NVIDIA MODULUS: PHYSICS-ML 開発のためのフレームワーク
NARUHIKO TAN | HPC SOLUTION ARCHITECT
AGENDA
What is NVIDIA Modulus?
Use cases
§ Reacting flow in industrial scale boiler
§ Fluid accelerated corrosion of heat recovery steam generator
AGENDA
What is NVIDIA Modulus?
Use cases
§ Reacting flow in industrial scale boiler
§ Fluid accelerated corrosion of heat recovery steam generator
Key Consepts
NVIDIA MODULUS
Framework for Developing Physics ML Models for Digital Twins
Use simulation and observation data and governing physics
equations to generate a robust surrogate model
Generalizes parameterized domain and physics to encapsulate
multiple configurations/scenarios in the trained model
Builds a Physics ML model/digital twin to iterate on the
design/operating space
Forward simulation, inverse and data assimilation problems
What its not? Not a Solver, Not a Simulation platform
GETTING STARTED WITH AI FOR ENGINEERING SIMULATIONS USING MODULUS ON
RESCALE PLATFORM [S42087]
12
Physics-ML categorization
Physics
Data
Fully data
driven
Inductive
bias
Physics
constrained
Fully physics
driven
DEVELOPING DIGITAL TWINS FOR WEATHER, CLIMATE, AND ENERGY [S41823]
NVIDIA MODULUS – A FRAMEWORK
Key Consepts
Specifying geometry of the domain
§ STL or Constructive Solid Geometry (CSG)
§ Specify sampling policy
§ Specify parameterization
Using ground truth data in Modulus
§ Observed data or simulation data
§ Use only the governing equations with no data
§ Use only data
§ Use both
§ Consistent with first principles
§ Faster convergence
Network architectures – Curated networks
§ Fourier Features (FN), Sinusoidal Representation (SiReNs),
Modified Fourier Features (mFN)
§ Fourier Neural Operator, Adaptive Fourier Neural Operator
§ Fully Connected (FC)
§ Deep Galerkin Method (DGM)
§ Modified Highway Networks
§ Multiplicative Filter Networks
and more…
NVIDIA MODULUS A FRAMEWORK
Key Concepts
Specify governing equations
Symbolic equations
Integral form or weak form
extensible
Loss function minimization
Satisfy the PDE
Boundary conditions
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
NVIDIA MODULUS A FRAMEWORK
Key Concepts
Specify governing equations
Symbolic equations
Integral form or weak form
extensible
Loss function minimization
Satisfy the PDE
Boundary conditions
Explicit Parameterization
S41823: Towards developing digital twins for weather, climate, and energy
15
MODULUS FRAMEWORK - VERIFICATION
CFD Solid Mechanics Acoustics
Laminar
Turbulent
MODULUS FRAMEWORK - VERIFICATION
16
Electromagnetics Vibrations Turbulence
MODULUS FRAMEWORK - VERIFICATION
Modulus
Modulus
Modulus
MODULUS FRAMEWORK - VERIFICATION
MODULUS FRAMEWORK - VERIFICATION
Taylor-Green Vortex Decay
12
A100 FP32 vs. TF32: Results, Compute Time, Loss
MODULUS FRAMEWORK - PERFORMANCE
SINGLE GPU: Tensor Core Speed-up for PDEs
13
MODULUS FRAMEWORK - PERFORMANCE
MULTI-GPU/NODE Scalability
14
AI IN SCIENCE & ENGINEERING
Improved Physics & Predictions
AI IN SCIENCE & ENGINEERING
AGENDA
What is NVIDIA Modulus?
Use cases
§ Reacting flow in industrial scale boiler
§ Fluid accelerated corrosion of heat recovery steam generator
16
USE CASES
§ REACTING FLOW IN INDUSTRIAL SCALE BOILER
DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325]
Formulationand PINN vs CFD
PINN for reacting flows
7
Aim: Create a digital twin of an industrial scale boiler
Simplified methane oxidation
Implemented reacting flow transport equations for
kinetics-controlled combustion
No requirement for training data
Single PINN model for a range of input conditions
Fidelity and accuracy comparable to CFD
Trained PINN can provide near-instantaneous
inference for any input condition
Figure source: https://commons.wikimedia.org/wiki/File:Steam_Generator.png
Towards a reacting flow solver
8
Governing equations: Strongly coupled PDEs
Single species
Turbulent
Steady state
2D
Multiple species
Turbulent
Steady state
2D
Multiple species
Reacting
Turbulent
Steady state
2D
Multiple species
Reacting
Turbulent
Transient
2D
Multiple species
Reacting
Turbulent
Transient
3D
Continuity:
Species mass fraction: +
Momentum:
Temperature:
Kinetics-controlled single step irreversible reaction
Species source/sink terms etc
Temperature source term
DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325]
PINN vs CFD
Simplified systems
14
AnsysFluent Modulus AnsysFluent Modulus
REACTANT
PRODUCT
AnsysFluent Modulus
Species distributions for case without T source term Temperature distribution with frozen species
DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325]
DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325]
Handling large T-source
Resolving the issue with large T-source
16
T-source dominates the Y-source
This can lead to imbalances between the backpropagated
gradients
B) Transient approach
Handles large source terms by
learning the change between
states instead of learning
everything at once
Uses a moving time window
approach
A) Gradient normalization approach
Attempts to remove the dominance
of any component of the global loss
function
Dynamically assigns weights to
different constraints
USE CASES
§ FLUID ACCELERATED CORROSION OF HEAT RECOVERY STEAM GENERATOR
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
Unrestricted © Siemens Energy, 2021
7
August 2021
A typical Heat Recovery Steam Generator and some challenges
for Digitalization
Exhaust gas flow and temperatur
Low Pressor Evaporator
Mix of steam and liquid
changes with operations
Area of evaporation changes
with operations
Point of corrosion difficult to
predict
But
Thousands of pipes, no
sensors
Fluid dynamics depend on
geometry, only 2D drawings
available
Unrestricted © Siemens Energy, 2021
9
August 2021
The Fluid Accelerated Corrosion Workflow
Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions
Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh
generation (possible iterations)
Different operating conditions for creating
reduced order model response surface
Current
process
Better
process?
The challenge of the current approach:
Detailed simulation take months to prepare for one plant
Costs exceed customer benefits
Simplified data driven approaches do not determine the risk level in
an acceptable manner
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
HRSG WORKFLOW WITH MODULUS
Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions
Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh
generation (possible iterations)
Different operating conditions for creating
reduced order model response surface
Current process
New suggested
process
2D drawing Centerline
geometry
3D geometry
for Fluids
Using standard
CAD tools
< 0.5 hr
Convert 2D drawings to
centerline geometry
(~0.5 day)
Geometry : 2D 3D
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
HRSG WORKFLOW WITH MODULUS
Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions
Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh
generation (possible iterations)
Different operating conditions for creating
reduced order model response surface
Current process
Model Training
Mesh free, fast point cloud generation
Incompressible NS eqs
Fourier feature neural network
Parameterized input velocity
New suggested
process
2D drawing Centerline
geometry
3D geometry
for Fluids
Using standard
CAD tools
< 0.5 hr
Convert 2D drawings to
centerline geometry
(~0.5 day)
Geometry : 2D 3D
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
HRSG WORKFLOW WITH MODULUS
PySDF
module, Optix for Sampling and SDF
Defining network architecture
Symbolic definition of equations
Verification and
Validation
Fourier Feature Network
Hyperparameter tuning and training
A B C
Good match (in A,B,C):
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
HRSG WORKFLOW WITH MODULUS
Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions
Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh
generation (possible iterations)
Different operating conditions for creating
reduced order model response surface
Current process
Model Training Infer new scenario
Suggested
process
Order of 10,000x speed up per scenario
Order of seconds inference time vs 8 hr
per CFD run
2D drawing Centerline
geometry
3D geometry
for Fluids
Using standard
CAD tools
< 0.5 hr
Convert 2D drawings to
centerline geometry
(~0.5 day)
Geometry : 2D 3D
Mesh free, fast point cloud generation
Incompressible NS eqs
Fourier feature neural network
Parameterized input velocity
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
Materials
Physics AI
Path-Tracing
USD
NVIDIA OMNIVERSE ENTERPRISE
Platform for Creating and Connecting Virtual Worlds
Designer, Creator,
Engineer Collaborators
NVIDIA Core Technology
RTX Renderer
Nucleus
Portal
MODULUS OMNIVERSE INTEGRATION
Modulus Omniverse extension:
enables importing outputs of Modulus trained model into a visualization pipeline for common output scenarios ex:
streamlines, iso-surface
provides an interface that enables interactive exploration of design variables/parameters to infer new system behavior
Visualization Extension
Modulus Extension in Omniverse
Visualization
pipeline
Model Outputs Output Rendering
Interactive
exploration
Model inference
CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS
AND OMNIVERSE [S41671]
NEW FEATURES IN MODULUS V22.03
§ New network architectures
§ Fourie Neural Operator
§ Physics Informed Neural Operator
§ Adaptive Fourier Neural Operator
§ Deep-O Net
§ Modeling Enhancements
§ 2-eqn. Turbulence model
§ , models with standard and Launder-Spalding wall functions
§ Exact boundary condition imposition
§ Training features
§ Support for new optimizers
§ 30+ optimizers
§ New algorithms for loss balancing
§ Grad Norm, Relative Loss Balancing with Random Lookback, and Soft Adapt
§ Sobolev (gradient-enhanced) training
§ Hydra Config
§ Post-processing
<latexit sha1_base64="FULNvxR0CTA5RmKEYCXKafsNPCc=">AAAB+3icbVDLSgNBEOz1GeMr6tHLYhC8GHYlqMegF48RzAOSJcxOepMxszPLzKwYQn7Fi4giXv0Rb/6Nk2QPmljQUFR1090VJpxp43nfztLyyuraem4jv7m1vbNb2Nuva5kqijUquVTNkGjkTGDNMMOxmSgkccixEQ6uJ37jAZVmUtyZYYJBTHqCRYwSY6V7GMApvABCAhoYcJAgOoWiV/KmcBeJn5EiZKh2Cl/trqRpjMJQTrRu+V5ighFRhlGO43w71ZgQOiA9bFkqSIw6GE1vH7vHVum6kVS2hHGn6u+JEYm1Hsah7YyJ6et5byL+57VSE10GIyaS1KCgs0VRyl0j3UkQbpcppIYPLSFUMXurS/tEEWpsXHkbgj//8iKpn5X881L5tlysXGVx5OAQjuAEfLiACtxAFWpA4RGe4BXenLHz7Lw7H7PWJSebOYA/cD5/AIQQkYg=</latexit>
k ✏
<latexit sha1_base64="q+OthTPT4zzYsSYxJtVSkuO79OE=">AAAB93icbVDJSgNBEK1xjXGLevTSGAQvhhkJ6jHoxWMEs0AyhJ5OT9Kkl6G7RwhDfsSLBxe8+ive/Bs7yRw08UHB470qqupFCWfG+v63t7K6tr6xWdgqbu/s7u2XDg6bRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0O/Vbj1QbpuSDHSc0FHggWcwItk4awgjO4Q0UCKAwANwrlf2KPwNaJkFOypCj3it9dfuKpIJKSzg2phP4iQ0zrC0jnE6K3dTQBJMRHtCOoxILasJsdvcEnTqlj2KlXUmLZurviQwLY8Yicp0C26FZ9Kbif14ntfF1mDGZpJZKMl8UpxxZhaYhoD7TlFg+dgQTzdytiAyxxsS6qIouhGDx5WXSvKgEl5XqfbVcu8njKMAxnMAZBHAFNbiDOjSAgIUneIFXb+w9e+/ex7x1xctnjuAPvM8fd2aQcQ==</latexit>
k !
LERN MORE
GTC2022 sessions
§ Getting Started with AI for Engineering Simulations using Modulus on Rescale Platform [S42087]
§ Case Study on Developing Digital Twins for the Power Industry using Modulus and Omniverse [S41671]
§ Developing Digital Twins for Energy Applications using Modulus [S41325]
§ Developing Digital Twins for Weather, Climate, and Energy [S41823]
NVIDIA Modulus documentation
§ https://docs.nvidia.com/deeplearning/modulus/index.html
Blog
§ Siemens Energy Taps NVIDIA to Develop Industrial Digital Twin of Power Plant in Omniverse
LERN MORE
Blog
§ Accelerating Product Development with Physics-Informed Neural Networks and NVIDIA Modulus
§ Using Hybrid Physics-Informed Neural Networks for Digital Twins in Prognosis and Health Management
§ Using Physics-Informed Deep Learning for Transport in Porous Media
NVIDIA Modulus: Physics ML 開発のためのフレームワーク

More Related Content

PDF
開発者が語る NVIDIA cuQuantum SDK
PDF
Magnum IO GPUDirect Storage 最新情報
PDF
全力解説!Transformer
PDF
Docker Compose 徹底解説
PDF
ChatGPT 人間のフィードバックから強化学習した対話AI
PDF
Andes RISC-V vector extension demystified-tutorial
PDF
Hopper アーキテクチャで、変わること、変わらないこと
PPTX
Slurmのジョブスケジューリングと実装
開発者が語る NVIDIA cuQuantum SDK
Magnum IO GPUDirect Storage 最新情報
全力解説!Transformer
Docker Compose 徹底解説
ChatGPT 人間のフィードバックから強化学習した対話AI
Andes RISC-V vector extension demystified-tutorial
Hopper アーキテクチャで、変わること、変わらないこと
Slurmのジョブスケジューリングと実装

What's hot (20)

PDF
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
PPTX
Sliced Wasserstein距離と生成モデル
PDF
敵対的学習に対するラデマッハ複雑度
PDF
[Dl輪読会]dl hacks輪読
PDF
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
PDF
HPC+AI ってよく聞くけど結局なんなの
PPTX
【DL輪読会】時系列予測 Transfomers の精度向上手法
PPTX
[DL輪読会]Flow-based Deep Generative Models
PDF
[DL輪読会]近年のエネルギーベースモデルの進展
PDF
Singularityで分散深層学習
PDF
Active Learning 入門
PDF
NVIDIA HPC ソフトウエア斜め読み
PDF
バイナリニューラルネットとハードウェアの関係
PDF
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
PPTX
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
PDF
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
PPTX
深層学習の数理
PDF
PRML学習者から入る深層生成モデル入門
PDF
最適輸送の解き方
PDF
モデルアーキテクチャ観点からのDeep Neural Network高速化
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Sliced Wasserstein距離と生成モデル
敵対的学習に対するラデマッハ複雑度
[Dl輪読会]dl hacks輪読
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
HPC+AI ってよく聞くけど結局なんなの
【DL輪読会】時系列予測 Transfomers の精度向上手法
[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]近年のエネルギーベースモデルの進展
Singularityで分散深層学習
Active Learning 入門
NVIDIA HPC ソフトウエア斜め読み
バイナリニューラルネットとハードウェアの関係
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
深層学習の数理
PRML学習者から入る深層生成モデル入門
最適輸送の解き方
モデルアーキテクチャ観点からのDeep Neural Network高速化
Ad

Similar to NVIDIA Modulus: Physics ML 開発のためのフレームワーク (20)

PPTX
Fundamentals of Computational Fluid Dynamics
PDF
CFD Simulation of Solar Air Heater having Inclined Discrete Rib Roughness wit...
PDF
L’analyse de structures par éléments finis : applications, innovations et défis
PPTX
Computational fluid dynamics
PDF
Reconfigurable CORDIC Low-Power Implementation of Complex Signal Processing f...
PDF
D48073646
PDF
[February 2017 - Ph.D. Final Dissertation] Enabling Power-awareness For Multi...
PPTX
Measurement validation peak load reduction
PPTX
Computational Fluid Dynamics in Food Processing – Application in heat transfe...
PDF
Recent and Planned Improvements to the System Advisor Model
PPT
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
PPT
cfdpresentation-170330hghfgh093525.phhghhhpt
PPTX
Computational Fluid Dynamics & Its Application.pptx
PPT
Introduction to Computational Fluid Dynamics (CFD)
PDF
IEEE Presentation SDG&E
PDF
IEEE VLSI ECE PROJECT LIST
PDF
Multi-objective Pareto front and particle swarm optimization algorithms for p...
PDF
Indian Wind Power - New-generation DFIG Power Converters for 6-8 MW Wind Turb...
PDF
IRJET-V9I12214.Comparative Computational analysis of performance parameters f...
PDF
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
Fundamentals of Computational Fluid Dynamics
CFD Simulation of Solar Air Heater having Inclined Discrete Rib Roughness wit...
L’analyse de structures par éléments finis : applications, innovations et défis
Computational fluid dynamics
Reconfigurable CORDIC Low-Power Implementation of Complex Signal Processing f...
D48073646
[February 2017 - Ph.D. Final Dissertation] Enabling Power-awareness For Multi...
Measurement validation peak load reduction
Computational Fluid Dynamics in Food Processing – Application in heat transfe...
Recent and Planned Improvements to the System Advisor Model
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
cfdpresentation-170330hghfgh093525.phhghhhpt
Computational Fluid Dynamics & Its Application.pptx
Introduction to Computational Fluid Dynamics (CFD)
IEEE Presentation SDG&E
IEEE VLSI ECE PROJECT LIST
Multi-objective Pareto front and particle swarm optimization algorithms for p...
Indian Wind Power - New-generation DFIG Power Converters for 6-8 MW Wind Turb...
IRJET-V9I12214.Comparative Computational analysis of performance parameters f...
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
Ad

More from NVIDIA Japan (20)

PDF
HPC 的に H100 は魅力的な GPU なのか?
PDF
NVIDIA cuQuantum SDK による量子回路シミュレーターの高速化
PDF
20221021_JP5.0.2-Webinar-JP_Final.pdf
PDF
データ爆発時代のネットワークインフラ
PDF
GPU と PYTHON と、それから最近の NVIDIA
PDF
GTC November 2021 – テレコム関連アップデート サマリー
PDF
テレコムのビッグデータ解析 & AI サイバーセキュリティ
PDF
必見!絶対におすすめの通信業界セッション 5 つ ~秋の GTC 2020~
PDF
2020年10月29日 プロフェッショナルAI×Roboticsエンジニアへのロードマップ
PDF
2020年10月29日 Jetson活用によるAI教育
PDF
2020年10月29日 Jetson Nano 2GBで始めるAI x Robotics教育
PDF
COVID-19 研究・対策に活用可能な NVIDIA ソフトウェアと関連情報
PDF
Jetson Xavier NX クラウドネイティブをエッジに
PDF
GTC 2020 発表内容まとめ
PDF
NVIDIA Jetson導入事例ご紹介
PDF
JETSON 最新情報 & 自動外観検査事例紹介
PDF
HELLO AI WORLD - MEET JETSON NANO
PDF
Final 20200326 jetson edge comuputing digital seminar 1 final (1)
PDF
20200326 jetson edge comuputing digital seminar 1 final
PDF
20200326 jetson edge comuputing digital seminar 1 final
HPC 的に H100 は魅力的な GPU なのか?
NVIDIA cuQuantum SDK による量子回路シミュレーターの高速化
20221021_JP5.0.2-Webinar-JP_Final.pdf
データ爆発時代のネットワークインフラ
GPU と PYTHON と、それから最近の NVIDIA
GTC November 2021 – テレコム関連アップデート サマリー
テレコムのビッグデータ解析 & AI サイバーセキュリティ
必見!絶対におすすめの通信業界セッション 5 つ ~秋の GTC 2020~
2020年10月29日 プロフェッショナルAI×Roboticsエンジニアへのロードマップ
2020年10月29日 Jetson活用によるAI教育
2020年10月29日 Jetson Nano 2GBで始めるAI x Robotics教育
COVID-19 研究・対策に活用可能な NVIDIA ソフトウェアと関連情報
Jetson Xavier NX クラウドネイティブをエッジに
GTC 2020 発表内容まとめ
NVIDIA Jetson導入事例ご紹介
JETSON 最新情報 & 自動外観検査事例紹介
HELLO AI WORLD - MEET JETSON NANO
Final 20200326 jetson edge comuputing digital seminar 1 final (1)
20200326 jetson edge comuputing digital seminar 1 final
20200326 jetson edge comuputing digital seminar 1 final

Recently uploaded (20)

DOCX
search engine optimization ppt fir known well about this
PDF
4 layer Arch & Reference Arch of IoT.pdf
PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PPTX
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Five Habits of High-Impact Board Members
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
Comparative analysis of machine learning models for fake news detection in so...
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PPTX
Internet of Everything -Basic concepts details
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
Flame analysis and combustion estimation using large language and vision assi...
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
PPTX
Module 1 Introduction to Web Programming .pptx
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
search engine optimization ppt fir known well about this
4 layer Arch & Reference Arch of IoT.pdf
Credit Without Borders: AI and Financial Inclusion in Bangladesh
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
NewMind AI Weekly Chronicles – August ’25 Week III
Five Habits of High-Impact Board Members
Getting started with AI Agents and Multi-Agent Systems
Comparative analysis of machine learning models for fake news detection in so...
The influence of sentiment analysis in enhancing early warning system model f...
Internet of Everything -Basic concepts details
Module 1.ppt Iot fundamentals and Architecture
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Custom Battery Pack Design Considerations for Performance and Safety
Flame analysis and combustion estimation using large language and vision assi...
UiPath Agentic Automation session 1: RPA to Agents
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
Module 1 Introduction to Web Programming .pptx
A review of recent deep learning applications in wood surface defect identifi...
sbt 2.0: go big (Scala Days 2025 edition)
Final SEM Unit 1 for mit wpu at pune .pptx

NVIDIA Modulus: Physics ML 開発のためのフレームワーク

  • 1. NVIDIA MODULUS: PHYSICS-ML 開発のためのフレームワーク NARUHIKO TAN | HPC SOLUTION ARCHITECT
  • 2. AGENDA What is NVIDIA Modulus? Use cases § Reacting flow in industrial scale boiler § Fluid accelerated corrosion of heat recovery steam generator
  • 3. AGENDA What is NVIDIA Modulus? Use cases § Reacting flow in industrial scale boiler § Fluid accelerated corrosion of heat recovery steam generator
  • 4. Key Consepts NVIDIA MODULUS Framework for Developing Physics ML Models for Digital Twins Use simulation and observation data and governing physics equations to generate a robust surrogate model Generalizes parameterized domain and physics to encapsulate multiple configurations/scenarios in the trained model Builds a Physics ML model/digital twin to iterate on the design/operating space Forward simulation, inverse and data assimilation problems What its not? Not a Solver, Not a Simulation platform GETTING STARTED WITH AI FOR ENGINEERING SIMULATIONS USING MODULUS ON RESCALE PLATFORM [S42087]
  • 5. 12 Physics-ML categorization Physics Data Fully data driven Inductive bias Physics constrained Fully physics driven DEVELOPING DIGITAL TWINS FOR WEATHER, CLIMATE, AND ENERGY [S41823]
  • 6. NVIDIA MODULUS – A FRAMEWORK Key Consepts Specifying geometry of the domain § STL or Constructive Solid Geometry (CSG) § Specify sampling policy § Specify parameterization Using ground truth data in Modulus § Observed data or simulation data § Use only the governing equations with no data § Use only data § Use both § Consistent with first principles § Faster convergence Network architectures – Curated networks § Fourier Features (FN), Sinusoidal Representation (SiReNs), Modified Fourier Features (mFN) § Fourier Neural Operator, Adaptive Fourier Neural Operator § Fully Connected (FC) § Deep Galerkin Method (DGM) § Modified Highway Networks § Multiplicative Filter Networks and more…
  • 7. NVIDIA MODULUS A FRAMEWORK Key Concepts Specify governing equations Symbolic equations Integral form or weak form extensible Loss function minimization Satisfy the PDE Boundary conditions CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671]
  • 8. CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671] NVIDIA MODULUS A FRAMEWORK Key Concepts Specify governing equations Symbolic equations Integral form or weak form extensible Loss function minimization Satisfy the PDE Boundary conditions Explicit Parameterization S41823: Towards developing digital twins for weather, climate, and energy
  • 9. 15 MODULUS FRAMEWORK - VERIFICATION CFD Solid Mechanics Acoustics Laminar Turbulent MODULUS FRAMEWORK - VERIFICATION
  • 10. 16 Electromagnetics Vibrations Turbulence MODULUS FRAMEWORK - VERIFICATION Modulus Modulus Modulus MODULUS FRAMEWORK - VERIFICATION
  • 11. MODULUS FRAMEWORK - VERIFICATION Taylor-Green Vortex Decay
  • 12. 12 A100 FP32 vs. TF32: Results, Compute Time, Loss MODULUS FRAMEWORK - PERFORMANCE SINGLE GPU: Tensor Core Speed-up for PDEs
  • 13. 13 MODULUS FRAMEWORK - PERFORMANCE MULTI-GPU/NODE Scalability
  • 14. 14 AI IN SCIENCE & ENGINEERING Improved Physics & Predictions AI IN SCIENCE & ENGINEERING
  • 15. AGENDA What is NVIDIA Modulus? Use cases § Reacting flow in industrial scale boiler § Fluid accelerated corrosion of heat recovery steam generator
  • 16. 16 USE CASES § REACTING FLOW IN INDUSTRIAL SCALE BOILER
  • 17. DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325] Formulationand PINN vs CFD PINN for reacting flows 7 Aim: Create a digital twin of an industrial scale boiler Simplified methane oxidation Implemented reacting flow transport equations for kinetics-controlled combustion No requirement for training data Single PINN model for a range of input conditions Fidelity and accuracy comparable to CFD Trained PINN can provide near-instantaneous inference for any input condition Figure source: https://commons.wikimedia.org/wiki/File:Steam_Generator.png
  • 18. Towards a reacting flow solver 8 Governing equations: Strongly coupled PDEs Single species Turbulent Steady state 2D Multiple species Turbulent Steady state 2D Multiple species Reacting Turbulent Steady state 2D Multiple species Reacting Turbulent Transient 2D Multiple species Reacting Turbulent Transient 3D Continuity: Species mass fraction: + Momentum: Temperature: Kinetics-controlled single step irreversible reaction Species source/sink terms etc Temperature source term DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325]
  • 19. PINN vs CFD Simplified systems 14 AnsysFluent Modulus AnsysFluent Modulus REACTANT PRODUCT AnsysFluent Modulus Species distributions for case without T source term Temperature distribution with frozen species DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325]
  • 20. DEVELOPING DIGITAL TWINS FOR ENERGY APPLICATIONS USING MODULUS [S41325] Handling large T-source Resolving the issue with large T-source 16 T-source dominates the Y-source This can lead to imbalances between the backpropagated gradients B) Transient approach Handles large source terms by learning the change between states instead of learning everything at once Uses a moving time window approach A) Gradient normalization approach Attempts to remove the dominance of any component of the global loss function Dynamically assigns weights to different constraints
  • 21. USE CASES § FLUID ACCELERATED CORROSION OF HEAT RECOVERY STEAM GENERATOR
  • 22. CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671] Unrestricted © Siemens Energy, 2021 7 August 2021 A typical Heat Recovery Steam Generator and some challenges for Digitalization Exhaust gas flow and temperatur Low Pressor Evaporator Mix of steam and liquid changes with operations Area of evaporation changes with operations Point of corrosion difficult to predict But Thousands of pipes, no sensors Fluid dynamics depend on geometry, only 2D drawings available
  • 23. Unrestricted © Siemens Energy, 2021 9 August 2021 The Fluid Accelerated Corrosion Workflow Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh generation (possible iterations) Different operating conditions for creating reduced order model response surface Current process Better process? The challenge of the current approach: Detailed simulation take months to prepare for one plant Costs exceed customer benefits Simplified data driven approaches do not determine the risk level in an acceptable manner CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671]
  • 24. HRSG WORKFLOW WITH MODULUS Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh generation (possible iterations) Different operating conditions for creating reduced order model response surface Current process New suggested process 2D drawing Centerline geometry 3D geometry for Fluids Using standard CAD tools < 0.5 hr Convert 2D drawings to centerline geometry (~0.5 day) Geometry : 2D 3D CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671]
  • 25. HRSG WORKFLOW WITH MODULUS Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh generation (possible iterations) Different operating conditions for creating reduced order model response surface Current process Model Training Mesh free, fast point cloud generation Incompressible NS eqs Fourier feature neural network Parameterized input velocity New suggested process 2D drawing Centerline geometry 3D geometry for Fluids Using standard CAD tools < 0.5 hr Convert 2D drawings to centerline geometry (~0.5 day) Geometry : 2D 3D CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671]
  • 26. HRSG WORKFLOW WITH MODULUS PySDF module, Optix for Sampling and SDF Defining network architecture Symbolic definition of equations Verification and Validation Fourier Feature Network Hyperparameter tuning and training A B C Good match (in A,B,C): CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671]
  • 27. HRSG WORKFLOW WITH MODULUS Geometry : 2D 3D CFD Model preparation 3D CFD operating conditions Full 3D geometry from 2D drawing Geometry preparation for CFD, mesh generation (possible iterations) Different operating conditions for creating reduced order model response surface Current process Model Training Infer new scenario Suggested process Order of 10,000x speed up per scenario Order of seconds inference time vs 8 hr per CFD run 2D drawing Centerline geometry 3D geometry for Fluids Using standard CAD tools < 0.5 hr Convert 2D drawings to centerline geometry (~0.5 day) Geometry : 2D 3D Mesh free, fast point cloud generation Incompressible NS eqs Fourier feature neural network Parameterized input velocity CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671]
  • 28. Materials Physics AI Path-Tracing USD NVIDIA OMNIVERSE ENTERPRISE Platform for Creating and Connecting Virtual Worlds Designer, Creator, Engineer Collaborators NVIDIA Core Technology RTX Renderer Nucleus Portal
  • 29. MODULUS OMNIVERSE INTEGRATION Modulus Omniverse extension: enables importing outputs of Modulus trained model into a visualization pipeline for common output scenarios ex: streamlines, iso-surface provides an interface that enables interactive exploration of design variables/parameters to infer new system behavior Visualization Extension Modulus Extension in Omniverse Visualization pipeline Model Outputs Output Rendering Interactive exploration Model inference CASE STUDY ON DEVELOPING DIGITAL TWINS FOR THE POWER INDUSTRY USING MODULUS AND OMNIVERSE [S41671]
  • 30. NEW FEATURES IN MODULUS V22.03 § New network architectures § Fourie Neural Operator § Physics Informed Neural Operator § Adaptive Fourier Neural Operator § Deep-O Net § Modeling Enhancements § 2-eqn. Turbulence model § , models with standard and Launder-Spalding wall functions § Exact boundary condition imposition § Training features § Support for new optimizers § 30+ optimizers § New algorithms for loss balancing § Grad Norm, Relative Loss Balancing with Random Lookback, and Soft Adapt § Sobolev (gradient-enhanced) training § Hydra Config § Post-processing <latexit sha1_base64="FULNvxR0CTA5RmKEYCXKafsNPCc=">AAAB+3icbVDLSgNBEOz1GeMr6tHLYhC8GHYlqMegF48RzAOSJcxOepMxszPLzKwYQn7Fi4giXv0Rb/6Nk2QPmljQUFR1090VJpxp43nfztLyyuraem4jv7m1vbNb2Nuva5kqijUquVTNkGjkTGDNMMOxmSgkccixEQ6uJ37jAZVmUtyZYYJBTHqCRYwSY6V7GMApvABCAhoYcJAgOoWiV/KmcBeJn5EiZKh2Cl/trqRpjMJQTrRu+V5ighFRhlGO43w71ZgQOiA9bFkqSIw6GE1vH7vHVum6kVS2hHGn6u+JEYm1Hsah7YyJ6et5byL+57VSE10GIyaS1KCgs0VRyl0j3UkQbpcppIYPLSFUMXurS/tEEWpsXHkbgj//8iKpn5X881L5tlysXGVx5OAQjuAEfLiACtxAFWpA4RGe4BXenLHz7Lw7H7PWJSebOYA/cD5/AIQQkYg=</latexit> k ✏ <latexit sha1_base64="q+OthTPT4zzYsSYxJtVSkuO79OE=">AAAB93icbVDJSgNBEK1xjXGLevTSGAQvhhkJ6jHoxWMEs0AyhJ5OT9Kkl6G7RwhDfsSLBxe8+ive/Bs7yRw08UHB470qqupFCWfG+v63t7K6tr6xWdgqbu/s7u2XDg6bRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0O/Vbj1QbpuSDHSc0FHggWcwItk4awgjO4Q0UCKAwANwrlf2KPwNaJkFOypCj3it9dfuKpIJKSzg2phP4iQ0zrC0jnE6K3dTQBJMRHtCOoxILasJsdvcEnTqlj2KlXUmLZurviQwLY8Yicp0C26FZ9Kbif14ntfF1mDGZpJZKMl8UpxxZhaYhoD7TlFg+dgQTzdytiAyxxsS6qIouhGDx5WXSvKgEl5XqfbVcu8njKMAxnMAZBHAFNbiDOjSAgIUneIFXb+w9e+/ex7x1xctnjuAPvM8fd2aQcQ==</latexit> k !
  • 31. LERN MORE GTC2022 sessions § Getting Started with AI for Engineering Simulations using Modulus on Rescale Platform [S42087] § Case Study on Developing Digital Twins for the Power Industry using Modulus and Omniverse [S41671] § Developing Digital Twins for Energy Applications using Modulus [S41325] § Developing Digital Twins for Weather, Climate, and Energy [S41823] NVIDIA Modulus documentation § https://docs.nvidia.com/deeplearning/modulus/index.html Blog § Siemens Energy Taps NVIDIA to Develop Industrial Digital Twin of Power Plant in Omniverse
  • 32. LERN MORE Blog § Accelerating Product Development with Physics-Informed Neural Networks and NVIDIA Modulus § Using Hybrid Physics-Informed Neural Networks for Digital Twins in Prognosis and Health Management § Using Physics-Informed Deep Learning for Transport in Porous Media