SlideShare a Scribd company logo
PROGRAM
/*program for legranges interpolation method*/
#include<stdio.h>
#include<conio.h>
void main()
{
float x[20],y[20],unknown,temp,result=0,n,i,j;
clrscr();
printf("nntLEGRANGES INTERPOLATION -FIRST ORDERn");
printf("nt---------------------------------------n");
printf("nEnter the limitn");
scanf("%f",&n);
printf("Enter the values for xn");
for(i=0;i<n;i++)
{
scanf("%f",&x[i]);
}
printf("Enter the values of yn");
for(i=0;i<n;i++)
{
scanf("%f",&y[i]);
}
printf("Enter the value whose f(x) to be foundn");
scanf("%f",&unknown);
for(i=0;i<n;i++)
{
temp=1;
for(j=0;j<n;j++)
{
if(i!=j)
{
temp*=((unknown-x[j])/(x[i]-x[j]));
}
}
result+=temp*y[i];
}
printf("f( %f )= ",unknown);
printf("%f",result);
getch();
}
St.Mary’scollege,Thrissur
OUTPUT
LEGRANGES INTERPOLATION -FIRST ORDER
------------------------------------------------------------
Enter the limit
4
Enter the values for x
300
304
305
307
Enter the values of y
2.4771
2.4829
2.4843
2.4871
Enter the value whose f(x) to be found
301
F(301.000000) = 2.478597
St.Mary’scollege,Thrissur
PROGRAM
/* program to claculate the integral using trezoidal rule*/
#define f(x) (1/(x+1))
#include<stdio.h>
#include<conio.h>
void main()
{
float h,a,b,result=0,temp=0;
int i,j,n;
float x[50],y[50];
clrscr();
printf("Enter the Lower & Upper limit a&bn");
scanf("%f %f",&a,&b);
printf("nEnter the number of intervalsn");
scanf("%d", &n);
h=(b-a)/n;
printf("nCOMPUTING INTEGRAL USING-TRAPEZOIDAL RULE n");
for(i=0;i<=n;i++)
{
x[i]=a+(i*h);
}
for(i=0;i<=n;i++)
{
y[i]=f(x[i]);
}
printf("xttty");
for(i=0;i<=n;i++)
{
printf("n%ftt%f",x[i],y[i]);
}
result=y[0]+y[n];
for(i=1;i<n;i++)
{
temp+=y[i];
}
result+=(temp*2);
result*=(h/2);
printf("nn%f",result);
getch();
}
St.Mary’scollege,Thrissur
OUTPUT
Enter the Lower & Upper limit a&b
0
1
Enter the number of intervals
2
COMPUTING INTEGRAL USING-TRAPEZOIDAL RULE
x y
0.000000 1.000000
0.500000 0.666667
1.000000 0.500000
0.708333
St.Mary’scollege,Thrissur
PROGRAM
/*program to solve differential equation using Eulers method*/
#include<stdio.h>
#include<conio.h>
#define f(x,y) ((y-x)/(y+x))
void main()
{
float x0,y0,h,unknown,result=0,temp=0;
printf("nntEULERS METHODn");
printf("nEnter the value for x0n");
scanf("%f",&x0);
printf("Enter the value for y0n");
scanf("%f",&y0);
printf("Enter the steplengthn");
scanf("%f",&h);
printf("Enter the value for unknownn");
scanf("%f",&unknown);
while(x0<=unknown)
{
temp=y0+h*f(x0,y0);
x0+=h;
result=y0;
y0=temp;
}
printf("Result= %f",result);
getch();
}
OUTPUT
EULERS METHOD
--------------
Enter the value for x0
1
Enter the value for y0
2
Enter the steplength
.5
Enter the value for unknown
St.Mary’scollege,Thrissur
2
Result= 2.257576
PROGRAM
/* program to compute integral using legranges interpolation 2nd order*/
#include<stdio.h>
#include<conio.h>
#define f(x) 1/(1+(x*x))
void main()
{
float u,l,b,a,h,result=0;
clrscr();
printf("ntLEGRANGES INTERPOLATION - 2nd ORDERn");
printf("nt-----------------------------------n");
printf("nEnter the upper limit:nt");
scanf("%f",&a);
printf("Enter the lower limit:nt");
scanf("%f",&b);
h=(a-b)/2;
result=f(-0.57735)+f(0.57735);
result*=h;
printf("nnRESULT = %f",result);
getch();
}
LEGRANGES INTERPOLATION - 2nd ORDER
-----------------------------------------------------------
Enter the upper limit:
1
Enter the lower limit:
-1
RESULT = 1.583338
St.Mary’scollege,Thrissur
PROGRAM
/* program to solve the 3rd order differential equation using Runge Kutta 2nd order*/
#define f(x,y) x+y
#include<stdio.h>
#include<conio.h>
void main()
{
float x0,y0,y1,k1,k2,h,unknown;
clrscr();
printf("ntRUNGE KUTTA METHOD - 2nd ORDERn");
printf("nt------------------------------n");
printf("nEnter the values for the following:n");
printf("ntx0: ") ;
scanf("%f",&x0);
printf("nty0: ");
scanf("%f",&y0);
printf("nth: ");
scanf("%f",&h);
printf("ntUnknown: ");
scanf("%f",&unknown);
while(unknown!=x0)
{
k1=h*(f(x0,y0));
k2=h*(f(x0+h,y0+k1));
y1=y0+((k1+k2)/2);
x0+=h;
y0=y1;
}
printf("nUNKNOWN = %fnRESULT = %f",unknown,y1);
getch();
}
St.Mary’scollege,Thrissur
OUTPUT
RUNGE KUTTA METHOD - 2nd ORDER
-----------------------------------------------------
Enter the values for the following:
x0: 0
y0: 1
h: .1
Unknown: .2
UNKNOWN = 0.200000
RESULT = 1.242050
St.Mary’scollege,Thrissur
PROGRAM
/* program using Runge kutta 3rd order method*/
#define f(x,y) x+y
#include<stdio.h>
#include<conio.h>
void main()
{
float y1,x0,y0,k1,k2,k3,h,unknown;
clrscr();
printf("nntRUNGE KUTTA - 3rd ORDERn");
printf("nt-----------------------n");
printf("Enter the values for the folowingn");
printf("ntx0: ");
scanf("%f",&x0);
printf("nty0: ");
scanf("%f",&y0);
printf("nth: ");
scanf("%f",&h);
printf("ntUnknown: ");
scanf("%f",&unknown);
while(unknown!=x0)
{
k1=h*(f(x0,y0));
k2=h*(f(x0+h/2,y0+k1/2));
k3=h*(f(x0+h,y0+2*k2-k1));
y1=y0+(k1+4*k2+k3)/6;
x0+=h;
y0=y1;
}
printf("nn Result of %f = %f",unknown,y1);
getch();
}
St.Mary’scollege,Thrissur
OUTPUT
RUNGE KUTTA METHOD - 3rd ORDER
--------------------------------------------------
Enter the values for the folowing
x0: 0
y0: 1
h: .1
Unknown: .2
Result of 0.200000 = 1.242787
St.Mary’scollege,Thrissur
PROGRAM
/* program to compute integral using Simpsons rule*/
#define f(x) 1/(1+x)
#include<stdio.h>
#include<conio.h>
void main()
{
float a,b,h,result,temp1=0,temp2=0;
float x[20],y[20];
int i,j,n;
clrscr();
printf("nntSIMPSONS 1/3rd RULEn");
printf("nt---------------------n");
printf("Enter the Lower and Upper limitsn");
scanf("%f %f",&a,&b);
printf("nEnter the number of intervalsn");
scanf("%d",&n);
h=(b-a)/n;
for(i=0;i<=n;++i)
{
x[i]=a+(i*h);
}
for(i=0;i<=n;++i)
{
y[i]=f(x[i]);
}
printf("nnxttyn");
printf("n-------n");
for(i=0;i<=n;++i)
{
printf("n%ft%f",x[i],y[i]);
}
h=(b-a)/(2*n);
result=y[0]+y[n];
for(i=1;i<=n-1;i+=2)
{
temp1=temp1+y[i];
St.Mary’scollege,Thrissur
}
result+=(temp1*4);
for(i=2;i<=n-2;i+=2)
{
temp2=temp2+y[i];
}
result+=temp2*2;
result*=h/3;
printf("nntResult = %f",result);
getch();
}
OUTPUT
SIMPSONS 1/3rd RULE
-----------------------------
Enter the Lower and Upper limits
0
1
Enter the number of intervals
2
x y
---------------------------
0.000000 1.000000
0.500000 0.666667
1.000000 0.500000
Result = 0.347222
St.Mary’scollege,Thrissur
PROGRAM
/*program to find the integral at a point using modified Eulers method*/
#include<stdio.h>
#include<conio.h>
#define f(x,y) (y-(x*x))
void main()
{
float x0,x1,y1,y0,y2,y3,h,unknown,result;
clrscr();
printf("nntMODIFIED EULERS METHODn");
printf("nt----------------------n");
printf("nEnter the values for the following:n");
printf("ntx0: ");
scanf("%f",&x0);
printf("nty0: ");
scanf("%f",&y0);
printf("ntSteplength: ");
scanf("%f",&h);
printf("ntThe value whose f(x) to be found: ");
scanf("%f",&unknown);
while(x0<=unknown)
{
y1=y0+(h*f(x0,y0));
x1=x0+h;
while(1)
{
y2=y0+(h/2)*(f(x0,y0)+f(x1,y1));
y3=y0+(h/2)*(f(x0,y0)+f(x1,y2));
if(y2==y3)
{
break;
}
y1=y2;
}
x0+=h;
St.Mary’scollege,Thrissur
result=y0;
y0=y1;
}
printf("nResult:ntf(%f) = %f",unknown,result);
getch();
}
OUTPUT
MODIFIED EULERS METHOD
--------------------------------------
Enter the values for the following:
x0: 1
y0: 2
Steplength: .5
The value whose f(x) to be found: 2
Result:
f(0.600000) = 2.180510
St.Mary’scollege,Thrissur
PROGRAM
/*program to compute the integral value at a point using legranges interpolation- 3rd
order*/
#include<stdio.h>
#include<conio.h>
#define f(x) (1/(1+(x*x)))
void main()
{
int a,b;
float h,result,r1,r2;
clrscr();
printf("nntLEGRANGES INTERPOLATION - 3rd ORDERn");
printf("nt-----------------------------------nn");
printf("Enter the Upper limit & Lower limit:n");
scanf("%d %d",&b,&a);
h=(b-a)/2.0;
result=(f(-0.77459))+(f(0.77459));
r1=result*(5.0/9.0);
r2=(8.0/9.0)*f(0);
result=(r1+r2)*h;
printf("nResult:ntf(.6) = %f",result);
getch();
}
OUTPUT
St.Mary’scollege,Thrissur
LEGRANGES INTERPOLATION - 3rd ORDER
----------------------------------------------------------
Enter the Upper limit & Lower limit:
1
-1
Result:
f(.6) = 1.583338
PROGRAM
/*program for Bisection method*/
#define f(x) (x*x*x-x-1)
#include<stdio.h>
#include<conio.h>
void main()
{
float i=0,j=1,f1,f2,x0;
clrscr();
while(1)
{
f1=f(i); /* initial guess*/
f2=f(j);
if((f1<0&&f2>0)||(f1>0&&f2<0))
break;
else
{
i++;
j=i+1;
}
}
printf("ntROOT OF THE (x*x*x-x-1) USING BISECTION METHOD");
printf("nt---------------------------------------------------nn");
while((j-i)>.001)
{
x0=(i+j)/2; /* finding the root of the equation*/
printf("t%f %f %f %fn",i,j,x0,f(x0));
if(f(x0)<0)
i=x0;
else
St.Mary’scollege,Thrissur
j=x0;
}
printf("nntRoot of the equation=%f",x0);
getch();
}
OUTPUT
ROOT OF (x*x*x-x-1) USING BISECTION METHOD
--------------------------------------------------------------------
1.000000 2.000000 1.500000 0.875000
1.000000 1.500000 1.250000 -0.296875
1.250000 1.500000 1.375000 0.224609
1.250000 1.375000 1.312500 -0.051514
1.312500 1.375000 1.343750 0.082611
1.312500 1.343750 1.328125 0.014576
1.312500 1.328125 1.320312 -0.018711
1.320312 1.328125 1.324219 -0.002128
1.324219 1.328125 1.326172 0.006209
1.324219 1.326172 1.325195 0.002037
Root of the equation=1.325195
St.Mary’scollege,Thrissur
PROGRAM
/*Program for find the root of the equation(x*x*x-x-1) by False position method*/
#define f(x) (x*x*x-x-1)
#include<stdio.h>
#include<conio.h>
void main()
{
float i=0,j=1,f1,f2,x0,fp,fq,x1,x2=0,prev;
clrscr();
while(1)
{
f1=f(i);
f2=f(j);
if((f1<0&&f2>0)||(f1>0&&f2<0)) /* Finding the intervals*/
break;
else
{
i++;
j=i+1;
}
printf("n The Intervals are:t%f,t%fn",i,j);
x0=i;
x1=j;
do
{
prev=x2;
fp=f(x0);
St.Mary’scollege,Thrissur
fq=f(x1);
x2=x0-(fp*(x1-x0)/(fq-fp));
printf("Value of x0=%ftValue of x1=%ftValue of x2=%ftValue of
F(x2)=%fn",x0,x1,x2,f(x2));
if(f(x2)<0)
x0=x2;
else
x1=x2;
}while((x2-prev)>.001);
}
printf("nRoot of the equation=%f",x2);
getch();
}
OUTPUT
The Intervals are: 1.000000, 2.000000
Value of x0=1.000000
Value of x1=2.000000
Value of x2=1.166667
Value of F(x2)=-0.578704
Value of x0=1.166667
Value of x1=2.000000
Value of x2=1.253112
Value of F(x2)=-0.285363
Value of x0=1.253112
Value of x1=2.000000
Value of x2=1.293437
Value of F(x2)=-0.129542
Value of x0=1.293437
Value of x1=2.000000
Value of x2=1.311281
Value of F(x2)=-0.056589
St.Mary’scollege,Thrissur
Value of x0=1.311281
Value of x1=2.000000
Value of x2=1.318988
Value of F(x2)=-0.024304
Value of x0=1.318988
Value of x1=2.000000
Value of x2=1.322283
Value of F(x2)=-0.010362
Value of x0=1.322283
Value of x1=2.000000
Value of x2=1.323684
Value of F(x2)=-0.004404
Value of x0=1.323684
Value of x1=2.000000
Value of x2=1.324279
Value of F(x2)=-0.001869
Root of the equation=1.324279
St.Mary’scollege,Thrissur
PROGRAM
/*Program for find the root of the eqn(x*x*x-2x-5) by Newton Raffson Method
method*/
#define f(x) (x*x*x-2x-5)
#define q(x) (3*x*x-2)
#include<stdio.h>
#include<conio.h>
void main()
{
float i=0,j=1,f1,f2,fp,fq,x1,x2,prev,x0;
clrscr();
printf("nntNEWTON RAFFSON METHODn");
printf("nt---------------------n");
while(1)
{
f1=f(i);
f2=f(j);
if((f1<0&&f2>0)||(f1>0&&f2<0)) /* Finding the intervals*/
break;
else
{
i++;
j=i+1;
}
printf("n The Intervals are:t%f,t%fnn",i,j);
x0=i;
St.Mary’scollege,Thrissur
x1=j;
}
x2=(x0+x1)/2;
printf("x2ttf(x2)ttf'(x2)nnn");
while(1)
{
prev=x2; /*Assigning the current value to the previous value*/
x2=prev-(f(prev)/q(prev));
if(x2==prev)
break;
else
printf("%ft%ft%fn",x2,f(x2),q(x2));
}
printf("nn THE ROOT IS =%f",x2);
getch();
}
OUTPUT
NEWTON RAFFSON METHOD
-------------------------------------------
The Intervals are: 1.000000, 2.000000
The Intervals are: 2.000000, 3.000000
x2 f(x2) f'(x2)
2.164179 0.807945 12.051013
2.097135 0.028881 11.193929
2.094555 0.000041 11.161484
2.094552 0.000001 11.161439
THE ROOT IS =2.094552
St.Mary’scollege,Thrissur
PROGRAM:
/*program for gauss elimination method…*/
#include<conio.h>
#include<stdio.h>
void main()
{
int m,n,p,q,i,j;
float a[10][10],b[10][10],x,y,z,t; /*…Declaration…*/
clrscr();
printf("nGAUSS ELIMINATION METHODn");
printf("********************************n");
printf("nInput the raw size of first matrix:");
scanf("%d",&m);
printf("Input the column size of first matrix:");
scanf("%d",&n);
printf("nInput the %d elements to %d*%d matrix:nn",m*n,m,n);
for(i=0;i<m;i++) /*…For loop…*/
{
for(j=0;j<n;j++)
{
scanf("%f",&a[i][j]);
}
}
printf("nnInput the raw size of second matrix:");
St.Mary’scollege,Thrissur
scanf("%d",&p);
printf("Input the column size of second matrix:");
scanf("%d",&q);
printf("nInput the %d elements to %d*%d matrix:nn",p*q,p,q);
for(i=0;i<p;i++) /*…For loop…*/
{
for(j=0;j<q;j++)
{
scanf("%f",&b[i][j]);
}
}
printf("ntMatrix A:nn");
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
printf("%ft",a[i][j]); /*…Print matrix A…*/
}
printf("n");
}
printf("ntMatrix B:nn");
for(i=0;i<p;i++)
{
for(j=0;j<q;j++)
{
printf("%ft",b[i][j]); /*…Print matrix B…*/
}
printf("n");
}
t=a[0][0];
for(j=0;j<m;j++)
{
a[0][j]/=t;
}
b[0][0]/=t;
for(i=1;i<p;i++)
{
t=a[i][0];
for(j=0;j<m;j++)
{
a[i][j]-=(t*a[0][j]); /*…Calculations…*/
}
b[i][0]-=(t*b[0][0]);
}
t=a[1][1];
for(j=1;j<=m;j++)
{
a[1][j]/=t;
}
St.Mary’scollege,Thrissur
b[1][0]/=t;
t=a[2][1];
for(j=1;j<m;j++)
{
a[2][j]-=(t*a[1][j]);
}
b[2][0]-=(t*b[1][0]);
printf("ntThe result is:n");
z=b[2][0]/a[2][2];
y=b[1][0]-(a[1][2]*z); /*…Printing the output…*/
x=b[0][0]-((a[0][1]*y)+(a[0][2]*z));
printf("ntx=%fnty=%fntz=%fn",x,y,z);
getch();
}
OUTPUT:
GAUSS ELIMINATION METHOD
*****************************
Input the raw size of first matrix: 3
Input the column size of first matrix: 3
Input the 9 elements to 3*3 matrix:
4 1 1
3 4 2
2 3 1
Input the raw size of second matrix: 3
Input the column size of second matrix: 1
Input the 3 elements to 3*1 matrix :
11
11
7
St.Mary’scollege,Thrissur
Matrix A:
4.000000 1.000000 1.000000
3.000000 4.000000 2.000000
2.000000 3.000000 1.000000
Matrix B:
11.000000
11.000000
7.000000
The result is:
x=2.333333
y=0.333333
z=1.333333
PROGRAM
/* program using Newtons divided difference formula*/
#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
float d[100][100],result,temp,unknown;
int m,n,i,j,k;
clrscr();
printf("Enter the limitn");
scanf("%d %d",&m,&n);
printf("Enter the values of xn");
for(i=0;i<m;i++)
{
scanf("%f",&d[i][0]);
}
printf("Enter the values of yn");
for(i=0;i<n;i++)
{
St.Mary’scollege,Thrissur
scanf("%f",&d[i][1]);
}
printf("Enter the value where f(x) to be foundn");
scanf("%f",&unknown);
printf(" x t y");
for(i=0;i<=(n-2);i++)
{
printf(" ty%d",i);
printf(“---------------------------------------------------------------------“);
}
printf("n");
for(j=2;j<(n+1);j++)
{
k=j-1;
for(i=0;i<(n+1)-j;i++)
{
d[i][j]=(d[i+1][j-1]-d[i][j-1])/(d[k][0]-d[k-(j-1)][0]);
k++;
}
}
k=0;
for(i=0;i<n;i++)
{
printf("nn");
for(j=0;j<=n-k;j++)
{
printf(" %f ",d[i][j]);
}
k++;
}
result=d[0][1];
for(j=2;j<n+1;j++)
{
temp=1;
for(i=0;i<=j-2;i++)
{
temp=temp*(unknown-d[i][0]);
}
result+=temp*d[0][j];
}
printf("nnf(%f) = %f",unknown,result);
getch();
}
St.Mary’scollege,Thrissur
OUTPUT
Enter the limit
6
6
Enter the values of x
4
5
7
10
11
13
Enter the values of y
48
100
294
900
1210
2028
Enter the value where f(x) to be found
8
x y y0 y1 y2 y3 y4
--------------------------------------------------------------------------------------
4.000 48.000 52.000 15.000 1.000 0.000 0.000
5.000 100.000 97.000 21.000 1.000 0.000
7.000 294.000 202.000 27.000 1.000
10.000 900.000 310.000 33.000
11.000 1210.000 409.000
13.000 2028.000
f(8.000000) = 448.000000
St.Mary’scollege,Thrissur
PROGRAM
/*find the integral using taylor series*/
#include<stdio.h>
#include<conio.h>
#define f1(x,y) (x+(y*y))
#define f2(y,y1) (1+(2*y*y1))
#define f3(y,y1,y2) (2*(y*y2+y1*y1))
#define f4(y,y1,y2,y3) (2*((y*y3+y2*y1)+(2*y1*y2)))
void main()
{
float x0,y0,y1,y2,y3,y4,unknown,h,result=0;
clrscr();
printf("ntTAYLOR SERIESn");
printf("nEnter the initial valuesn");
scanf("%f %f",&x0,&y0);
printf("Enter the unknown value, whose integral to be foundnn");
scanf("%f",&unknown);
St.Mary’scollege,Thrissur
h=unknown-x0;
/*first*/
y1=f1(x0,y0);
y2=f2(y0,y1);
y3=f3(y0,y1,y2);
y4=f4(y0,y1,y2,y3);
result=y0+(h*y1)+((h*h)/2)*y2+((h*h*h)/6)*y3+((h*h*h*h)/24)*y4;
printf("nResult:ntf(%f)= %f",unknown,result);
getch();
}
OUTPUT
TAYLOR SERIES
Enter the initial values
0
1
Enter the unknown value, whose integral to be found
.2
Result:
f(0.200000)= 1.271067
St.Mary’scollege,Thrissur

More Related Content

DOCX
DataStructures notes
Lakshmi Sarvani Videla
 
DOCX
C lab manaual
manoj11manu
 
PDF
BCSL 058 solved assignment
Indira Gnadhi National Open University (IGNOU)
 
PPTX
Double linked list
raviahuja11
 
PDF
C programms
Mukund Gandrakota
 
PPTX
Double linked list
Sayantan Sur
 
DOCX
Cpds lab
praveennallavelly08
 
DataStructures notes
Lakshmi Sarvani Videla
 
C lab manaual
manoj11manu
 
Double linked list
raviahuja11
 
C programms
Mukund Gandrakota
 
Double linked list
Sayantan Sur
 

What's hot (20)

DOCX
C program to implement linked list using array abstract data type
loyola ICAM college of engineering and technology
 
DOC
C basics
MSc CST
 
DOC
Final ds record
Ganisius Ganish
 
DOCX
Graphics point clipping c program
Dr.M.Karthika parthasarathy
 
PPTX
Binary tree
raviahuja11
 
PPTX
Single linked list
Sayantan Sur
 
PPTX
Circular linked list
Sayantan Sur
 
DOCX
ADA FILE
Gaurav Singh
 
PDF
The solution manual of c by robin
Abdullah Al Naser
 
DOC
5th Sem SS lab progs
Nagarjun Pakka Kannadiga
 
PDF
C Prog. - Structures
vinay arora
 
PDF
C Prog - Strings
vinay arora
 
PDF
Data Structure using C
Bilal Mirza
 
DOCX
Travel management
1Parimal2
 
DOC
Basic c programs updated on 31.8.2020
vrgokila
 
DOCX
Circular queue
ShobhaHiremath8
 
PPTX
LAB PROGRAMS SARASWATHI RAMALINGAM
SaraswathiRamalingam
 
PDF
programs
Vishnu V
 
PDF
C Prog. - Strings (Updated)
vinay arora
 
C program to implement linked list using array abstract data type
loyola ICAM college of engineering and technology
 
C basics
MSc CST
 
Final ds record
Ganisius Ganish
 
Graphics point clipping c program
Dr.M.Karthika parthasarathy
 
Binary tree
raviahuja11
 
Single linked list
Sayantan Sur
 
Circular linked list
Sayantan Sur
 
ADA FILE
Gaurav Singh
 
The solution manual of c by robin
Abdullah Al Naser
 
5th Sem SS lab progs
Nagarjun Pakka Kannadiga
 
C Prog. - Structures
vinay arora
 
C Prog - Strings
vinay arora
 
Data Structure using C
Bilal Mirza
 
Travel management
1Parimal2
 
Basic c programs updated on 31.8.2020
vrgokila
 
Circular queue
ShobhaHiremath8
 
LAB PROGRAMS SARASWATHI RAMALINGAM
SaraswathiRamalingam
 
programs
Vishnu V
 
C Prog. - Strings (Updated)
vinay arora
 
Ad

Similar to Numerical Methods in C (20)

PDF
Assignment on Numerical Method C Code
Syed Ahmed Zaki
 
PDF
C++ TUTORIAL 9
Farhan Ab Rahman
 
PPTX
Euler's method 2_1.pptx c program for Euler's method c program for Euler's me...
rithikapandiyan2020
 
PDF
Computer Oriented Numerical Methods Practical File
Harjinder Singh
 
PPTX
Euler's method 2.pptx c program for Euler's method c program for Euler's method
rithikapandiyan2020
 
PPT
Top School in india
Edhole.com
 
PDF
C++ TUTORIAL 10
Farhan Ab Rahman
 
DOCX
Metnum
ratnaaning
 
PPTX
Euler and improved euler method
Sohaib Butt
 
PPT
Numerical method
Kumar Gaurav
 
PPT
Top school in India
Edhole.com
 
PPT
Computational techniques
Rafi Dar
 
DOC
Sary
sarylozano
 
PPTX
Runge-Kutta methods with examples
Sajjad Hossain
 
DOCX
#include #include double bisect(double x_left, double x_rig.docx
honey690131
 
PPS
Unit vi
mrecedu
 
PPT
Chap8
RAVINGM
 
PPT
Top School in delhi
Edhole.com
 
PDF
2002 santiago et al
CosmoSantiago
 
Assignment on Numerical Method C Code
Syed Ahmed Zaki
 
C++ TUTORIAL 9
Farhan Ab Rahman
 
Euler's method 2_1.pptx c program for Euler's method c program for Euler's me...
rithikapandiyan2020
 
Computer Oriented Numerical Methods Practical File
Harjinder Singh
 
Euler's method 2.pptx c program for Euler's method c program for Euler's method
rithikapandiyan2020
 
Top School in india
Edhole.com
 
C++ TUTORIAL 10
Farhan Ab Rahman
 
Metnum
ratnaaning
 
Euler and improved euler method
Sohaib Butt
 
Numerical method
Kumar Gaurav
 
Top school in India
Edhole.com
 
Computational techniques
Rafi Dar
 
Runge-Kutta methods with examples
Sajjad Hossain
 
#include #include double bisect(double x_left, double x_rig.docx
honey690131
 
Unit vi
mrecedu
 
Chap8
RAVINGM
 
Top School in delhi
Edhole.com
 
2002 santiago et al
CosmoSantiago
 
Ad

Recently uploaded (20)

PPTX
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 
PPTX
How to Apply for a Job From Odoo 18 Website
Celine George
 
PDF
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
PDF
Virat Kohli- the Pride of Indian cricket
kushpar147
 
DOCX
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
PPTX
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
PPTX
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
PPTX
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
PPTX
CDH. pptx
AneetaSharma15
 
PPTX
Artificial-Intelligence-in-Drug-Discovery by R D Jawarkar.pptx
Rahul Jawarkar
 
PPTX
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
PPTX
Basics and rules of probability with real-life uses
ravatkaran694
 
PDF
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
PPTX
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
PDF
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
PPTX
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
PPTX
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 
PPTX
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
PPTX
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 
How to Apply for a Job From Odoo 18 Website
Celine George
 
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
Virat Kohli- the Pride of Indian cricket
kushpar147
 
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
CDH. pptx
AneetaSharma15
 
Artificial-Intelligence-in-Drug-Discovery by R D Jawarkar.pptx
Rahul Jawarkar
 
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
Basics and rules of probability with real-life uses
ravatkaran694
 
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 

Numerical Methods in C

  • 1. PROGRAM /*program for legranges interpolation method*/ #include<stdio.h> #include<conio.h> void main() { float x[20],y[20],unknown,temp,result=0,n,i,j; clrscr(); printf("nntLEGRANGES INTERPOLATION -FIRST ORDERn"); printf("nt---------------------------------------n"); printf("nEnter the limitn"); scanf("%f",&n); printf("Enter the values for xn"); for(i=0;i<n;i++) { scanf("%f",&x[i]); } printf("Enter the values of yn"); for(i=0;i<n;i++) { scanf("%f",&y[i]); } printf("Enter the value whose f(x) to be foundn"); scanf("%f",&unknown); for(i=0;i<n;i++) { temp=1; for(j=0;j<n;j++) { if(i!=j) { temp*=((unknown-x[j])/(x[i]-x[j])); } } result+=temp*y[i]; } printf("f( %f )= ",unknown); printf("%f",result); getch(); } St.Mary’scollege,Thrissur
  • 2. OUTPUT LEGRANGES INTERPOLATION -FIRST ORDER ------------------------------------------------------------ Enter the limit 4 Enter the values for x 300 304 305 307 Enter the values of y 2.4771 2.4829 2.4843 2.4871 Enter the value whose f(x) to be found 301 F(301.000000) = 2.478597 St.Mary’scollege,Thrissur
  • 3. PROGRAM /* program to claculate the integral using trezoidal rule*/ #define f(x) (1/(x+1)) #include<stdio.h> #include<conio.h> void main() { float h,a,b,result=0,temp=0; int i,j,n; float x[50],y[50]; clrscr(); printf("Enter the Lower & Upper limit a&bn"); scanf("%f %f",&a,&b); printf("nEnter the number of intervalsn"); scanf("%d", &n); h=(b-a)/n; printf("nCOMPUTING INTEGRAL USING-TRAPEZOIDAL RULE n"); for(i=0;i<=n;i++) { x[i]=a+(i*h); } for(i=0;i<=n;i++) { y[i]=f(x[i]); } printf("xttty"); for(i=0;i<=n;i++) { printf("n%ftt%f",x[i],y[i]); } result=y[0]+y[n]; for(i=1;i<n;i++) { temp+=y[i]; } result+=(temp*2); result*=(h/2); printf("nn%f",result); getch(); } St.Mary’scollege,Thrissur
  • 4. OUTPUT Enter the Lower & Upper limit a&b 0 1 Enter the number of intervals 2 COMPUTING INTEGRAL USING-TRAPEZOIDAL RULE x y 0.000000 1.000000 0.500000 0.666667 1.000000 0.500000 0.708333 St.Mary’scollege,Thrissur
  • 5. PROGRAM /*program to solve differential equation using Eulers method*/ #include<stdio.h> #include<conio.h> #define f(x,y) ((y-x)/(y+x)) void main() { float x0,y0,h,unknown,result=0,temp=0; printf("nntEULERS METHODn"); printf("nEnter the value for x0n"); scanf("%f",&x0); printf("Enter the value for y0n"); scanf("%f",&y0); printf("Enter the steplengthn"); scanf("%f",&h); printf("Enter the value for unknownn"); scanf("%f",&unknown); while(x0<=unknown) { temp=y0+h*f(x0,y0); x0+=h; result=y0; y0=temp; } printf("Result= %f",result); getch(); } OUTPUT EULERS METHOD -------------- Enter the value for x0 1 Enter the value for y0 2 Enter the steplength .5 Enter the value for unknown St.Mary’scollege,Thrissur
  • 6. 2 Result= 2.257576 PROGRAM /* program to compute integral using legranges interpolation 2nd order*/ #include<stdio.h> #include<conio.h> #define f(x) 1/(1+(x*x)) void main() { float u,l,b,a,h,result=0; clrscr(); printf("ntLEGRANGES INTERPOLATION - 2nd ORDERn"); printf("nt-----------------------------------n"); printf("nEnter the upper limit:nt"); scanf("%f",&a); printf("Enter the lower limit:nt"); scanf("%f",&b); h=(a-b)/2; result=f(-0.57735)+f(0.57735); result*=h; printf("nnRESULT = %f",result); getch(); } LEGRANGES INTERPOLATION - 2nd ORDER ----------------------------------------------------------- Enter the upper limit: 1 Enter the lower limit: -1 RESULT = 1.583338 St.Mary’scollege,Thrissur
  • 7. PROGRAM /* program to solve the 3rd order differential equation using Runge Kutta 2nd order*/ #define f(x,y) x+y #include<stdio.h> #include<conio.h> void main() { float x0,y0,y1,k1,k2,h,unknown; clrscr(); printf("ntRUNGE KUTTA METHOD - 2nd ORDERn"); printf("nt------------------------------n"); printf("nEnter the values for the following:n"); printf("ntx0: ") ; scanf("%f",&x0); printf("nty0: "); scanf("%f",&y0); printf("nth: "); scanf("%f",&h); printf("ntUnknown: "); scanf("%f",&unknown); while(unknown!=x0) { k1=h*(f(x0,y0)); k2=h*(f(x0+h,y0+k1)); y1=y0+((k1+k2)/2); x0+=h; y0=y1; } printf("nUNKNOWN = %fnRESULT = %f",unknown,y1); getch(); } St.Mary’scollege,Thrissur
  • 8. OUTPUT RUNGE KUTTA METHOD - 2nd ORDER ----------------------------------------------------- Enter the values for the following: x0: 0 y0: 1 h: .1 Unknown: .2 UNKNOWN = 0.200000 RESULT = 1.242050 St.Mary’scollege,Thrissur
  • 9. PROGRAM /* program using Runge kutta 3rd order method*/ #define f(x,y) x+y #include<stdio.h> #include<conio.h> void main() { float y1,x0,y0,k1,k2,k3,h,unknown; clrscr(); printf("nntRUNGE KUTTA - 3rd ORDERn"); printf("nt-----------------------n"); printf("Enter the values for the folowingn"); printf("ntx0: "); scanf("%f",&x0); printf("nty0: "); scanf("%f",&y0); printf("nth: "); scanf("%f",&h); printf("ntUnknown: "); scanf("%f",&unknown); while(unknown!=x0) { k1=h*(f(x0,y0)); k2=h*(f(x0+h/2,y0+k1/2)); k3=h*(f(x0+h,y0+2*k2-k1)); y1=y0+(k1+4*k2+k3)/6; x0+=h; y0=y1; } printf("nn Result of %f = %f",unknown,y1); getch(); } St.Mary’scollege,Thrissur
  • 10. OUTPUT RUNGE KUTTA METHOD - 3rd ORDER -------------------------------------------------- Enter the values for the folowing x0: 0 y0: 1 h: .1 Unknown: .2 Result of 0.200000 = 1.242787 St.Mary’scollege,Thrissur
  • 11. PROGRAM /* program to compute integral using Simpsons rule*/ #define f(x) 1/(1+x) #include<stdio.h> #include<conio.h> void main() { float a,b,h,result,temp1=0,temp2=0; float x[20],y[20]; int i,j,n; clrscr(); printf("nntSIMPSONS 1/3rd RULEn"); printf("nt---------------------n"); printf("Enter the Lower and Upper limitsn"); scanf("%f %f",&a,&b); printf("nEnter the number of intervalsn"); scanf("%d",&n); h=(b-a)/n; for(i=0;i<=n;++i) { x[i]=a+(i*h); } for(i=0;i<=n;++i) { y[i]=f(x[i]); } printf("nnxttyn"); printf("n-------n"); for(i=0;i<=n;++i) { printf("n%ft%f",x[i],y[i]); } h=(b-a)/(2*n); result=y[0]+y[n]; for(i=1;i<=n-1;i+=2) { temp1=temp1+y[i]; St.Mary’scollege,Thrissur
  • 12. } result+=(temp1*4); for(i=2;i<=n-2;i+=2) { temp2=temp2+y[i]; } result+=temp2*2; result*=h/3; printf("nntResult = %f",result); getch(); } OUTPUT SIMPSONS 1/3rd RULE ----------------------------- Enter the Lower and Upper limits 0 1 Enter the number of intervals 2 x y --------------------------- 0.000000 1.000000 0.500000 0.666667 1.000000 0.500000 Result = 0.347222 St.Mary’scollege,Thrissur
  • 13. PROGRAM /*program to find the integral at a point using modified Eulers method*/ #include<stdio.h> #include<conio.h> #define f(x,y) (y-(x*x)) void main() { float x0,x1,y1,y0,y2,y3,h,unknown,result; clrscr(); printf("nntMODIFIED EULERS METHODn"); printf("nt----------------------n"); printf("nEnter the values for the following:n"); printf("ntx0: "); scanf("%f",&x0); printf("nty0: "); scanf("%f",&y0); printf("ntSteplength: "); scanf("%f",&h); printf("ntThe value whose f(x) to be found: "); scanf("%f",&unknown); while(x0<=unknown) { y1=y0+(h*f(x0,y0)); x1=x0+h; while(1) { y2=y0+(h/2)*(f(x0,y0)+f(x1,y1)); y3=y0+(h/2)*(f(x0,y0)+f(x1,y2)); if(y2==y3) { break; } y1=y2; } x0+=h; St.Mary’scollege,Thrissur
  • 14. result=y0; y0=y1; } printf("nResult:ntf(%f) = %f",unknown,result); getch(); } OUTPUT MODIFIED EULERS METHOD -------------------------------------- Enter the values for the following: x0: 1 y0: 2 Steplength: .5 The value whose f(x) to be found: 2 Result: f(0.600000) = 2.180510 St.Mary’scollege,Thrissur
  • 15. PROGRAM /*program to compute the integral value at a point using legranges interpolation- 3rd order*/ #include<stdio.h> #include<conio.h> #define f(x) (1/(1+(x*x))) void main() { int a,b; float h,result,r1,r2; clrscr(); printf("nntLEGRANGES INTERPOLATION - 3rd ORDERn"); printf("nt-----------------------------------nn"); printf("Enter the Upper limit & Lower limit:n"); scanf("%d %d",&b,&a); h=(b-a)/2.0; result=(f(-0.77459))+(f(0.77459)); r1=result*(5.0/9.0); r2=(8.0/9.0)*f(0); result=(r1+r2)*h; printf("nResult:ntf(.6) = %f",result); getch(); } OUTPUT St.Mary’scollege,Thrissur
  • 16. LEGRANGES INTERPOLATION - 3rd ORDER ---------------------------------------------------------- Enter the Upper limit & Lower limit: 1 -1 Result: f(.6) = 1.583338 PROGRAM /*program for Bisection method*/ #define f(x) (x*x*x-x-1) #include<stdio.h> #include<conio.h> void main() { float i=0,j=1,f1,f2,x0; clrscr(); while(1) { f1=f(i); /* initial guess*/ f2=f(j); if((f1<0&&f2>0)||(f1>0&&f2<0)) break; else { i++; j=i+1; } } printf("ntROOT OF THE (x*x*x-x-1) USING BISECTION METHOD"); printf("nt---------------------------------------------------nn"); while((j-i)>.001) { x0=(i+j)/2; /* finding the root of the equation*/ printf("t%f %f %f %fn",i,j,x0,f(x0)); if(f(x0)<0) i=x0; else St.Mary’scollege,Thrissur
  • 17. j=x0; } printf("nntRoot of the equation=%f",x0); getch(); } OUTPUT ROOT OF (x*x*x-x-1) USING BISECTION METHOD -------------------------------------------------------------------- 1.000000 2.000000 1.500000 0.875000 1.000000 1.500000 1.250000 -0.296875 1.250000 1.500000 1.375000 0.224609 1.250000 1.375000 1.312500 -0.051514 1.312500 1.375000 1.343750 0.082611 1.312500 1.343750 1.328125 0.014576 1.312500 1.328125 1.320312 -0.018711 1.320312 1.328125 1.324219 -0.002128 1.324219 1.328125 1.326172 0.006209 1.324219 1.326172 1.325195 0.002037 Root of the equation=1.325195 St.Mary’scollege,Thrissur
  • 18. PROGRAM /*Program for find the root of the equation(x*x*x-x-1) by False position method*/ #define f(x) (x*x*x-x-1) #include<stdio.h> #include<conio.h> void main() { float i=0,j=1,f1,f2,x0,fp,fq,x1,x2=0,prev; clrscr(); while(1) { f1=f(i); f2=f(j); if((f1<0&&f2>0)||(f1>0&&f2<0)) /* Finding the intervals*/ break; else { i++; j=i+1; } printf("n The Intervals are:t%f,t%fn",i,j); x0=i; x1=j; do { prev=x2; fp=f(x0); St.Mary’scollege,Thrissur
  • 19. fq=f(x1); x2=x0-(fp*(x1-x0)/(fq-fp)); printf("Value of x0=%ftValue of x1=%ftValue of x2=%ftValue of F(x2)=%fn",x0,x1,x2,f(x2)); if(f(x2)<0) x0=x2; else x1=x2; }while((x2-prev)>.001); } printf("nRoot of the equation=%f",x2); getch(); } OUTPUT The Intervals are: 1.000000, 2.000000 Value of x0=1.000000 Value of x1=2.000000 Value of x2=1.166667 Value of F(x2)=-0.578704 Value of x0=1.166667 Value of x1=2.000000 Value of x2=1.253112 Value of F(x2)=-0.285363 Value of x0=1.253112 Value of x1=2.000000 Value of x2=1.293437 Value of F(x2)=-0.129542 Value of x0=1.293437 Value of x1=2.000000 Value of x2=1.311281 Value of F(x2)=-0.056589 St.Mary’scollege,Thrissur
  • 20. Value of x0=1.311281 Value of x1=2.000000 Value of x2=1.318988 Value of F(x2)=-0.024304 Value of x0=1.318988 Value of x1=2.000000 Value of x2=1.322283 Value of F(x2)=-0.010362 Value of x0=1.322283 Value of x1=2.000000 Value of x2=1.323684 Value of F(x2)=-0.004404 Value of x0=1.323684 Value of x1=2.000000 Value of x2=1.324279 Value of F(x2)=-0.001869 Root of the equation=1.324279 St.Mary’scollege,Thrissur
  • 21. PROGRAM /*Program for find the root of the eqn(x*x*x-2x-5) by Newton Raffson Method method*/ #define f(x) (x*x*x-2x-5) #define q(x) (3*x*x-2) #include<stdio.h> #include<conio.h> void main() { float i=0,j=1,f1,f2,fp,fq,x1,x2,prev,x0; clrscr(); printf("nntNEWTON RAFFSON METHODn"); printf("nt---------------------n"); while(1) { f1=f(i); f2=f(j); if((f1<0&&f2>0)||(f1>0&&f2<0)) /* Finding the intervals*/ break; else { i++; j=i+1; } printf("n The Intervals are:t%f,t%fnn",i,j); x0=i; St.Mary’scollege,Thrissur
  • 22. x1=j; } x2=(x0+x1)/2; printf("x2ttf(x2)ttf'(x2)nnn"); while(1) { prev=x2; /*Assigning the current value to the previous value*/ x2=prev-(f(prev)/q(prev)); if(x2==prev) break; else printf("%ft%ft%fn",x2,f(x2),q(x2)); } printf("nn THE ROOT IS =%f",x2); getch(); } OUTPUT NEWTON RAFFSON METHOD ------------------------------------------- The Intervals are: 1.000000, 2.000000 The Intervals are: 2.000000, 3.000000 x2 f(x2) f'(x2) 2.164179 0.807945 12.051013 2.097135 0.028881 11.193929 2.094555 0.000041 11.161484 2.094552 0.000001 11.161439 THE ROOT IS =2.094552 St.Mary’scollege,Thrissur
  • 23. PROGRAM: /*program for gauss elimination method…*/ #include<conio.h> #include<stdio.h> void main() { int m,n,p,q,i,j; float a[10][10],b[10][10],x,y,z,t; /*…Declaration…*/ clrscr(); printf("nGAUSS ELIMINATION METHODn"); printf("********************************n"); printf("nInput the raw size of first matrix:"); scanf("%d",&m); printf("Input the column size of first matrix:"); scanf("%d",&n); printf("nInput the %d elements to %d*%d matrix:nn",m*n,m,n); for(i=0;i<m;i++) /*…For loop…*/ { for(j=0;j<n;j++) { scanf("%f",&a[i][j]); } } printf("nnInput the raw size of second matrix:"); St.Mary’scollege,Thrissur
  • 24. scanf("%d",&p); printf("Input the column size of second matrix:"); scanf("%d",&q); printf("nInput the %d elements to %d*%d matrix:nn",p*q,p,q); for(i=0;i<p;i++) /*…For loop…*/ { for(j=0;j<q;j++) { scanf("%f",&b[i][j]); } } printf("ntMatrix A:nn"); for(i=0;i<m;i++) { for(j=0;j<n;j++) { printf("%ft",a[i][j]); /*…Print matrix A…*/ } printf("n"); } printf("ntMatrix B:nn"); for(i=0;i<p;i++) { for(j=0;j<q;j++) { printf("%ft",b[i][j]); /*…Print matrix B…*/ } printf("n"); } t=a[0][0]; for(j=0;j<m;j++) { a[0][j]/=t; } b[0][0]/=t; for(i=1;i<p;i++) { t=a[i][0]; for(j=0;j<m;j++) { a[i][j]-=(t*a[0][j]); /*…Calculations…*/ } b[i][0]-=(t*b[0][0]); } t=a[1][1]; for(j=1;j<=m;j++) { a[1][j]/=t; } St.Mary’scollege,Thrissur
  • 25. b[1][0]/=t; t=a[2][1]; for(j=1;j<m;j++) { a[2][j]-=(t*a[1][j]); } b[2][0]-=(t*b[1][0]); printf("ntThe result is:n"); z=b[2][0]/a[2][2]; y=b[1][0]-(a[1][2]*z); /*…Printing the output…*/ x=b[0][0]-((a[0][1]*y)+(a[0][2]*z)); printf("ntx=%fnty=%fntz=%fn",x,y,z); getch(); } OUTPUT: GAUSS ELIMINATION METHOD ***************************** Input the raw size of first matrix: 3 Input the column size of first matrix: 3 Input the 9 elements to 3*3 matrix: 4 1 1 3 4 2 2 3 1 Input the raw size of second matrix: 3 Input the column size of second matrix: 1 Input the 3 elements to 3*1 matrix : 11 11 7 St.Mary’scollege,Thrissur
  • 26. Matrix A: 4.000000 1.000000 1.000000 3.000000 4.000000 2.000000 2.000000 3.000000 1.000000 Matrix B: 11.000000 11.000000 7.000000 The result is: x=2.333333 y=0.333333 z=1.333333 PROGRAM /* program using Newtons divided difference formula*/ #include<stdio.h> #include<conio.h> #include<math.h> void main() { float d[100][100],result,temp,unknown; int m,n,i,j,k; clrscr(); printf("Enter the limitn"); scanf("%d %d",&m,&n); printf("Enter the values of xn"); for(i=0;i<m;i++) { scanf("%f",&d[i][0]); } printf("Enter the values of yn"); for(i=0;i<n;i++) { St.Mary’scollege,Thrissur
  • 27. scanf("%f",&d[i][1]); } printf("Enter the value where f(x) to be foundn"); scanf("%f",&unknown); printf(" x t y"); for(i=0;i<=(n-2);i++) { printf(" ty%d",i); printf(“---------------------------------------------------------------------“); } printf("n"); for(j=2;j<(n+1);j++) { k=j-1; for(i=0;i<(n+1)-j;i++) { d[i][j]=(d[i+1][j-1]-d[i][j-1])/(d[k][0]-d[k-(j-1)][0]); k++; } } k=0; for(i=0;i<n;i++) { printf("nn"); for(j=0;j<=n-k;j++) { printf(" %f ",d[i][j]); } k++; } result=d[0][1]; for(j=2;j<n+1;j++) { temp=1; for(i=0;i<=j-2;i++) { temp=temp*(unknown-d[i][0]); } result+=temp*d[0][j]; } printf("nnf(%f) = %f",unknown,result); getch(); } St.Mary’scollege,Thrissur
  • 28. OUTPUT Enter the limit 6 6 Enter the values of x 4 5 7 10 11 13 Enter the values of y 48 100 294 900 1210 2028 Enter the value where f(x) to be found 8 x y y0 y1 y2 y3 y4 -------------------------------------------------------------------------------------- 4.000 48.000 52.000 15.000 1.000 0.000 0.000 5.000 100.000 97.000 21.000 1.000 0.000 7.000 294.000 202.000 27.000 1.000 10.000 900.000 310.000 33.000 11.000 1210.000 409.000 13.000 2028.000 f(8.000000) = 448.000000 St.Mary’scollege,Thrissur
  • 29. PROGRAM /*find the integral using taylor series*/ #include<stdio.h> #include<conio.h> #define f1(x,y) (x+(y*y)) #define f2(y,y1) (1+(2*y*y1)) #define f3(y,y1,y2) (2*(y*y2+y1*y1)) #define f4(y,y1,y2,y3) (2*((y*y3+y2*y1)+(2*y1*y2))) void main() { float x0,y0,y1,y2,y3,y4,unknown,h,result=0; clrscr(); printf("ntTAYLOR SERIESn"); printf("nEnter the initial valuesn"); scanf("%f %f",&x0,&y0); printf("Enter the unknown value, whose integral to be foundnn"); scanf("%f",&unknown); St.Mary’scollege,Thrissur