Numerical approach for Hamilton-Jacobi equations
on a network: application to traffic
Guillaume Costeseque
(PhD with supervisors R. Monneau & J-P. Lebacque)
Universit´e Paris Est, Ecole des Ponts ParisTech & IFSTTAR
Pr´esentation S´eminaire des doctorants CERMICS,
June 06, 2014
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 1 / 53
Flows on a network
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 2 / 53
Flows on a network
A network is like a (oriented) graph
made of edges and vertices
Examples:
traffic flow,
gas pipelines,
blood vessels,
shallow water,
internet communications...
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 3 / 53
Outline
1 Introduction
2 HJ model and numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
6 Concluding remarks
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 4 / 53
Introduction
Motivation
Classical approaches:
Macroscopic modeling on (homogeneous) sections
Coupling conditions at (pointwise) junction
For instance, consider



ρt + (Q(ρ))x = 0, scalar conservation law,
ρ(., t = 0) = ρ0(.), initial conditions,
ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.
(1)
See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 5 / 53
Introduction
Motivation
Our aim
Macroscopic modeling of a single junction
Explicit junction condition
Theoretical properties & tractable numerical methods
Our tool: Hamilton-Jacobi equations (HJ)
ut + H(x, t, Du) = 0
“Integrated” version of conservation laws
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 6 / 53
Introduction
Some references for conservation laws
ρt + (Q(x, ρ))x = 0 with Q(x, p) = 1{x<0}Qin
(p) + 1{x≥0}Qout
(p)
Uniqueness results only for restricted configurations:
See [Garavello, Natalini, Piccoli, Terracina ’07]
and [Andreianov, Karlsen, Risebro ’11]
Book of [Garavello, Piccoli ’06] for conservation laws on networks:
Construction of a solution using the “wave front tracking method”
No proof of the uniqueness of the solution on a general network
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 7 / 53
Introduction
Numerics on networks
Godunov scheme mainly used for conservation laws:
[Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to
kinetic schemes / fast algorithms
[Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for
Colombo model (only tested for 1 × 1 junctions)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 8 / 53
Introduction
Numerics on networks
Godunov scheme mainly used for conservation laws:
[Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to
kinetic schemes / fast algorithms
[Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for
Colombo model (only tested for 1 × 1 junctions)
For Hamilton-Jacobi equations on networks:
[G¨ottlich, Ziegler, Herty ’13]: Lax-Freidrichs scheme outside the
junction + coupling conditions (density) at the junction
[Han, Piccoli, Friesz, Yao ’12]: Lax-Hopf formula for HJ equation
coupled with a Riemann solver at junction
[Camilli, Festa, Schieborn ’13]: semi-Lagrangian scheme only
designed for Eikonal equations
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 8 / 53
HJ model and numerical scheme
Outline
1 Introduction
2 HJ model and numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
6 Concluding remarks
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 9 / 53
HJ model and numerical scheme Hamilton-Jacobi model
Motivation: the simple divergent road
x > 0
x > 0γl
γrx < 0
Il
Ir
γe
Ie



γe = 1,
0 ≤ γl , γr ≤ 1,
γl + γr = 1
LWR model [Lighthill, Whitham ’55; Richards ’56] on each branch α:
ρα
t + (Qα
(ρα
))x = 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 10 / 53
HJ model and numerical scheme Hamilton-Jacobi model
Qmax
ρcrit ρmax
Density ρ
Flow Q(ρ)
Q(ρ) = ρV (ρ) with V (ρ) = velocity function
DFs
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 11 / 53
HJ model and numerical scheme Hamilton-Jacobi model
Getting the Hamilton-Jacobi equation
LWR model on each branch (outside the junction point)
ρα
t + (Qα
(ρα
))x = 0 on branch α
Primitive:



Uα(x, t) = Uα(0, t) +
1
γα
x
0
ρα
(y, t)dy,
Uα(0, t) = g(t) = index of the single car at the junction point
x > 0
x > 09
11
8
10
12
6420 1 3 5
7
−1
x < 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 12 / 53
HJ model and numerical scheme Hamilton-Jacobi model
Getting the Hamilton-Jacobi equation
LWR model on each branch (outside the junction point)
ρα
t + (Qα
(ρα
))x = 0 on branch α
Primitive:



Uα(x, t) = Uα(0, t) +
1
γα
x
0
ρα
(y, t)dy,
Uα(0, t) = g(t) = index of the single car at the junction point
x > 0
x > 09
11
8
10
12
6420 1 3 5
7
−1
x < 0
Uα
t +
1
γα
Qα
(γα
Uα
x ) = g′
(t) +
1
γα
Qα
(ρα
(0, t))
= 0 for a good choice of g
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 12 / 53
HJ model and numerical scheme Hamilton-Jacobi model
Settings
JN
J1
J2
branch Jα
x
x
0
x
x
New functions uα:
uα(x, t) = −Uα(x, t), x > 0, for outgoing roads
uα(x, t) = −Uα(−x, t), x > 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 13 / 53
HJ model and numerical scheme Hamilton-Jacobi model
Junction model
Proposition (Junction model [IMZ, ’13])
That leads to the following junction model (see [5])



uα
t + Hα(uα
x ) = 0, x > 0, α = 1, . . . , N
uα = uβ =: u, x = 0,
ut + H(u1
x , . . . , uN
x ) = 0, x = 0
(2)
with initial condition uα(0, x) = uα
0 (x) and
H(u1
x , . . . , uN
x ) = max
α=1,...,N
H−
α (uα
x )
from optimal control
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 14 / 53
HJ model and numerical scheme Hamilton-Jacobi model
Basic assumptions
For all α = 1, . . . , N,
(A0) The initial condition uα
0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are C1(R) and convex such that:
p
H−
α (p) H+
α (p)
pα
0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 15 / 53
HJ model and numerical scheme Numerical scheme
Presentation of the scheme
Proposition (Numerical Scheme)
Let us consider the discrete space and time derivatives:
pα,n
i :=
Uα,n
i+1 − Uα,n
i
∆x
and (DtU)α,n
i :=
Uα,n+1
i − Uα,n
i
∆t
Then we have the following numerical scheme:



(DtU)α,n
i + max{H+
α (pα,n
i−1), H−
α (pα,n
i )} = 0, i ≥ 1
Un
0 := Uα,n
0 , i = 0, α = 1, ..., N
(DtU)n
0 + max
α=1,...,N
H−
α (pα,n
0 ) = 0, i = 0
(3)
With the initial condition Uα,0
i := uα
0 (i∆x).
∆x and ∆t = space and time steps satisfying a CFL condition
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 16 / 53
HJ model and numerical scheme Numerical scheme
CFL condition
The natural CFL condition is given by:
∆x
∆t
≥ sup
α=1,...,N
i≥0, 0≤n≤nT
|H′
α(pα,n
i )| (4)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 17 / 53
HJ model and numerical scheme Mathematical results
Gradient estimates
Theorem (Time and Space Gradient estimates)
Assume (A0)-(A1). If the CFL condition (4) is satisfied, then we have
that:
(i) Considering Mn = sup
α,i
(DtU)α,n
i and mn = inf
α,i
(DtU)α,n
i , we have the
following time derivative estimate:
m0
≤ mn
≤ mn+1
≤ Mn+1
≤ Mn
≤ M0
(ii) Considering pα
= (H−
α )−1(−m0) and pα = (H+
α )−1(−m0), we have
the following gradient estimate:
pα
≤ pα,n
i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N
Proof
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 18 / 53
HJ model and numerical scheme Mathematical results
Stronger CFL condition
−m0
pα
p
Hα(p)
pα
As for any α = 1, . . . , N, we have that:
pα
≤ pα,n
i ≤ pα for all i, n ≥ 0
Then the CFL condition becomes:
∆x
∆t
≥ sup
α=1,...,N
pα∈[pα
,pα]
|H′
α(pα)| (5)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 19 / 53
HJ model and numerical scheme Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 20 / 53
HJ model and numerical scheme Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
Theorem (Existence and uniqueness [IMZ, ’13])
Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (2) on
the junction, satisfying for some constant CT > 0
|u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT .
Moreover the function u is Lipschitz continuous with respect to (t, y).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 20 / 53
HJ model and numerical scheme Mathematical results
Convergence
Theorem (Convergence from discrete to continuous [CML, ’13])
Assume that (A0)-(A1)-(A2) and the CFL condition (5) are satisfied.
Then the numerical solution converges uniformly to u the unique viscosity
solution of (2) when ε → 0, locally uniformly on any compact set K:
lim sup
ε→0
sup
(n∆t,i∆x)∈K
|uα
(n∆t, i∆x) − Uα,n
i | = 0
Proof
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 21 / 53
Traffic interpretation
Outline
1 Introduction
2 HJ model and numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
6 Concluding remarks
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 22 / 53
Traffic interpretation
Setting
J1
JNI
JNI +1
JNI +NO
x < 0 x = 0 x > 0
Jβ
γβ Jλ
γλ
NI incoming and NO outgoing roads
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 23 / 53
Traffic interpretation
Car densities
The car density ρα solves the LWR equation on branch α:
ρα
t + (Qα
(ρα
))x = 0
By definition
ρα
= γα
∂x Uα
on branch α
And
uα(x, t) = −Uα(−x, t), x > 0, for incoming roads
uα(x, t) = −Uα(x, t), x > 0, for outgoing roads
where the car index uα solves the HJ equation on branch α:
uα
t + Hα
(uα
x ) = 0, for x > 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 24 / 53
Traffic interpretation
Flow
Hα(p) :=



−
1
γα
Qα(γαp) for α = 1, ..., NI
−
1
γα
Qα(−γαp) for α = NI + 1, ..., NI + NO
Incoming roads Outgoing roads
ρcrit
γα
ρmax
γα
p
−
Qmax
γα
p
−
Qmax
γα
HαHα
H−
α H−
α H+
αH+
α
−
ρmax
γα
−
ρcrit
γα
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 25 / 53
Traffic interpretation
Links with “classical” approach
Definition (Discrete car density)
The discrete car density ρα,n
i with n ≥ 0 and i ∈ Z is given by:
ρα,n
i :=



γαpα,n
|i|−1 for α = 1, ..., NI , i ≤ −1
−γαpα,n
i for α = NI + 1, ..., NI + NO, i ≥ 0
(6)
J1
JNI
JNI +1
JNI +NO
x < 0 x > 0
−2
−1
2
1
0
−2
−2
−1
−1
1
1
2
2
Jβ
Jλ
ρλ,n
1
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 26 / 53
Traffic interpretation
Traffic interpretation
Proposition (Scheme for vehicles densities)
The scheme deduced from (3) for the discrete densities is given by:
∆x
∆t
{ρα,n+1
i − ρα,n
i } =



Fα(ρα,n
i−1, ρα,n
i ) − Fα(ρα,n
i , ρα,n
i+1) for i = 0, −1
Fα
0 (ρ·,n
0 ) − Fα(ρα,n
i , ρα,n
i+1) for i = 0
Fα(ρα,n
i−1, ρα,n
i ) − Fα
0 (ρ·,n
0 ) for i = −1
With



Fα(ρα,n
i−1, ρα,n
i ) := min Qα
D(ρα,n
i−1), Qα
S (ρα,n
i )
Fα
0 (ρ·,n
0 ) := γα min min
β≤NI
1
γβ
Qβ
D(ρβ,n
0 ), min
λ>NI
1
γλ
Qλ
S (ρλ,n
0 )
incoming outgoing
ρλ,n
0ρβ,n
−1ρβ,n
−2 ρλ,n
1
x
x = 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 27 / 53
Traffic interpretation
Supply and demand functions
Remark
It recovers the seminal Godunov scheme with passing flow = minimum
between upstream demand QD and downstream supply QS.
Density ρ
ρcrit ρmax
Supply QS
Qmax
Density ρ
ρcrit ρmax
Flow Q
Qmax
Density ρ
ρcrit
Demand QD
Qmax
From [Lebacque ’93, ’96]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 28 / 53
Traffic interpretation
Supply and demand VS Hamiltonian
H−
α (p) =



−
1
γα
Qα
D(γαp) for α = 1, ..., NI
−
1
γα
Qα
S (−γαp) for α = NI + 1, ..., NI + NO
And
H+
α (p) =



−
1
γα
Qα
S (γαp) for α = 1, ..., NI
−
1
γα
Qα
D(−γαp) for α = NI + 1, ..., NI + NO
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 29 / 53
Numerical simulation
Outline
1 Introduction
2 HJ model and numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
6 Concluding remarks
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 30 / 53
Numerical simulation
Example of a Diverge
An off-ramp:
J1
ρ1
J2
ρ2
ρ3
J3
with 


γe = 1,
γl = 0.75,
γr = 0.25
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 31 / 53
Numerical simulation
Fundamental Diagrams
0 50 100 150 200 250 300 350
0
500
1000
1500
2000
2500
3000
3500
4000
(ρ
c
,f
max
)
(ρ
c
,f
max
)
Density (veh/km)
Flow(veh/h)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 32 / 53
Numerical simulation
Initial conditions (t=0s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 0s)
Position (m)
Density(veh/km)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 33 / 53
Numerical simulation
Numerical solution: densities
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 34 / 53
Numerical simulation
Numerical solution: Hamilton-Jacobi
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 35 / 53
Numerical simulation
Trajectories
1
2
3
4
56
7
78
8
9
9
10
10
11
11
12
12
13
13
Trajectories on road n° 1
Position (m)
Time(s)
−200 −150 −100 −50 0
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
12
Trajectories on road n° 2
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
56
6
7
7
8
8
9
10
11
12
Trajectories on road n° 3
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 36 / 53
Numerical simulation
Gradient estimates
0 10 20 30
0
50
100
150
200
250
Time (s)
Density(veh/km)
Density time evolution on road n° 1
0 10 20 30
0
50
100
150
200
250
300
Time (s)
Density(veh/km)
Density time evolution on road n° 2
0 10 20 30
0
50
100
150
Time (s)
Density(veh/km)
Density time evolution on road n° 3
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 37 / 53
Recent developments
Outline
1 Introduction
2 HJ model and numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
6 Concluding remarks
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 38 / 53
Recent developments
New junction model
Proposition (Junction model [IM, ’14])
From [4], we have



uα
t + Hα(uα
x ) = 0, x > 0, α = 1, . . . , N
uα = uβ =: u, x = 0,
ut + H(u1
x , . . . , uN
x ) = 0, x = 0
(7)
with initial condition uα(0, x) = uα
0 (x) and
H(u1
x , . . . , uN
x ) = max
flux limiter
L , max
α=1,...,N
H−
α (uα
x )
minimum between
demand and supply
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 39 / 53
Recent developments
Weaker assumptions
For all α = 1, . . . , N,
(A0) The initial condition uα
0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are continuous and level-set convex i.e.
there exists points pα
0 such that



Hα is non-increasing on (−∞, pα
0 ],
Hα is non-decreasing on [pα
0 , +∞).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 40 / 53
Recent developments
Homogenization
Homogenization on a periodic network [4]
u0
t + H ∇x u0
= 0, t > 0, x ∈ Rd
(8)
Numerical scheme adapted to the network
Traffic
Traffic
γx
γy
γy
i = 0
i =
N
2
i = −
N
2
γx
ey
ex
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 41 / 53
Recent developments
First example
Proposition (Effective Hamiltonian for fixed coefficients)
If (γH , γV ) are fixed, then the effective flow Q is given by
Q(ρH , ρV ) = min −L,
Q(ρH)
γH
,
Q(ρV )
γV
.
Numerics: assume Q(ρ) = 4ρ(1 − ρ) and L = 0.5,
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 42 / 53
Recent developments
Second example
Two consecutive traffic signals on a 1D road
flow
l LL
x1 x2xE
E
xS
S
Effective flux limiter L (numerics only)
0 5 10 15 20 25 30
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Offset (s)
Fluxlimiter
l=0 m
l=5 m
l=10 m
l=20 m
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 43 / 53
Concluding remarks
Outline
1 Introduction
2 HJ model and numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
6 Concluding remarks
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 44 / 53
Concluding remarks
Pros & Cons (for the model)
Good mathematical properties (existence and uniqueness of the
viscosity solution)...
...under weak assumptions on the Hamiltonian (“bi-monotone”
instead of strictly convex)
Possibility to compute the solution thanks to convergent finite
difference scheme [2]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 45 / 53
Concluding remarks
Pros & Cons (for the model)
Good mathematical properties (existence and uniqueness of the
viscosity solution)...
...under weak assumptions on the Hamiltonian (“bi-monotone”
instead of strictly convex)
Possibility to compute the solution thanks to convergent finite
difference scheme [2]
No explicit / analytical solution (Lax-Hopf formula)
Not very satisfactory in traffic: (γα)α fixed!
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 45 / 53
Concluding remarks
In brief
Complementary results [CML ’13]:
Generalization for weaker assumptions on the Hamiltonians
Numerical simulation for other junction configurations (merge)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 46 / 53
Concluding remarks
In brief
Complementary results [CML ’13]:
Generalization for weaker assumptions on the Hamiltonians
Numerical simulation for other junction configurations (merge)
Open questions:
Error estimate
Non-fixed coefficients γα
Other link models / junction condition?
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 46 / 53
Concluding remarks
The End
Thanks for your attention
guillaume.costeseque@cermics.enpc.fr
guillaume.costeseque@ifsttar.fr
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 47 / 53
Complements References
Some references I
A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows
on networks: recent results and perspectives, EMS Surveys in Mathematical
Sciences, (2014).
G. Costeseque, J.-P. Lebacque, and R. Monneau, A convergent scheme for
hamilton-jacobi equations on a junction: application to traffic, arXiv preprint
arXiv:1306.0329, (2013).
M. Garavello and B. Piccoli, Traffic flow on networks, American institute of
mathematical sciences Springfield, MO, USA, 2006.
C. Imbert and R. Monneau, Level-set convex hamilton-jacobi equations on
networks, (2014).
C. Imbert, R. Monneau, and H. Zidani, A hamilton-jacobi approach to
junction problems and application to traffic flows, ESAIM: Control, Optimisation
and Calculus of Variations, 19 (2013), pp. 129–166.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 48 / 53
Complements References
Some references II
J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow
models: Intersection modeling, network modeling, in Transportation and Traffic
Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on
Transportation and Traffic Theory, 2005.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 49 / 53
Complements References
Fundamental diagram
Fundamental diagram: multi-valued in congested case
[S. Fan, M. Herty, B. Seibold, 2013], NGSIM dataset
Back
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 50 / 53
Complements Proofs of the main results
Sketch of the proof (gradient estimates):
Time derivative estimate:
1. Estimate on mα,n = inf
i
(DtU)α,n
i and partial result for mn = inf
α
mα,n
2. Similar estimate for Mn
3. Conclusion
Space derivative estimate:
1. New bounded Hamiltonian ˜Hα(p) for p ≤ pα
and p ≥ pα
2. Time derivative estimate from above
3. Lemma: if for any (i, n, α), (DtU)α,n
i ≥ m0 then
pα
≤ pα,n
i ≤ pα
4. Conclusion as ˜Hα = Hα on [pα
, pα]
Back
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 51 / 53
Complements Proofs of the main results
Convergence with uniqueness assumption
Sketch of the proof: (Comparison principle very helpful)
1. uα(t, x) := lim sup
ε
Uα,n
i is a subsolution of (2) (contradiction on
Definition inequality with a test function ϕ)
2. Similarly, uα is a supersolution of (2)
3. Conclusion: uα = uα viscosity solution of (2)
Back
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 52 / 53
Complements Proofs of the main results
Convergence without uniqueness assumption
Sketch of the proof: (No comparison principle)
1. Discrete Lipschitz bounds on uα
ε (n∆t, i∆x) := Uα,n
i
2. Extension by continuity of uα
ε
3. Ascoli theorem (convergent subsequence on every compact set)
4. The limit of one convergent subsequence (uα
ε )ε is super and
sub-solution of (2)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 53 / 53

More Related Content

PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
PDF
Hamilton-Jacobi approach for second order traffic flow models
PDF
Lec04 min cost linear problems
PDF
Madrid easy
PDF
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
PDF
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
PDF
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi approach for second order traffic flow models
Lec04 min cost linear problems
Madrid easy
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...

What's hot (20)

PDF
Robust Image Denoising in RKHS via Orthogonal Matching Pursuit
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
ABC-Xian
PDF
ABC: How Bayesian can it be?
PDF
Recursive Compressed Sensing
PDF
Representation formula for traffic flow estimation on a network
PDF
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
PDF
Distributed solution of stochastic optimal control problem on GPUs
PDF
The gaussian minimum entropy conjecture
PDF
ABC-Gibbs
PDF
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
PDF
Hybrid dynamics in large-scale logistics networks
PDF
Unbiased Hamiltonian Monte Carlo
PDF
Learning to discover monte carlo algorithm on spin ice manifold
PDF
LupoPasini_SIAMCSE15
PDF
Reduction of the small gain condition
PDF
Coordinate sampler : A non-reversible Gibbs-like sampler
PDF
HMPC for Upper Stage Attitude Control
PDF
Numerical methods for variational principles in traffic
PDF
A nonlinear approximation of the Bayesian Update formula
Robust Image Denoising in RKHS via Orthogonal Matching Pursuit
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
ABC-Xian
ABC: How Bayesian can it be?
Recursive Compressed Sensing
Representation formula for traffic flow estimation on a network
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Distributed solution of stochastic optimal control problem on GPUs
The gaussian minimum entropy conjecture
ABC-Gibbs
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
Hybrid dynamics in large-scale logistics networks
Unbiased Hamiltonian Monte Carlo
Learning to discover monte carlo algorithm on spin ice manifold
LupoPasini_SIAMCSE15
Reduction of the small gain condition
Coordinate sampler : A non-reversible Gibbs-like sampler
HMPC for Upper Stage Attitude Control
Numerical methods for variational principles in traffic
A nonlinear approximation of the Bayesian Update formula
Ad

Similar to Numerical approach for Hamilton-Jacobi equations on a network: application to traffic (20)

PDF
Road junction modeling using a scheme based on Hamilton-Jacobi equations
PDF
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
PDF
Some recent developments in the traffic flow variational formulation
PDF
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
PDF
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
PPTX
STAQ based Matrix estimation - initial concept (presented at hEART conference...
PPTX
Mathematical Understanding in Traffic Flow Modelling
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Micro to macro passage in traffic models including multi-anticipation effect
PDF
Continuum Modeling and Control of Large Nonuniform Networks
PDF
Mathematics Colloquium, UCSC
PPT
Partial
PDF
On Continuum Limits of Markov Chains and Network Modeling
PDF
Integrability and weak diffraction in a two-particle Bose-Hubbard model
PDF
Applied Graph Theory Applications
PDF
Hcdte Lecture Notes Part I Nonlinear Hyperbolic Pdes Dispersive And Transport...
PDF
The moving bottleneck problem: a Hamilton-Jacobi approach
PPTX
Neural ODE
PPTX
23MA401 Numerical Methods Boundary value problems
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Some recent developments in the traffic flow variational formulation
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
STAQ based Matrix estimation - initial concept (presented at hEART conference...
Mathematical Understanding in Traffic Flow Modelling
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Micro to macro passage in traffic models including multi-anticipation effect
Continuum Modeling and Control of Large Nonuniform Networks
Mathematics Colloquium, UCSC
Partial
On Continuum Limits of Markov Chains and Network Modeling
Integrability and weak diffraction in a two-particle Bose-Hubbard model
Applied Graph Theory Applications
Hcdte Lecture Notes Part I Nonlinear Hyperbolic Pdes Dispersive And Transport...
The moving bottleneck problem: a Hamilton-Jacobi approach
Neural ODE
23MA401 Numerical Methods Boundary value problems
Ad

More from Guillaume Costeseque (17)

PDF
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
PDF
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
PDF
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
PDF
Nouvelles mobilités, nouveaux usages, évolutions des marchés
PDF
Cours its-ecn-2021
PDF
Cours its-ecn-2020
PDF
A multi-objective optimization framework for a second order traffic flow mode...
PDF
Evaluation d'une navette autonome à Nantes 2019
PDF
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
PDF
A new solver for the ARZ traffic flow model on a junction
PDF
Mesoscopic multiclass traffic flow modeling on multi-lane sections
PDF
The impact of source terms in the variational representation of traffic flow
PDF
Second order traffic flow models on networks
PDF
Queue length estimation on urban corridors
PDF
Second order traffic flow models on networks
PDF
Second order traffic flow models on networks
PDF
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Cours its-ecn-2021
Cours its-ecn-2020
A multi-objective optimization framework for a second order traffic flow mode...
Evaluation d'une navette autonome à Nantes 2019
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
A new solver for the ARZ traffic flow model on a junction
Mesoscopic multiclass traffic flow modeling on multi-lane sections
The impact of source terms in the variational representation of traffic flow
Second order traffic flow models on networks
Queue length estimation on urban corridors
Second order traffic flow models on networks
Second order traffic flow models on networks
Traffic flow modeling on road networks using Hamilton-Jacobi equations

Recently uploaded (20)

PPTX
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
PPTX
CT Generations and Image Reconstruction methods
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
DOCX
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
PPTX
Cisco Network Behaviour dibuywvdsvdtdstydsdsa
PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
PPTX
Wireless sensor networks (WSN) SRM unit 2
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
Unit_1_introduction to surveying for diploma.pptx
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PDF
Project_Mgmt_Institute_-Marc Marc Marc .pdf
PDF
electrical machines course file-anna university
PDF
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
PPTX
mechattonicsand iotwith sensor and actuator
PPTX
Amdahl’s law is explained in the above power point presentations
PDF
First part_B-Image Processing - 1 of 2).pdf
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
CT Generations and Image Reconstruction methods
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
Computer System Architecture 3rd Edition-M Morris Mano.pdf
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
Cisco Network Behaviour dibuywvdsvdtdstydsdsa
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
Wireless sensor networks (WSN) SRM unit 2
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Unit_1_introduction to surveying for diploma.pptx
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Project_Mgmt_Institute_-Marc Marc Marc .pdf
electrical machines course file-anna university
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
mechattonicsand iotwith sensor and actuator
Amdahl’s law is explained in the above power point presentations
First part_B-Image Processing - 1 of 2).pdf
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK

Numerical approach for Hamilton-Jacobi equations on a network: application to traffic

  • 1. Numerical approach for Hamilton-Jacobi equations on a network: application to traffic Guillaume Costeseque (PhD with supervisors R. Monneau & J-P. Lebacque) Universit´e Paris Est, Ecole des Ponts ParisTech & IFSTTAR Pr´esentation S´eminaire des doctorants CERMICS, June 06, 2014 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 1 / 53
  • 2. Flows on a network G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 2 / 53
  • 3. Flows on a network A network is like a (oriented) graph made of edges and vertices Examples: traffic flow, gas pipelines, blood vessels, shallow water, internet communications... G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 3 / 53
  • 4. Outline 1 Introduction 2 HJ model and numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments 6 Concluding remarks G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 4 / 53
  • 5. Introduction Motivation Classical approaches: Macroscopic modeling on (homogeneous) sections Coupling conditions at (pointwise) junction For instance, consider    ρt + (Q(ρ))x = 0, scalar conservation law, ρ(., t = 0) = ρ0(.), initial conditions, ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition. (1) See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 5 / 53
  • 6. Introduction Motivation Our aim Macroscopic modeling of a single junction Explicit junction condition Theoretical properties & tractable numerical methods Our tool: Hamilton-Jacobi equations (HJ) ut + H(x, t, Du) = 0 “Integrated” version of conservation laws G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 6 / 53
  • 7. Introduction Some references for conservation laws ρt + (Q(x, ρ))x = 0 with Q(x, p) = 1{x<0}Qin (p) + 1{x≥0}Qout (p) Uniqueness results only for restricted configurations: See [Garavello, Natalini, Piccoli, Terracina ’07] and [Andreianov, Karlsen, Risebro ’11] Book of [Garavello, Piccoli ’06] for conservation laws on networks: Construction of a solution using the “wave front tracking method” No proof of the uniqueness of the solution on a general network G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 7 / 53
  • 8. Introduction Numerics on networks Godunov scheme mainly used for conservation laws: [Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to kinetic schemes / fast algorithms [Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for Colombo model (only tested for 1 × 1 junctions) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 8 / 53
  • 9. Introduction Numerics on networks Godunov scheme mainly used for conservation laws: [Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to kinetic schemes / fast algorithms [Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for Colombo model (only tested for 1 × 1 junctions) For Hamilton-Jacobi equations on networks: [G¨ottlich, Ziegler, Herty ’13]: Lax-Freidrichs scheme outside the junction + coupling conditions (density) at the junction [Han, Piccoli, Friesz, Yao ’12]: Lax-Hopf formula for HJ equation coupled with a Riemann solver at junction [Camilli, Festa, Schieborn ’13]: semi-Lagrangian scheme only designed for Eikonal equations G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 8 / 53
  • 10. HJ model and numerical scheme Outline 1 Introduction 2 HJ model and numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments 6 Concluding remarks G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 9 / 53
  • 11. HJ model and numerical scheme Hamilton-Jacobi model Motivation: the simple divergent road x > 0 x > 0γl γrx < 0 Il Ir γe Ie    γe = 1, 0 ≤ γl , γr ≤ 1, γl + γr = 1 LWR model [Lighthill, Whitham ’55; Richards ’56] on each branch α: ρα t + (Qα (ρα ))x = 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 10 / 53
  • 12. HJ model and numerical scheme Hamilton-Jacobi model Qmax ρcrit ρmax Density ρ Flow Q(ρ) Q(ρ) = ρV (ρ) with V (ρ) = velocity function DFs G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 11 / 53
  • 13. HJ model and numerical scheme Hamilton-Jacobi model Getting the Hamilton-Jacobi equation LWR model on each branch (outside the junction point) ρα t + (Qα (ρα ))x = 0 on branch α Primitive:    Uα(x, t) = Uα(0, t) + 1 γα x 0 ρα (y, t)dy, Uα(0, t) = g(t) = index of the single car at the junction point x > 0 x > 09 11 8 10 12 6420 1 3 5 7 −1 x < 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 12 / 53
  • 14. HJ model and numerical scheme Hamilton-Jacobi model Getting the Hamilton-Jacobi equation LWR model on each branch (outside the junction point) ρα t + (Qα (ρα ))x = 0 on branch α Primitive:    Uα(x, t) = Uα(0, t) + 1 γα x 0 ρα (y, t)dy, Uα(0, t) = g(t) = index of the single car at the junction point x > 0 x > 09 11 8 10 12 6420 1 3 5 7 −1 x < 0 Uα t + 1 γα Qα (γα Uα x ) = g′ (t) + 1 γα Qα (ρα (0, t)) = 0 for a good choice of g G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 12 / 53
  • 15. HJ model and numerical scheme Hamilton-Jacobi model Settings JN J1 J2 branch Jα x x 0 x x New functions uα: uα(x, t) = −Uα(x, t), x > 0, for outgoing roads uα(x, t) = −Uα(−x, t), x > 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 13 / 53
  • 16. HJ model and numerical scheme Hamilton-Jacobi model Junction model Proposition (Junction model [IMZ, ’13]) That leads to the following junction model (see [5])    uα t + Hα(uα x ) = 0, x > 0, α = 1, . . . , N uα = uβ =: u, x = 0, ut + H(u1 x , . . . , uN x ) = 0, x = 0 (2) with initial condition uα(0, x) = uα 0 (x) and H(u1 x , . . . , uN x ) = max α=1,...,N H− α (uα x ) from optimal control . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 14 / 53
  • 17. HJ model and numerical scheme Hamilton-Jacobi model Basic assumptions For all α = 1, . . . , N, (A0) The initial condition uα 0 is Lipschitz continuous. (A1) The Hamiltonians Hα are C1(R) and convex such that: p H− α (p) H+ α (p) pα 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 15 / 53
  • 18. HJ model and numerical scheme Numerical scheme Presentation of the scheme Proposition (Numerical Scheme) Let us consider the discrete space and time derivatives: pα,n i := Uα,n i+1 − Uα,n i ∆x and (DtU)α,n i := Uα,n+1 i − Uα,n i ∆t Then we have the following numerical scheme:    (DtU)α,n i + max{H+ α (pα,n i−1), H− α (pα,n i )} = 0, i ≥ 1 Un 0 := Uα,n 0 , i = 0, α = 1, ..., N (DtU)n 0 + max α=1,...,N H− α (pα,n 0 ) = 0, i = 0 (3) With the initial condition Uα,0 i := uα 0 (i∆x). ∆x and ∆t = space and time steps satisfying a CFL condition G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 16 / 53
  • 19. HJ model and numerical scheme Numerical scheme CFL condition The natural CFL condition is given by: ∆x ∆t ≥ sup α=1,...,N i≥0, 0≤n≤nT |H′ α(pα,n i )| (4) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 17 / 53
  • 20. HJ model and numerical scheme Mathematical results Gradient estimates Theorem (Time and Space Gradient estimates) Assume (A0)-(A1). If the CFL condition (4) is satisfied, then we have that: (i) Considering Mn = sup α,i (DtU)α,n i and mn = inf α,i (DtU)α,n i , we have the following time derivative estimate: m0 ≤ mn ≤ mn+1 ≤ Mn+1 ≤ Mn ≤ M0 (ii) Considering pα = (H− α )−1(−m0) and pα = (H+ α )−1(−m0), we have the following gradient estimate: pα ≤ pα,n i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N Proof G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 18 / 53
  • 21. HJ model and numerical scheme Mathematical results Stronger CFL condition −m0 pα p Hα(p) pα As for any α = 1, . . . , N, we have that: pα ≤ pα,n i ≤ pα for all i, n ≥ 0 Then the CFL condition becomes: ∆x ∆t ≥ sup α=1,...,N pα∈[pα ,pα] |H′ α(pα)| (5) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 19 / 53
  • 22. HJ model and numerical scheme Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 20 / 53
  • 23. HJ model and numerical scheme Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α Theorem (Existence and uniqueness [IMZ, ’13]) Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (2) on the junction, satisfying for some constant CT > 0 |u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT . Moreover the function u is Lipschitz continuous with respect to (t, y). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 20 / 53
  • 24. HJ model and numerical scheme Mathematical results Convergence Theorem (Convergence from discrete to continuous [CML, ’13]) Assume that (A0)-(A1)-(A2) and the CFL condition (5) are satisfied. Then the numerical solution converges uniformly to u the unique viscosity solution of (2) when ε → 0, locally uniformly on any compact set K: lim sup ε→0 sup (n∆t,i∆x)∈K |uα (n∆t, i∆x) − Uα,n i | = 0 Proof G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 21 / 53
  • 25. Traffic interpretation Outline 1 Introduction 2 HJ model and numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments 6 Concluding remarks G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 22 / 53
  • 26. Traffic interpretation Setting J1 JNI JNI +1 JNI +NO x < 0 x = 0 x > 0 Jβ γβ Jλ γλ NI incoming and NO outgoing roads G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 23 / 53
  • 27. Traffic interpretation Car densities The car density ρα solves the LWR equation on branch α: ρα t + (Qα (ρα ))x = 0 By definition ρα = γα ∂x Uα on branch α And uα(x, t) = −Uα(−x, t), x > 0, for incoming roads uα(x, t) = −Uα(x, t), x > 0, for outgoing roads where the car index uα solves the HJ equation on branch α: uα t + Hα (uα x ) = 0, for x > 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 24 / 53
  • 28. Traffic interpretation Flow Hα(p) :=    − 1 γα Qα(γαp) for α = 1, ..., NI − 1 γα Qα(−γαp) for α = NI + 1, ..., NI + NO Incoming roads Outgoing roads ρcrit γα ρmax γα p − Qmax γα p − Qmax γα HαHα H− α H− α H+ αH+ α − ρmax γα − ρcrit γα G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 25 / 53
  • 29. Traffic interpretation Links with “classical” approach Definition (Discrete car density) The discrete car density ρα,n i with n ≥ 0 and i ∈ Z is given by: ρα,n i :=    γαpα,n |i|−1 for α = 1, ..., NI , i ≤ −1 −γαpα,n i for α = NI + 1, ..., NI + NO, i ≥ 0 (6) J1 JNI JNI +1 JNI +NO x < 0 x > 0 −2 −1 2 1 0 −2 −2 −1 −1 1 1 2 2 Jβ Jλ ρλ,n 1 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 26 / 53
  • 30. Traffic interpretation Traffic interpretation Proposition (Scheme for vehicles densities) The scheme deduced from (3) for the discrete densities is given by: ∆x ∆t {ρα,n+1 i − ρα,n i } =    Fα(ρα,n i−1, ρα,n i ) − Fα(ρα,n i , ρα,n i+1) for i = 0, −1 Fα 0 (ρ·,n 0 ) − Fα(ρα,n i , ρα,n i+1) for i = 0 Fα(ρα,n i−1, ρα,n i ) − Fα 0 (ρ·,n 0 ) for i = −1 With    Fα(ρα,n i−1, ρα,n i ) := min Qα D(ρα,n i−1), Qα S (ρα,n i ) Fα 0 (ρ·,n 0 ) := γα min min β≤NI 1 γβ Qβ D(ρβ,n 0 ), min λ>NI 1 γλ Qλ S (ρλ,n 0 ) incoming outgoing ρλ,n 0ρβ,n −1ρβ,n −2 ρλ,n 1 x x = 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 27 / 53
  • 31. Traffic interpretation Supply and demand functions Remark It recovers the seminal Godunov scheme with passing flow = minimum between upstream demand QD and downstream supply QS. Density ρ ρcrit ρmax Supply QS Qmax Density ρ ρcrit ρmax Flow Q Qmax Density ρ ρcrit Demand QD Qmax From [Lebacque ’93, ’96] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 28 / 53
  • 32. Traffic interpretation Supply and demand VS Hamiltonian H− α (p) =    − 1 γα Qα D(γαp) for α = 1, ..., NI − 1 γα Qα S (−γαp) for α = NI + 1, ..., NI + NO And H+ α (p) =    − 1 γα Qα S (γαp) for α = 1, ..., NI − 1 γα Qα D(−γαp) for α = NI + 1, ..., NI + NO G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 29 / 53
  • 33. Numerical simulation Outline 1 Introduction 2 HJ model and numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments 6 Concluding remarks G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 30 / 53
  • 34. Numerical simulation Example of a Diverge An off-ramp: J1 ρ1 J2 ρ2 ρ3 J3 with    γe = 1, γl = 0.75, γr = 0.25 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 31 / 53
  • 35. Numerical simulation Fundamental Diagrams 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500 3000 3500 4000 (ρ c ,f max ) (ρ c ,f max ) Density (veh/km) Flow(veh/h) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 32 / 53
  • 36. Numerical simulation Initial conditions (t=0s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 0s) Position (m) Density(veh/km) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 33 / 53
  • 37. Numerical simulation Numerical solution: densities G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 34 / 53
  • 38. Numerical simulation Numerical solution: Hamilton-Jacobi G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 35 / 53
  • 39. Numerical simulation Trajectories 1 2 3 4 56 7 78 8 9 9 10 10 11 11 12 12 13 13 Trajectories on road n° 1 Position (m) Time(s) −200 −150 −100 −50 0 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 Trajectories on road n° 2 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 56 6 7 7 8 8 9 10 11 12 Trajectories on road n° 3 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 36 / 53
  • 40. Numerical simulation Gradient estimates 0 10 20 30 0 50 100 150 200 250 Time (s) Density(veh/km) Density time evolution on road n° 1 0 10 20 30 0 50 100 150 200 250 300 Time (s) Density(veh/km) Density time evolution on road n° 2 0 10 20 30 0 50 100 150 Time (s) Density(veh/km) Density time evolution on road n° 3 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 37 / 53
  • 41. Recent developments Outline 1 Introduction 2 HJ model and numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments 6 Concluding remarks G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 38 / 53
  • 42. Recent developments New junction model Proposition (Junction model [IM, ’14]) From [4], we have    uα t + Hα(uα x ) = 0, x > 0, α = 1, . . . , N uα = uβ =: u, x = 0, ut + H(u1 x , . . . , uN x ) = 0, x = 0 (7) with initial condition uα(0, x) = uα 0 (x) and H(u1 x , . . . , uN x ) = max flux limiter L , max α=1,...,N H− α (uα x ) minimum between demand and supply . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 39 / 53
  • 43. Recent developments Weaker assumptions For all α = 1, . . . , N, (A0) The initial condition uα 0 is Lipschitz continuous. (A1) The Hamiltonians Hα are continuous and level-set convex i.e. there exists points pα 0 such that    Hα is non-increasing on (−∞, pα 0 ], Hα is non-decreasing on [pα 0 , +∞). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 40 / 53
  • 44. Recent developments Homogenization Homogenization on a periodic network [4] u0 t + H ∇x u0 = 0, t > 0, x ∈ Rd (8) Numerical scheme adapted to the network Traffic Traffic γx γy γy i = 0 i = N 2 i = − N 2 γx ey ex G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 41 / 53
  • 45. Recent developments First example Proposition (Effective Hamiltonian for fixed coefficients) If (γH , γV ) are fixed, then the effective flow Q is given by Q(ρH , ρV ) = min −L, Q(ρH) γH , Q(ρV ) γV . Numerics: assume Q(ρ) = 4ρ(1 − ρ) and L = 0.5, G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 42 / 53
  • 46. Recent developments Second example Two consecutive traffic signals on a 1D road flow l LL x1 x2xE E xS S Effective flux limiter L (numerics only) 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Offset (s) Fluxlimiter l=0 m l=5 m l=10 m l=20 m G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 43 / 53
  • 47. Concluding remarks Outline 1 Introduction 2 HJ model and numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments 6 Concluding remarks G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 44 / 53
  • 48. Concluding remarks Pros & Cons (for the model) Good mathematical properties (existence and uniqueness of the viscosity solution)... ...under weak assumptions on the Hamiltonian (“bi-monotone” instead of strictly convex) Possibility to compute the solution thanks to convergent finite difference scheme [2] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 45 / 53
  • 49. Concluding remarks Pros & Cons (for the model) Good mathematical properties (existence and uniqueness of the viscosity solution)... ...under weak assumptions on the Hamiltonian (“bi-monotone” instead of strictly convex) Possibility to compute the solution thanks to convergent finite difference scheme [2] No explicit / analytical solution (Lax-Hopf formula) Not very satisfactory in traffic: (γα)α fixed! G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 45 / 53
  • 50. Concluding remarks In brief Complementary results [CML ’13]: Generalization for weaker assumptions on the Hamiltonians Numerical simulation for other junction configurations (merge) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 46 / 53
  • 51. Concluding remarks In brief Complementary results [CML ’13]: Generalization for weaker assumptions on the Hamiltonians Numerical simulation for other junction configurations (merge) Open questions: Error estimate Non-fixed coefficients γα Other link models / junction condition? G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 46 / 53
  • 52. Concluding remarks The End Thanks for your attention [email protected] [email protected] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 47 / 53
  • 53. Complements References Some references I A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, (2014). G. Costeseque, J.-P. Lebacque, and R. Monneau, A convergent scheme for hamilton-jacobi equations on a junction: application to traffic, arXiv preprint arXiv:1306.0329, (2013). M. Garavello and B. Piccoli, Traffic flow on networks, American institute of mathematical sciences Springfield, MO, USA, 2006. C. Imbert and R. Monneau, Level-set convex hamilton-jacobi equations on networks, (2014). C. Imbert, R. Monneau, and H. Zidani, A hamilton-jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), pp. 129–166. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 48 / 53
  • 54. Complements References Some references II J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling, in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory, 2005. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 49 / 53
  • 55. Complements References Fundamental diagram Fundamental diagram: multi-valued in congested case [S. Fan, M. Herty, B. Seibold, 2013], NGSIM dataset Back G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 50 / 53
  • 56. Complements Proofs of the main results Sketch of the proof (gradient estimates): Time derivative estimate: 1. Estimate on mα,n = inf i (DtU)α,n i and partial result for mn = inf α mα,n 2. Similar estimate for Mn 3. Conclusion Space derivative estimate: 1. New bounded Hamiltonian ˜Hα(p) for p ≤ pα and p ≥ pα 2. Time derivative estimate from above 3. Lemma: if for any (i, n, α), (DtU)α,n i ≥ m0 then pα ≤ pα,n i ≤ pα 4. Conclusion as ˜Hα = Hα on [pα , pα] Back G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 51 / 53
  • 57. Complements Proofs of the main results Convergence with uniqueness assumption Sketch of the proof: (Comparison principle very helpful) 1. uα(t, x) := lim sup ε Uα,n i is a subsolution of (2) (contradiction on Definition inequality with a test function ϕ) 2. Similarly, uα is a supersolution of (2) 3. Conclusion: uα = uα viscosity solution of (2) Back G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 52 / 53
  • 58. Complements Proofs of the main results Convergence without uniqueness assumption Sketch of the proof: (No comparison principle) 1. Discrete Lipschitz bounds on uα ε (n∆t, i∆x) := Uα,n i 2. Extension by continuity of uα ε 3. Ascoli theorem (convergent subsequence on every compact set) 4. The limit of one convergent subsequence (uα ε )ε is super and sub-solution of (2) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks ENPC, June 06, 2014 53 / 53