive
• Bounded
• Strictly increasing
Activation - hyperbolic tangent (tanh)
• Squashes the neuron’s pre-
activation between -1 and 1
• Can be positive or negative
• Bounded
• Strictly increasing
Activation - rectified linear(relu)
• Bounded below by 0
• always non-negative
• Not upper bounded
• Tends to give neurons with
sparse activities
Activation - softmax
Universal approximation theorem
‘‘a single hidden layer neural network with a linear output unit
can approximate any continuous function arbitrarily well,
given enough hidden units’’
Hornik, 1991
Neural network – Multilayer
Layer 1
“Output”
Layer 2 (hidden) Layer 3
Neural network
Neural network “Pre-activation”
Why do we need g(.)?
Neural network “Pre-activation”
Flow graph - Forward propagation
X
How do we evaluate
our prediction?
Cost function
Logistic regression:
Neural network:
Gradient computation
Need to compute:
Gradient computation
Gradient computation: Backpropagation
Backpropagation algorithm
Activation - sigmoid
• Partial derivative
Activation - hyperbolic tangent (tanh)
• Partial derivative
Activation - rectified linear(relu)
• Partial derivative
Initialization
• For bias
• Initialize all to 0
• For weights
• Can’t initialize all weights to the same value
• we can show that all hidden units in a layer will always behave the same
• need to break symmetry
• Recipe: U[-b, b]
• the idea is to sample around 0 but break symmetry
Putting it together
Pick a network architecture
• No. of input units: Dimension of features
• No. output units: Number of classes
• Reasonable default: 1 hidden layer, or if >1 hidden layer, have same no.
of hidden units in every layer (usually the more the better)
• Grid search
Putting it together
Early stopping
• Use a validation set performance to select the best configuration
• To select the number of epochs, stop training when validation set error
increases
Other tricks of the trade
• Normalizing your (real-valued) data
• Decaying the learning rate
• as we get closer to the optimum, makes sense to take smaller update steps
• mini-batch
• can give a more accurate estimate of the risk gradient
• Momentum
• can use an exponential average of previous gradients
Dropout
• Idea: «cripple» neural network by removing hidden units
• each hidden unit is set to 0 with probability 0.5
• hidden units cannot co-adapt to other units
• hidden units must be more generally useful

More Related Content

PPTX
Lec10.pptx
AbrahamTadesse11
 
PPTX
Introduction to artificial neural network and deep learning
Pramod Ramachandra
 
PPT
Artificial Neural Network
Pratik Aggarwal
 
PDF
Artificial Neural Network for machine learning
2303oyxxxjdeepak
 
PPTX
08 neural networks
ankit_ppt
 
PPTX
Introduction to Neural Netwoks
Abdallah Bashir
 
PPT
SET-02_SOCS_ESE-DEC23__B.Tech%20(CSE-H+NH)-AIML_5_CSAI300
dhruvkeshav123
 
PPT
Artificial-Neural-Networks.ppt
ChidanGowda1
 
Lec10.pptx
AbrahamTadesse11
 
Introduction to artificial neural network and deep learning
Pramod Ramachandra
 
Artificial Neural Network
Pratik Aggarwal
 
Artificial Neural Network for machine learning
2303oyxxxjdeepak
 
08 neural networks
ankit_ppt
 
Introduction to Neural Netwoks
Abdallah Bashir
 
SET-02_SOCS_ESE-DEC23__B.Tech%20(CSE-H+NH)-AIML_5_CSAI300
dhruvkeshav123
 
Artificial-Neural-Networks.ppt
ChidanGowda1
 

Similar to Neural_Networks_scalability_consntency.ppt (20)

PPTX
lecture13-NN-basics.pptx
AbijahRoseline1
 
PPTX
Machine Learning - Introduction to Neural Networks
Andrew Ferlitsch
 
PPTX
Machine Learning - Neural Networks - Perceptron
Andrew Ferlitsch
 
PPT
2011 0480.neural-networks
Parneet Kaur
 
PPT
ann-ics320Part4.ppt
GayathriRHICETCSESTA
 
PPT
ann-ics320Part4.ppt
GayathriRHICETCSESTA
 
PPT
ann ppt , multilayer perceptron. presentation on
SoumabhaBhim
 
PDF
Cs229 notes-deep learning
VuTran231
 
DOCX
Lets build a neural network
Commit Software Sh.p.k.
 
PPTX
ANN.pptx
AROCKIAJAYAIECW
 
PPTX
Sachpazis: Demystifying Neural Networks: A Comprehensive Guide
Dr.Costas Sachpazis
 
PPT
ai...........................................
abhisheknagaraju126
 
PDF
Introduction to Neural Networks
Databricks
 
PPTX
4.2 Neural Networks Overviewwwwwwww.pptx
NGUYNMINHHIU444154
 
PDF
Data Science - Part VIII - Artifical Neural Network
Derek Kane
 
PPT
Neural Network in Depth presentation ,which provides in depth knowledge on n...
afsamailmuri
 
PPT
Game theory.pdf textbooks content Artificical
webinartrainer
 
PPTX
Chapter-5-Part I-Basics-Neural-Networks.pptx
MitikuAbebe2
 
PPT
Machine Learning Neural Networks Artificial Intelligence
webinartrainer
 
PPT
Machine Learning Neural Networks Artificial
webinartrainer
 
lecture13-NN-basics.pptx
AbijahRoseline1
 
Machine Learning - Introduction to Neural Networks
Andrew Ferlitsch
 
Machine Learning - Neural Networks - Perceptron
Andrew Ferlitsch
 
2011 0480.neural-networks
Parneet Kaur
 
ann-ics320Part4.ppt
GayathriRHICETCSESTA
 
ann-ics320Part4.ppt
GayathriRHICETCSESTA
 
ann ppt , multilayer perceptron. presentation on
SoumabhaBhim
 
Cs229 notes-deep learning
VuTran231
 
Lets build a neural network
Commit Software Sh.p.k.
 
ANN.pptx
AROCKIAJAYAIECW
 
Sachpazis: Demystifying Neural Networks: A Comprehensive Guide
Dr.Costas Sachpazis
 
ai...........................................
abhisheknagaraju126
 
Introduction to Neural Networks
Databricks
 
4.2 Neural Networks Overviewwwwwwww.pptx
NGUYNMINHHIU444154
 
Data Science - Part VIII - Artifical Neural Network
Derek Kane
 
Neural Network in Depth presentation ,which provides in depth knowledge on n...
afsamailmuri
 
Game theory.pdf textbooks content Artificical
webinartrainer
 
Chapter-5-Part I-Basics-Neural-Networks.pptx
MitikuAbebe2
 
Machine Learning Neural Networks Artificial Intelligence
webinartrainer
 
Machine Learning Neural Networks Artificial
webinartrainer
 
Ad

More from VGaneshKarthikeyan (20)

PPT
1.3 Basic coding skills_fundamentals .ppt
VGaneshKarthikeyan
 
PPT
5_Model for Predictions_Machine_Learning.ppt
VGaneshKarthikeyan
 
PPT
2_Errors in Experimental Observations_ML.ppt
VGaneshKarthikeyan
 
PDF
FINAL_DAY11_INTERFACES_Roles_and_Responsibility.pdf
VGaneshKarthikeyan
 
PPTX
FINAL_DAY10_INTERFACES_roles and benefits.pptx
VGaneshKarthikeyan
 
PPTX
FINAL_DAY8_VISIBILITY_LABELS_Roles and.pptx
VGaneshKarthikeyan
 
PPTX
FINAL_DAY9_METHOD_OVERRIDING_Role and benefits .pptx
VGaneshKarthikeyan
 
PPT
JAVA_BASICS_Data_abstraction_encapsulation.ppt
VGaneshKarthikeyan
 
PPT
Java ppt-class_Introduction_class_Objects.ppt
VGaneshKarthikeyan
 
PPT
INT104 DBMS - Introduction_Atomicity.ppt
VGaneshKarthikeyan
 
PDF
6. Implementation of classes_and_its_advantages.pdf
VGaneshKarthikeyan
 
PPT
Operators_in_C++_advantages_applications.ppt
VGaneshKarthikeyan
 
PPT
1_Standard error Experimental Data_ML.ppt
VGaneshKarthikeyan
 
PPTX
Unit III Part I_Opertaor_Overloading.pptx
VGaneshKarthikeyan
 
PPTX
Linear_discriminat_analysis_in_Machine_Learning.pptx
VGaneshKarthikeyan
 
PPTX
K-Mean clustering_Introduction_Applications.pptx
VGaneshKarthikeyan
 
PPTX
Numpy_defintion_description_usage_examples.pptx
VGaneshKarthikeyan
 
PPT
Refined_Lecture-14-Linear Algebra-Review.ppt
VGaneshKarthikeyan
 
PPT
randomwalks_states_figures_events_happenings.ppt
VGaneshKarthikeyan
 
PPT
stochasticmodellinganditsapplications.ppt
VGaneshKarthikeyan
 
1.3 Basic coding skills_fundamentals .ppt
VGaneshKarthikeyan
 
5_Model for Predictions_Machine_Learning.ppt
VGaneshKarthikeyan
 
2_Errors in Experimental Observations_ML.ppt
VGaneshKarthikeyan
 
FINAL_DAY11_INTERFACES_Roles_and_Responsibility.pdf
VGaneshKarthikeyan
 
FINAL_DAY10_INTERFACES_roles and benefits.pptx
VGaneshKarthikeyan
 
FINAL_DAY8_VISIBILITY_LABELS_Roles and.pptx
VGaneshKarthikeyan
 
FINAL_DAY9_METHOD_OVERRIDING_Role and benefits .pptx
VGaneshKarthikeyan
 
JAVA_BASICS_Data_abstraction_encapsulation.ppt
VGaneshKarthikeyan
 
Java ppt-class_Introduction_class_Objects.ppt
VGaneshKarthikeyan
 
INT104 DBMS - Introduction_Atomicity.ppt
VGaneshKarthikeyan
 
6. Implementation of classes_and_its_advantages.pdf
VGaneshKarthikeyan
 
Operators_in_C++_advantages_applications.ppt
VGaneshKarthikeyan
 
1_Standard error Experimental Data_ML.ppt
VGaneshKarthikeyan
 
Unit III Part I_Opertaor_Overloading.pptx
VGaneshKarthikeyan
 
Linear_discriminat_analysis_in_Machine_Learning.pptx
VGaneshKarthikeyan
 
K-Mean clustering_Introduction_Applications.pptx
VGaneshKarthikeyan
 
Numpy_defintion_description_usage_examples.pptx
VGaneshKarthikeyan
 
Refined_Lecture-14-Linear Algebra-Review.ppt
VGaneshKarthikeyan
 
randomwalks_states_figures_events_happenings.ppt
VGaneshKarthikeyan
 
stochasticmodellinganditsapplications.ppt
VGaneshKarthikeyan
 
Ad

Recently uploaded (20)

PDF
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 
PDF
Cryptography and Information :Security Fundamentals
Dr. Madhuri Jawale
 
PDF
JUAL EFIX C5 IMU GNSS GEODETIC PERFECT BASE OR ROVER
Budi Minds
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PDF
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
PDF
Software Testing Tools - names and explanation
shruti533256
 
PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PPTX
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
PPTX
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
PPTX
Civil Engineering Practices_BY Sh.JP Mishra 23.09.pptx
bineetmishra1990
 
PDF
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
PDF
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
PPTX
easa module 3 funtamental electronics.pptx
tryanothert7
 
PPT
SCOPE_~1- technology of green house and poyhouse
bala464780
 
PDF
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
PDF
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
 
PDF
Zero carbon Building Design Guidelines V4
BassemOsman1
 
PDF
Traditional Exams vs Continuous Assessment in Boarding Schools.pdf
The Asian School
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PDF
Introduction to Data Science: data science process
ShivarkarSandip
 
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 
Cryptography and Information :Security Fundamentals
Dr. Madhuri Jawale
 
JUAL EFIX C5 IMU GNSS GEODETIC PERFECT BASE OR ROVER
Budi Minds
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
Software Testing Tools - names and explanation
shruti533256
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
Civil Engineering Practices_BY Sh.JP Mishra 23.09.pptx
bineetmishra1990
 
FLEX-LNG-Company-Presentation-Nov-2017.pdf
jbloggzs
 
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
easa module 3 funtamental electronics.pptx
tryanothert7
 
SCOPE_~1- technology of green house and poyhouse
bala464780
 
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
 
Zero carbon Building Design Guidelines V4
BassemOsman1
 
Traditional Exams vs Continuous Assessment in Boarding Schools.pdf
The Asian School
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
Introduction to Data Science: data science process
ShivarkarSandip
 

Neural_Networks_scalability_consntency.ppt

Editor's Notes

  • #3: Two ears, two eye, color, coat of hair  puppy Edges, simple pattern  ear/eye Low level feature  high level feature
  • #4: If activated  activation
  • #14: Non-linear