SlideShare a Scribd company logo
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
DOI : 10.5121/mathsj.2025.12101 1
ON A DIOPHANTINE PROOFS OF FLT: THE FIRST
CASE AND THE SECOND CASE ๐’› โ‰ก ๐ŸŽ (๐’Ž๐’๐’…๐’‘) AND
SIGNIFICANT RELATED PROBLEMS
Kimou Kouadio Prosper 1
, Kouakou Kouassi Vincent 2
1
UMRI MSN, Felix Houphouet-Boigny National Polytechnic Institute, Yamoussoukro,
Ivory Coast
2
Nangui Abrogoua University, Applied Fundamental Sciences Department, Abidjan,
Ivory Coast
ABSTRACT
In this paper, we study Fermat's equation,
๐‘ฅ๐‘›
+ ๐‘ฆ๐‘›
= ๐‘ง๐‘›
(1)
with ๐‘› > 2, ๐‘ฅ, ๐‘ฆ, ๐‘ง non-zero positive integers. Let (๐‘Ž, ๐‘, ๐‘) be a triple of non-zero positive integers relativity
prime. Consider the equation (1) with prime exponent ๐‘ > 2. We establish the following results:
- ๐‘Ž๐‘
+ ๐‘๐‘
โ‰  (๐‘ + 1)๐‘
. This completes the general direct proof of Abel's conjecture only prove in
the first case ๐‘Ž๐‘(๐‘ + 1) โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘).
- ๐‘Ž2๐‘
+ ๐‘2๐‘
โ‰  ๐‘2๐‘
. This completes the direct proof of Terjanian Theorem only prove in the first
case ๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)).
- ๐‘Ž๐‘›
+ ๐‘๐‘›
โ‰  ๐‘๐‘›
with๐‘› is a non-prime integer.A new result almost absent in the literature of this
problem.
- If ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) then๐‘Ž๐‘
+ ๐‘๐‘
โ‰  ๐‘๐‘
. This provides simultaneous Diophantine evidence for the
first case oand the second case๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) of FLT.
We analyse each of the evidence from the previous results and propose a ranking in order of increasing
difficulty to establish them.
KEYWORDS
Fermat Last Theorem (FLT), Fermat equation, Abel conjecture, the first case, the secund case, prime
exponent, non-prime exponent, even exponent, the principal Kimou divisors.
1. INTRODUCTION.
In 1670 Fermat wrote that "It is impossible for a cube to be written as the sum of two cubes or for
a fourth power to be written as the sum of two fourth powers or, in general, for any number equal
to a power greater than two to be written as the sum of two powers" [1] p.1-2.Fermat claimed to
have "woven" a wonderful proof of his problem. He gave the principle of is proof, the infinite
descent, and illustrated it by proving the exponent 4 of his problem. For a little more than three
centuries, Fermat's proposition, hitherto called Fermat's conjecture, had not yet been
demonstrated in generality, even for the first case. However, non-obvious elementary proofs
based on the principle of Fermat's infinite descent or not have been obtained for the small
exponents of 3, 5, โ€ฆ ,100 (first case) and 3, โ€ฆ,14 (general case) [1] p. 64. Using computer tools,
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
2
these limits had been pushed to 57*109
(Morishima and Gunderson, 1948) for the first case and to
125 000 (Wagstaff,1976) for the general case [1] p.19. Apart from these results concerning
precise values of the exponents or its programming, there are other partial results involving
families of prime exponents and based on relatively elementary theories [2] p. 109-122,203-
211,360-361:
- In 1823, Sophie Germain and Legendre established the first case of FLT for exponents
n less than 100. It also states that if n = p is prime number such that 2p + 1 is still
prime, then the first case of FLT for exponent p is true.
- In 1846, Kummer used the theory of cyclotomic fields to obtain some very remarkable
results: The impossibility of Fermat's equation for regular prime number n and deduce
that the first case of FLT failsfor all prime exponents less than 100 except 37, 59 and 67.
- In 1977, Terjanian proved the first case of even exponent of FLT. He considered๐‘ฅ2๐‘
+
๐‘ฆ2๐‘
= ๐‘ง2๐‘
with pa prime and he used the law of reciprocity to prove an important lemma
involving quotients
๐‘ง๐‘โˆ’๐‘ฆ๐‘
๐‘งโˆ’๐‘ฆ
,
๐‘ง๐‘žโˆ’๐‘ฆ๐‘ž
๐‘งโˆ’๐‘ฆ
and Jacobi's symbols.
Despite these results, general proof was still slow to be found.It was in 1985 that Andrews Wiles
provided the first recognized proof by the scientific community of Fermat's conjecture, which
would become the Fermat-Wiles theorem [2] [3]. In 2023, Kimou K. P. took the decisive step by
introducing Kimou 's divisors for a hypothetical solution of xn
+ yn
= zn
with n = 4, p, 2pand
proposing new proofs of FLT for exponent 4, the first case of the Abel conjecture, and proved
some properties related to Fermat problem [4]-[15]. Then, he proved new fundamental and
decisive results for this problem: A crucial relationship and a fundamental theorem that will
allow him to reach the "Heart" of the problem [10]-[11]. Then, in oral communication, he used
them to prove the first and second cases ๐‘ง โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘) of FLT [15].A solution (x, y, z) to the
equation (1) will be called primitive if gcd(x, y, z) = 1. This solution will be called trivial if
xyz = 0. Let n > 2 a natural number. Consider the set Fnof triples of non-trivial positive integers
solution to equation (1) define as follow:
๐น๐‘› = {(๐‘ฅ, ๐‘ฆ, ๐‘ง) โˆˆ โ„•โˆ—3
, ๐‘ฅ๐‘›
+ ๐‘ฆ๐‘›
= ๐‘ง๐‘›}.
The objective of this paper is to give a Diophantine proof for following main results.
Theorem 1.1. Let p > 2 be a primenumber and (a, b, c) be a triple of non-zero positive integers
relatively prime. Then.
๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘Ž๐‘
+ ๐‘๐‘
โ‰  ๐‘๐‘
.
Theorem 1.2. Let pbe a prime number. Then,
๐‘ > 2 โŸน ๐น2๐‘ = โˆ….
Theorem 1.3. Let nbe a nonprimepositive integer. Then,
๐‘› > 2 โŸน ๐น๐‘› = โˆ….
Theorem 1.4. Let p > 2be a primenumber and let (a, b, c) be a triple of non-null positive
integers relatively prime. Then
๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘
+ ๐‘๐‘
โ‰  ๐‘๐‘
.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
3
We present our work by organizing it as follows. Section 2 preliminaries, we recall the theorems
of principal Kimouโ€™s divisors and Diophantine quotients and remainders, the Fundamental
Relation of the Fermat equation and its corollary. In Section 3, we prove our main results. In
section 4, we give a classification in increasing order of the difficulty of the Fermat problems
studied here. In section 5, we conclude this work with a conclusion with perspectives.
2. PRELIMINARIES
In this section we define commonly used terms, state and prove theorems and lemmas necessary
for the proofs of our main results.
Definitions 2.1.
1. Diophantine proof is direct proof based on the natural integers, using only the properties
of addition, multiplication, Euclidean division, the order relation in โ„• and the
fundamental theorem of arithmetic to analyze a Diophantine equation.
2. A hypothetical solution (๐‘Ž, ๐‘, ๐‘)of Fermat's equation is primitive if gcd(๐‘Ž, ๐‘, ๐‘) = 1.
Remark 2.1.
1. In our research on FLT, we use classical tools such as Newton's binomial formula,
factorization, the fundamental theorem of arithmetic (implicitly), Fermatโ€™s little theorem
and intensively modular arithmetic. We have developed some very effective new tools
for analyzing the Fermat equation. These tools are all Diophantine [Definition 2.1].
2. If (๐‘Ž, ๐‘, ๐‘) is a non-trivial primitive solution of Fermat equation, then:
gcd(๐‘Ž, ๐‘) = gcd(๐‘Ž, ๐‘) = gcd(๐‘, ๐‘) = 1.
Notation 2.1.
1. We use the symbol โ—ปto represent the empty clause. It is the proposition that is always
false or absurd.
2. Let ๐‘ > 2 a prime number, (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ such that ๐‘Ž < ๐‘ < ๐‘. Let ๐‘‡๐‘(๐‘ฅ, ๐‘ฆ) be the
quantity defined by
๐‘‡๐‘(๐‘ฅ, ๐‘ฆ) =
๐‘ฆ๐‘
โˆ’ ๐‘ฅ๐‘
๐‘ฆ โˆ’ ๐‘ฅ
with ๐‘ฅ, ๐‘ฆ โˆˆ {๐‘, ยฑ๐‘Ž, ๐‘}, ๐‘ฆ > ๐‘ฅ.
๐‘‡๐‘(๐‘ฅ, ๐‘ฆ)is a positive integer.
Theorem 2.1. (Fermatโ€™s little theorem). If ๐‘ is a prime number, then for any integer ๐‘Ž, where ๐‘
does not divide ๐‘Ž (๐‘Ž โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)) the following holds
๐‘Ž๐‘โˆ’1
โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘)
Proof. See [12] p.33
Theorem2.2.Let ๐‘› > 2 be an odd integer and let ๐‘ > 2be a prime number. Then
๐น๐‘ = โˆ… โŸน ๐น๐‘› = โˆ….
Proof. Proving Theorem 2.2. is equivalent to proving that if ๐น๐‘› โ‰  โˆ… then ๐น๐‘ โ‰  โˆ…. We proceed by
contraposed reasoning. Let us consider that ๐น๐‘› โ‰  โˆ…. We distinguish two cases.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
4
On the one hand, if ๐‘› = 2๐‘™
with๐‘™ โ‰ฅ 2. Consider the case ๐‘™ = 2. In that case ๐‘› = 4 and equation
(1) becomes
๐‘ฅ4
+ ๐‘ฆ4
= ๐‘ง4
.
This is Fermat's biquadraticequation and we all know that it does not admit non-trivial solutions
[2] p.13 (2C).
Consider the case where ๐‘™ > 2 then ๐‘› = 2๐‘™
โ‰ก 0 (๐‘š๐‘œ๐‘‘ 4). Therefore, there exists a natural
number k such that ๐‘› = 4๐‘˜. Equation (1) becomes ๐‘ฅ4๐‘˜
+ ๐‘ฆ4๐‘˜
= ๐‘ง4๐‘˜
. As a result
๐‘ฅ4๐‘˜
+ ๐‘ฆ4๐‘˜
= ๐‘ง4๐‘˜
โŸน (๐‘ฅ๐‘˜)
4
+ (๐‘ฆ๐‘˜)
4
= (๐‘ง๐‘˜)
4
โŸนโ—ป.
Hence ๐‘› โ‰  2๐‘™
, with ๐‘™ > 2. In short ๐‘› โ‰  2๐‘™
with ๐‘™ โ‰ฅ 2.
On the other hand, if ๐‘› โ‰  2๐‘™
then ๐‘› admits a prime factor ๐‘ž > 2. There exist๐‘˜ โ‰ฅ 2such as ๐‘› =
๐‘˜๐‘ž. Then
๐น๐‘› โ‰  โˆ… โŸน โˆƒ(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘›, ๐‘Ž๐‘๐‘ โ‰  1
โŸน (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘˜๐‘ž โŸน ๐‘Ž๐‘˜๐‘ž
+ ๐‘๐‘˜๐‘ž
= ๐‘๐‘˜๐‘ž
โŸน (๐‘Ž๐‘˜)
๐‘ž
+ (๐‘๐‘˜)
๐‘ž
= (๐‘๐‘˜)
๐‘ž
๐‘ค๐‘–๐‘กโ„Ž ๐‘ž > 2 ๐‘Ž ๐‘๐‘Ÿ๐‘–๐‘š๐‘’
โŸน (๐‘Ž๐‘˜
,๐‘๐‘˜
, ๐‘๐‘˜) โˆˆ ๐น๐‘ž, ๐‘Ž๐‘˜
๐‘๐‘˜
๐‘๐‘˜
โ‰  0
โŸน ๐น๐‘ž โ‰  โˆ….
Hence if ๐น๐‘ = โˆ… then ๐น๐‘› = โˆ….
Lemma 2.1. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ such that ๐‘ > ๐‘Ž. Consider
(๐‘ž1, ๐‘ž2) and (๐‘Ÿ1, ๐‘Ÿ2) the quotients and the remainders of the Euclidean division of ๐‘ and ๐‘ by ๐‘Ž:
๐‘ = ๐‘Ž๐‘ž1 + ๐‘Ÿ1 and ๐‘ = ๐‘Ž๐‘ž2 + ๐‘Ÿ2. Then,
๐‘ = ๐‘Ž + 1 โŸน ๐‘ž1 = ๐‘ž2 = 1.
Proof. See [8].
Lemma 2.2. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution
such that ๐‘ > ๐‘Ž. Consider ๐‘ = ๐‘Ž๐‘ž2+๐‘Ÿ2 ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ2 < ๐‘Žand ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž). Then,
๐‘ž2 = 1 โŸน {
๐‘Ÿ2 =
๐‘’๐‘
๐‘
if ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
๐‘Ÿ2 = ๐‘’๐‘
otherwise.
.
Proof.See [8].
Theorem 2.3. (Kimou-Fermat). Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) be a triple of
positive integers relativity prime such that ๐‘ > ๐‘Ž. Then,
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน {
๐‘ โˆ’ ๐‘Ž = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ ๐‘Ž = 2 otherwise.
.
Proof. See [10].
Lemma 2.3. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution
such that ๐‘ > ๐‘Ž. Then
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
5
๐‘ โˆ’ ๐‘Ž = 1 โŸบ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2).
Proof. According to the assumptions of the previous lemma, we have:
On the one hand, let us show that if๐‘ โˆ’ ๐‘Ž = 1 then๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2). We have:
๐‘ โˆ’ ๐‘Ž = 1 โŸน ๐‘ = ๐‘Ž + 1
โŸน ๐‘Ž, ๐‘ are opposite parity
โŸน ๐‘ is odd because gcd(๐‘Ž, ๐‘, ๐‘) = 1.
Reciprocally, let us show that if๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)then ๐‘ โˆ’ ๐‘Ž = 1. We proceeded by reasoning by
absurd:
๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) , ๐‘ โˆ’ ๐‘Ž = 2 โŸน ๐‘, ๐‘Ž have the same parity
โŸน ๐‘, ๐‘Ž are odd because gcd(๐‘Ž, ๐‘, ๐‘) = 1.
โŸน ๐‘is even
โŸนโ—ป.
Hence ๐‘ โˆ’ ๐‘Ž = 1.
Lemma 2.4. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive solution such that
๐‘ > ๐‘Ž. Then
๐‘ โˆ’ ๐‘Ž = 2 โŸบ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ 2).
Proof.Can be deduced by contraposition of the previous lemma.
Lemma 2.5. Let ๐‘ > 2be a prime number and let(๐‘Ž, ๐‘, ๐‘) be a triple of relativity primeintegers.
Then
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน
{
๐‘ โˆ’ ๐‘ =
๐‘‘๐‘
gcd(๐‘‘, ๐‘)
, ๐‘‡๐‘(๐‘, ๐‘) = gcd(๐‘‘, ๐‘)๐›ผ๐‘
, ๐‘Ž = ๐‘‘๐›ผ
๐‘ โˆ’ ๐‘Ž =
๐‘’๐‘
gcd(๐‘’, ๐‘)
, ๐‘‡๐‘(๐‘Ž, ๐‘) = gcd(๐‘’, ๐‘)๐›ฝ๐‘
, ๐‘ = ๐‘’๐›ฝ
๐‘Ž + ๐‘ =
๐‘“๐‘
gcd(๐‘“, ๐‘)
, ๐‘‡๐‘(โˆ’๐‘Ž, ๐‘) = gcd(๐‘“, ๐‘)๐›พ๐‘
, ๐‘ = ๐‘“๐›พ.
where the sextuple (๐‘‘, ๐‘’, ๐‘“, ๐›ผ, ๐›ฝ, ๐›พ) of positive integers is the Kimou divisors of (๐‘Ž, ๐‘, ๐‘).
Proof. See [7], [9].
Remark 2.2.
1. The triple (๐‘‘, ๐‘’, ๐‘“) of non-zero positive integers is called Kimou primaries divisors of
(๐‘Ž, ๐‘, ๐‘) and defined by follow:
๐‘‘ = gcd(๐‘Ž, ๐‘ โˆ’ ๐‘) , ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž) ๐‘Ž๐‘›๐‘‘ ๐‘“ = gcd(๐‘, ๐‘Ž + ๐‘).
2. Lemma 2.5 is the concise and unified version of Lemmas 2.4, 2.5 and Remarks 2.3,2.4.
in [8] pp. 87-89.
3. If (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ then
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
6
{
gcd(๐‘‘, ๐‘) = gcd(๐‘’, ๐‘) = gcd(๐‘“, ๐‘) = 1 ๐‘–๐‘“ ๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)
gcd(๐‘‘, ๐‘) = ๐‘, gcd(๐‘’, ๐‘) = gcd(๐‘“, ๐‘) = 1 ๐‘–๐‘“ ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
gcd(๐‘’, ๐‘) = ๐‘, gcd(๐‘‘, ๐‘) = gcd(๐‘“, ๐‘) = 1 ๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
gcd(๐‘“, ๐‘) = ๐‘, gcd(๐‘‘, ๐‘) = gcd(๐‘’, ๐‘) = 1 ๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘).
Lemma 2.6. Let ๐‘ > 2be a prime number, let (๐‘Ž, ๐‘, ๐‘) be a triple of relativity prime integers.
Then
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน gcd(๐‘‘, ๐›ผ) = gcd(๐‘’, ๐›ฝ) = gcd(๐‘“, ๐›พ) = 1
where the sextuple (๐‘‘, ๐‘’, ๐‘“, ๐›ผ, ๐›ฝ, ๐›พ) of positive integers is the Kimouโ€™s divisors of (๐‘Ž, ๐‘, ๐‘)
[Lemma 2.5].
Proof.Under the assumptions of the previous lemma, we have:
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน {
๐‘‘ = gcd(๐‘Ž, ๐‘ โˆ’ ๐‘)
๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž)
๐‘“ = gcd(๐‘, ๐‘Ž + ๐‘)
[๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2. ][7]๐‘. 84
โŸน
{
๐‘‘ = gcd (๐‘Ž,
๐‘‘๐‘
gcd(๐‘‘, ๐‘)
)
๐‘’ = gcd (๐‘,
๐‘’๐‘
gcd(๐‘’, ๐‘)
)
๐‘“ = gcd (๐‘,
๐‘“๐‘
gcd(๐‘“, ๐‘)
)
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5]
โŸน
{
๐‘‘ = gcd (๐‘‘๐›ผ,
๐‘‘๐‘
gcd(๐‘‘, ๐‘)
)
๐‘’ = gcd (๐‘’๐›ฝ,
๐‘’๐‘
gcd(๐‘’, ๐‘)
)
๐‘“ = gcd (๐‘“๐›พ,
๐‘“๐‘
gcd(๐‘“, ๐‘)
)
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5]
โŸน
{
1 = gcd (๐›ผ,
๐‘‘๐‘โˆ’1
gcd(๐‘‘, ๐‘)
)
1 = gcd (๐›ฝ,
๐‘’๐‘โˆ’1
gcd(๐‘’, ๐‘)
)
1 = gcd (๐›พ,
๐‘“๐‘โˆ’1
gcd(๐‘“, ๐‘)
)
โŸน {
1 = gcd(๐›ผ, ๐‘‘)
1 = gcd(๐›ฝ, ๐‘’)
1 = gcd(๐›พ, ๐‘“).
Lemma 2.7. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution.
Then
๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน (๐‘ โˆ’ ๐‘)(๐‘ โˆ’ ๐‘Ž)(๐‘Ž + ๐‘) โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)
Proof. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of non-zero primitive
positive integers. Consider the sextuple (๐‘‘, ๐‘’, ๐‘“, ๐›ผ, ๐›ฝ, ๐›พ)of positive integers, its Kimou divisors.
We have
๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘‘๐‘’๐‘“ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)otherwise ๐‘Ž๐‘๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
7
โŸน ๐‘‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘’ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘“ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)
โŸน ๐‘‘๐‘
โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘’๐‘
โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘), ๐‘“๐‘
โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)
โŸน ๐‘ โˆ’ ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘ โˆ’ ๐‘Ž โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘Ž + ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5. ]
Lemma 2.8. Let ๐‘ > 2be a prime number and (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution.
Consider the triple (๐›ผ, ๐›ฝ, ๐›พ) theauxiliary Kimou divisors of (๐‘Ž, ๐‘, ๐‘).Then
๐›ผ โ‰ก ๐›ฝ โ‰ก ๐›พ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘)
Proof. Let's deal with the first case of this problem. We have
๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) =
๐‘๐‘
โˆ’ ๐‘Ž๐‘
๐‘ โˆ’ ๐‘Ž
โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) โ‰ก
๐‘๐‘
โˆ’ ๐‘Ž๐‘
๐‘ โˆ’ ๐‘Ž
(๐‘š๐‘œ๐‘‘ ๐‘)[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.7. ]
โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) โ‰ก
๐‘ โˆ’ ๐‘Ž
๐‘ โˆ’ ๐‘Ž
(๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1. ]
โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘)
โŸน ๐›ผ๐‘
โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5]
โŸน ๐›ผ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1. ]
The same approach is followed to show that ๐›ฝ โ‰ก ๐›พ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘).
In the second case, let us illustrate the evidence on the case ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). On the one hand,
๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘
+ ๐‘๐‘
= ๐‘๐‘
โŸน ๐‘๐‘
โ‰ก ๐‘๐‘
(๐‘š๐‘œ๐‘‘ ๐‘๐‘
) โŸน ๐‘ โ‰ก ๐‘ (๐‘š๐‘œ๐‘‘ ๐‘๐‘โˆ’1
)
โŸน ๐‘ โ‰ก ๐‘ (๐‘š๐‘œ๐‘‘ ๐‘2) ๐‘๐‘’๐‘๐‘Ž๐‘ข๐‘ ๐‘’ ๐‘ โ‰ฅ 3)
On the other hand,
๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘‡๐‘(๐‘, ๐‘) = ๐‘๐›ผ๐‘
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5, ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2. ]
โŸน ๐‘‡๐‘(๐‘, ๐‘) โ‰ก ๐‘๐›ผ๐‘
(๐‘š๐‘œ๐‘‘ ๐‘2
)
โŸน ๐‘๐‘๐‘โˆ’1
โ‰ก ๐‘๐›ผ๐‘(๐‘š๐‘œ๐‘‘ ๐‘2), ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘’๐‘ฃ๐‘–๐‘œ๐‘ข๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘ข๐‘™๐‘ก
โŸน ๐‘๐‘โˆ’1
โ‰ก ๐›ผ๐‘
(๐‘š๐‘œ๐‘‘ ๐‘)
โŸน 1 โ‰ก ๐›ผ๐‘(๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1]
โŸน 1 โ‰ก ๐›ผ (๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1].
A similar approach is followed to deal with cases ๐‘๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘).
Remark 2.3. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘)be a triple of relativity prime integers.
Then
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน ๐›ผ โ‰ฅ ๐‘, ๐›ฝ โ‰ฅ ๐‘, ๐›พ โ‰ฅ ๐‘ โŸน ๐›ผ > 2, ๐›ฝ > 2, ๐›พ > 2.
3. PROOF OF OUR MAIN RESULTS
3.1. Proof of Theorem 1.1.
Conjecture (Abel). Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive
solution. Then none of the ๐‘Ž, ๐‘and๐‘ is the power of a prime number.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
8
The cases where ๐‘ and ๐‘ are powers of a prime number have been proved by Moller [14]. He also
proved that if ๐‘Ž is a prime power, then ๐‘ โˆ’ ๐‘ = 1 [13], [14].The first case of this conjecture was
proved by Abel himself. New evidence was given by Kimou P. in 2023 [6]. The second case has
yet to receive direct proof. That's precisely the aim of this subsection.In what follows, we prove
this conjecture in full.
Lemma 3.1. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive solution such that
๐‘Ž๐‘๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). If โˆ€๐‘ฅ โˆˆ {๐‘Ž, ๐‘, ๐‘}, โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2
with ๐œ‹is a prime number and ๐‘ฅ = ๐œ‹๐‘š
then
๐‘ฅ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘).
Proof.Under the assumptions of the previous lemma, we will proceed by absurdity, assuming that
๐‘ฅ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘).
On the one hand,
๐‘ = ๐œ‹๐‘š
,๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐œ‹๐‘š
โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
โŸน ๐œ‹ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
โŸน ๐œ‹ = ๐‘ ๐‘œ๐‘Ÿ ๐‘ = 1 โŸน ๐œ‹ = ๐‘.
On the other hand, according to the above, we have:
๐‘ = ๐œ‹๐‘š
,๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘’๐›ฝ = ๐‘๐‘š
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5]
โŸน ๐‘’๐›ฝ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
โŸน ๐‘’ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.8])
โŸน ๐‘’ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘๐‘š
)
โŸน ๐‘’ = ๐‘˜๐‘ = ๐‘ ๐‘ค๐‘–๐‘กโ„Ž ๐‘˜ โ‰ฅ 1 ๐‘–๐‘  ๐‘Ž ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ
โŸน ๐‘’ = ๐‘, ๐›ฝ = 1
โŸนโ—ป [๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.3].
Hence๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘).We proceed in the same way with ๐‘Ž and ๐‘.
Remark 3.1. When ๐‘ is even, it is treated as follows.If ๐‘ is even, then ๐‘ = 2๐‘š
and consequently
๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘). According to lemma 3.1. we treat in the following the triplets (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ such
that
๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘) with ๐‘ = ๐‘ + 1.
Lemma 3.2. Let ๐‘ > 2 be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution such that
๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž) and ๐‘ = ๐‘’๐›ฝ. Then
๐›ฝ > ๐‘’๐‘โˆ’1
.
Proof.
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น โŸน ๐‘Ž + ๐‘ โˆ’ ๐‘ = ๐‘ โˆ’ (๐‘ โˆ’ ๐‘Ž) = ๐‘’๐›ฝ โˆ’ ๐‘’๐‘
โŸน ๐‘Ž + ๐‘ โˆ’ ๐‘ = ๐‘’(๐›ฝ โˆ’ ๐‘’๐‘โˆ’1
)
โŸน ๐›ฝ โˆ’ ๐‘’๐‘โˆ’1
> 0 โŸน ๐›ฝ > ๐‘’๐‘โˆ’1
.
Lemma 3.3. Let ๐‘ > 2 be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution such that
๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž) and ๐‘ = ๐‘’๐›ฝ. Then
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
9
{
๐›พ >
๐‘“๐‘โˆ’1
2๐‘
๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
๐›พ >
๐‘“๐‘โˆ’1
2๐‘
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
.
Proof. Consider the assumptions of the previous lemma and (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ a triple of primitive
solution. On the one hand
๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน 2๐‘ = ๐‘‘๐‘
+ ๐‘’๐‘
+
๐‘“๐‘
๐‘
[7]
โŸน 2๐‘ >
๐‘“๐‘
๐‘
โŸน 2๐‘“๐›พ >
๐‘“๐‘
๐‘
โŸน ๐›พ >
๐‘“๐‘โˆ’1
2๐‘
.
On the other hand
๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน 2๐‘ =
๐‘‘๐‘
๐‘
+ ๐‘’๐‘
+ ๐‘“๐‘
๐‘œ๐‘Ÿ 2๐‘ = ๐‘‘๐‘
+
๐‘’๐‘
๐‘
+ ๐‘“๐‘
[7]
โŸน 2๐‘ > ๐‘“๐‘
โŸน 2๐‘“๐›พ > ๐‘“๐‘
โŸน ๐›พ >
๐‘“๐‘โˆ’1
2
.
Remark. If ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) then ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘2
)[2] p. Hence ๐‘“ โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘2
)as a result:
๐‘“ โ‰ฅ ๐‘2
> 4. When๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘)let consider the following case:
๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘ โ‰ก ๐‘Ž (๐‘š๐‘œ๐‘‘ ๐‘2
) โŸน ๐‘“ โ‰ก ๐‘‘ (๐‘š๐‘œ๐‘‘ ๐‘2
)
โŸน ๐‘“ = ๐‘‘ + ๐‘˜๐‘2
โŸน ๐‘“ > ๐‘2
The same procedure is followed for the other cases.
Lemma 3.4. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘. Consider ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž). Then
๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2
, ๐‘ = ๐œ‹๐‘š
with ๐œ‹ is prime number.
Proof. Let ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). We proceed by reasoning by the absurd. Letโ€™s assume that (๐‘Ž, ๐‘, ๐‘) โˆˆ
๐น๐‘ ๐‘Ž๐‘›๐‘‘๐‘ = ๐œ‹๐‘š
.We have:
๐‘ = ๐œ‹๐‘š
โŸน ๐‘’๐›ฝ = ๐œ‹๐‘š
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5]
โŸน ๐‘’ = 1 ๐‘๐‘Ž๐‘Ÿ ๐›ฝ > ๐‘’ [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.2]
โŸน ๐‘’๐‘
= 1 โŸน ๐‘ โˆ’ ๐‘Ž = 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5]
โŸน ๐‘ = ๐‘Ž + 1
โŸนโ—ป because ๐‘Ž < ๐‘ < ๐‘.
Hence โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2
, ๐‘ = ๐œ‹๐‘š
with ๐œ‹ a prime number.
Lemma3.5. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution. Then
๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2
, ๐‘ = ๐œ‹๐‘š
with ฯ€ is a prime
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
10
Proof. Let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ and ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). We reason from the absurd by supposing that ๐‘ =
๐œ‹๐‘š
.We have
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘, ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘“๐›พ = ๐œ‹๐‘š
โŸน ๐‘“ = 1 ๐‘๐‘’๐‘๐‘Ž๐‘ข๐‘ ๐‘’ ๐›พ > ๐‘“ [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.3. ]
โŸน ๐‘“๐‘
= 1
โŸน ๐‘Ž + ๐‘ = 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5]
โŸน ๐‘Ž๐‘ = 0 โŸนโ—ป.
Hence โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2
, ๐‘ = ๐œ‹๐‘š
with ๐œ‹ a prime number.
Lemma 3.6. Let ๐œ‹ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive positive integers
solution of equation (1).Then,
๐‘Ž = ๐œ‹๐‘š
โŸน ๐‘ โˆ’ ๐‘ = 1.
Proof. Under the assumptions of lemma 3.4. we proceedby absurd supposing that ๐‘ โˆ’ ๐‘ > 1. We
have:
๐‘ โˆ’ ๐‘ > 1 โŸน ๐‘‘๐›ผ = ๐œ‹๐‘š
,๐‘‘๐‘
> 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž๐‘  2.5, 2.6]
โŸน ๐‘‘๐›ผ = ๐œ‹๐‘š
,๐‘‘ > 1
โŸน ๐‘‘๐›ผ = ๐œ‹๐‘š
, ๐‘‘ > 1, ๐›ผ > ๐‘‘ > 1.
โŸนโ—ป because gcd(๐‘‘, ๐›ผ) = 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.6].
Hence ๐‘ โˆ’ ๐‘ = 1.
Lemme 3.7. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive solution.
Then
๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘Ž โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2).
Proof.
๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘ = ๐‘ + 1
โŸน ๐‘ or ๐‘ is even
โŸน ๐‘Ž is odd.
Lemme 3.8. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution.
Then
๐‘ โˆ’ ๐‘ = 1 โŸน {
๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ ๐‘Ž = 3 otherwise
Proof. Under the assumptions of the previous lemma, we have:
๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘ = ๐‘ โˆ’ 1
โŸน {
๐‘ โˆ’ ๐‘Ž = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ ๐‘Ž = 2 otherwise
[๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.3. ]
โŸน {
๐‘ โˆ’ 1 โˆ’ ๐‘Ž = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ 1 โˆ’ ๐‘Ž = 2 otherwise
โŸน {
๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ ๐‘Ž = 3 otherwise
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
11
Lemma 3.9. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers
relativity primesuch that ๐‘ โˆ’ ๐‘ = 1. Then
๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘
+ ๐‘๐‘
โ‰  ๐‘๐‘
Proof. Under the assumptions of the previous lemma, we have if ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). Consider ๐‘ฃ1
and ๐‘ฃ2 respectively the 2-adic and 3-adic valuations of ๐‘’. Then
๐‘ โˆ’ ๐‘ = 1 โŸน {๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ ๐‘Ž = 3 otherwise
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.8]
โŸน {
๐‘’๐‘
= 2 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘’๐‘
= 3 otherwise
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5, ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2]
โŸน {
๐‘˜1
๐‘
2๐‘ฃ1๐‘โˆ’1
= 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘˜2
๐‘
3๐‘ฃ2๐‘โˆ’1
= 1 otherwise
with ๐‘’ = ๐‘˜12๐‘ฃ1 = ๐‘˜23๐‘ฃ2
โŸน {
2๐‘ฃ1๐‘โˆ’1
= 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
3๐‘ฃ2๐‘โˆ’1
= 1 otherwise
โŸน
{
๐‘ =
1
๐‘ฃ1
if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ =
1
๐‘ฃ2
otherwise
โŸน {
๐‘ = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ = 1 otherwise
โŸน ๐‘ = 1 โŸนโ—ป because ๐‘ > 2.
Hence ๐‘ โˆ’ ๐‘ > 1.
Remark 3.2. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers
relativity prime such that ๐‘ โˆ’ ๐‘ = 1. When ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘), we have ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘) and
consequently, according to the preceding Lemma, ๐‘Ž๐‘
+ ๐‘๐‘
โ‰  ๐‘๐‘
.
Lemma 3.10. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers
relativity prime such that ๐‘ โˆ’ ๐‘ = 1. Then
๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘
+ ๐‘๐‘
โ‰  ๐‘๐‘
Proof. Under the assumptions of the previous lemma, we haveโ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). Consider ๐‘ฃ1, ๐‘ฃ2and
๐‘ฃ3 respectively the 2-adic, 3-adic and ๐‘-adic valuations of ๐‘’. Then
๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน {
๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ ๐‘Ž = 3 otherwise
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.8]
โŸน
{
๐‘’๐‘
๐‘
= 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘’๐‘
๐‘
= 3 otherwise
[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5, ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2]
โŸน {
๐‘˜1
๐‘
2๐‘ฃ1๐‘โˆ’1
= ๐‘ if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘˜2
๐‘
3๐‘ฃ2๐‘โˆ’1
= ๐‘ otherwise
โŸน {
๐‘˜1
๐‘
2๐‘ฃ1๐‘โˆ’1
๐‘๐‘ฃ3๐‘โˆ’1
= 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘˜2
๐‘
3๐‘ฃ2๐‘โˆ’1
๐‘๐‘ฃ3๐‘โˆ’1
= 1 otherwise
โŸน {
๐‘˜1 = ๐‘˜2 = 1
2๐‘ฃ1๐‘โˆ’1
๐‘๐‘ฃ3๐‘โˆ’1
= 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
3๐‘ฃ2๐‘โˆ’1
๐‘๐‘ฃ3๐‘โˆ’1
= 1 otherwise
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
12
โŸน {
๐‘ฃ1๐‘ โˆ’ 1 = 0, ๐‘ฃ3๐‘ โˆ’ 1 = 0 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ฃ2๐‘ โˆ’ 1 = 0, ๐‘ฃ3๐‘ โˆ’ 1 = 0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
โŸน
{
๐‘ =
1
๐‘ฃ1
, ๐‘ =
1
๐‘ฃ3
if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ =
1
๐‘ฃ2
, ๐‘ =
1
๐‘ฃ3
, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
โŸน {
๐‘ฃ1 = ๐‘ฃ2 = ๐‘ฃ3 = 1
๐‘ = 1
โŸน ๐‘ = 1 โŸนโ—ป.
Hence ๐‘ โˆ’ ๐‘ > 1.
Remark 3.3. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers
relativity prime such that ๐‘ โˆ’ ๐‘ = 1. When ๐‘ โ‰ข 0(๐‘š๐‘œ๐‘‘๐‘), we have ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘)or
๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘) . In both cases, lemmas 3.9 and 3.10 confirm that ๐‘Ž๐‘
+ ๐‘๐‘
โ‰  ๐‘๐‘
.
Proof of Theorem 1.1. Immediate consequences of Lemmas 3.9 and 3.10, and Remark 3.2 and
3.3.
3.2. Proof of Theorem 1.2
Proof. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) be a triple of relativity prime integers. Then
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น2๐‘ โŸน (๐‘Ž2
, ๐‘2
, ๐‘2) โˆˆ ๐น๐‘, ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
โŸน ๐‘2
โˆ’ ๐‘Ž2
= 1 [Theorem 2.3.]
โŸน (๐‘ โˆ’ ๐‘Ž)(๐‘Ž + ๐‘) = 1
โŸน ๐‘Ž + ๐‘ = 1 ๐‘’๐‘ก ๐‘ โˆ’ ๐‘Ž = 1
โŸน ๐‘ = 1 โŸนโ—ป because ๐‘ > 1.
Hence the result.
Remark 3.4. Because ofTheorem1.2 and [1] p.13 (2C), Fermat's theorem is true for all even
exponents.
3.3. Proof of Theorem 1.3
3.3.1. Proof of FLT for Odd No-Prime Exponent
Theorem 3.3. Let ๐‘š > 2be a positive integer. Then.
๐‘š ๐‘–๐‘  ๐‘Ž๐‘› odd nonprime integer โŸน ๐น๐‘š = โˆ….
Proof. Let ๐‘š > 2be an odd no-prime number. (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘š. Then:
๐‘š is odd nonprime integer โŸน โˆƒ(๐‘ , ๐‘˜), ๐‘  > 2, ๐‘˜ > 2 are odd prime, ๐‘Ž๐‘˜๐‘ 
+ ๐‘๐‘˜๐‘ 
= ๐‘๐‘˜๐‘ 
โŸน (๐‘Ž๐‘˜)
๐‘ 
+ (๐‘๐‘˜)
๐‘ 
= (๐‘๐‘˜)
๐‘ 
โŸน ๐‘๐‘˜
โˆ’ ๐‘Ž๐‘˜
= 1 or๐‘๐‘˜
โˆ’ ๐‘Ž๐‘˜
= 2 [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.3]
โŸน (๐‘ โˆ’ ๐‘Ž)๐‘‡๐‘˜(๐‘Ž, ๐‘) = 1 or ๐‘ โˆ’ ๐‘Ž = 2 because ๐‘˜ is odd
โŸน 1 > ๐‘˜(๐‘ โˆ’ ๐‘Ž)๐‘Ž๐‘˜โˆ’1
or 2 > ๐‘˜(๐‘ โˆ’ ๐‘Ž)๐‘Ž๐‘˜โˆ’1
โŸน ๐‘ = ๐‘Ž โŸนโ—ป;
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
13
Hence ๐‘š cannot be an odd nonprime integer and consequently ๐น๐‘š = โˆ….
Remark 3.5. FLT is true for odd nonprime exponent.
3.3.2. Proof FLT for Nonprime Exponent
Under the assumptions of Theorem 1.3. let consider(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘› be a triple of primitive integers
with ๐‘›a nonprime positive integer. We proceed by the absurd:
๐‘› โ‰ก 0 (๐‘š๐‘œ๐‘‘2) โŸน โˆƒ(๐‘™, ๐‘ž) โˆˆ โ„•2
, ๐‘™ > 1, ๐‘ž > 3 ๐‘Ž๐‘›๐‘œ๐‘‘๐‘‘๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ, ๐‘› = 2๐‘ž๐‘œ๐‘Ÿ2๐‘™
๐‘ž
โŸน ๐‘Ž2๐‘ž
+ ๐‘2๐‘
= ๐‘2๐‘ž
๐‘œ๐‘Ÿ ๐‘Ž2๐‘™๐‘ž
+ ๐‘2๐‘™๐‘
= ๐‘2๐‘™๐‘ž
โŸน โˆƒ ๐‘ > 3 ๐‘Ž ๐‘๐‘Ÿ๐‘–๐‘š๐‘’, ๐‘™1 โ‰ฅ 1, ๐‘Ž2๐‘๐‘ž1 + ๐‘2๐‘๐‘ž1 = ๐‘2๐‘๐‘ž1 ๐‘œ๐‘Ÿ ๐‘Ž4๐‘™1๐‘ž
+ ๐‘4๐‘™1 = ๐‘4๐‘™1๐‘ž
โŸน (๐‘Ž๐‘ž1)2๐‘
+ (๐‘Ž๐‘ž1)2๐‘
= (๐‘Ž๐‘ž1)2๐‘
๐‘œ๐‘Ÿ (๐‘Ž๐‘™1๐‘ž)
4
+ (๐‘Ž๐‘™1๐‘ž)
4
= (๐‘๐‘™1๐‘ž)
4
โŸนโ—ป. [Theorem 1.2] [2] p.13 (2C).
Hence ๐‘› โ‰ข 0 (๐‘š๐‘œ๐‘‘2). Par suite ๐‘› โ‰ก 1 (๐‘š๐‘œ๐‘‘2). Traitons ce cas :
๐‘› โ‰ก 1 (๐‘š๐‘œ๐‘‘2) โŸน ๐‘› ๐‘–๐‘  ๐‘Ž๐‘› ๐‘œ๐‘‘๐‘‘ ๐‘›๐‘œ๐‘›๐‘๐‘Ÿ๐‘–๐‘š๐‘’ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ
โŸน ๐น๐‘› = โˆ….
Hence if n is nonprime integer FLT is true. This proves Theorem 1.3.
3.4. Proof of Theorem 1.4
In this section we prove the first case of FLT and the second case ๐‘ง โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). We distinguish
two new cases: The case ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) or ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ 2)
Lemma 3.8. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) be a triple of relativity prime
integers. Then
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน
{
๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘
โˆ’ ๐‘‘๐‘
๐‘–๐‘“ ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)
๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘
โˆ’
๐‘‘๐‘
๐‘
๐‘–๐‘“ ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
๐‘ โˆ’ ๐‘Ž =
๐‘’๐‘
๐‘
โˆ’ ๐‘‘๐‘
๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
where (๐‘‘, ๐‘’) is the couple of Kimouโ€™s primaries divisors of (๐‘Ž, ๐‘).
Proof. According to [7], [9], we have
If(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ then
๐‘ โˆ’ ๐‘Ž = (โˆ’
๐‘‘๐‘
gcd(๐‘‘, ๐‘)
+
๐‘’๐‘
gcd(๐‘’, ๐‘)
+
๐‘“๐‘
gcd(๐‘“, ๐‘)
) โˆ’ (
๐‘‘๐‘
gcd(๐‘‘, ๐‘)
โˆ’
๐‘’๐‘
gcd(๐‘’, ๐‘)
+
๐‘“๐‘
gcd(๐‘“, ๐‘)
)
=
๐‘’๐‘
gcd(๐‘’, ๐‘)
โˆ’
๐‘‘๐‘
gcd(๐‘‘, ๐‘)
.
Hence,
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
14
(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน
{
๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘
โˆ’ ๐‘‘๐‘
๐‘–๐‘“ ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)
๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘
โˆ’
๐‘‘๐‘
๐‘
๐‘–๐‘“ ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
๐‘ โˆ’ ๐‘Ž =
๐‘’๐‘
๐‘
โˆ’ ๐‘‘๐‘
๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
[๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2. ]
Proof of Theorem 1.4. Under the assumptions of the Theorem 1.4. we proceed to a proof by the
absurd by assuming that (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘.
We have:
๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน {
๐‘ โˆ’ ๐‘Ž = 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘ โˆ’ ๐‘Ž = 2 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
[๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.2. ]
โŸน {
๐‘’๐‘
โˆ’ ๐‘‘๐‘
= 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘’๐‘
โˆ’ ๐‘‘๐‘
= 2 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
= 1 [๐ฟ๐‘’๐‘š๐‘š๐‘’ 3.8]
โŸน {
1 > ๐‘(๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1
๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
2 > ๐‘(๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
โŸน 2 > ๐‘(๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1
โŸน (๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1
<
2
๐‘
< 1
โŸน ๐‘’ = ๐‘‘ โŸนโ—ป.
Hence the result.
Remark 3.6. We have just proved Fermat's last theorem with the even exponent, in its first case
and in the second case where ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) . However, when ๐‘Ž๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) we have:
๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน
{
๐‘’๐‘
โˆ’
๐‘‘๐‘
๐‘
= 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘’๐‘
โˆ’
๐‘‘๐‘
๐‘
= 2 otherwise
,
and
๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน
{
๐‘’๐‘
๐‘
โˆ’ ๐‘‘๐‘
= 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)
๐‘’๐‘
๐‘
โˆ’ ๐‘‘๐‘
= 2 otherwise.
These new Diophantine equations promise to be difficult despite their simple appearances.
4. ANALYSIS OF THE DIFFICULTY OF ESTABLISHING RESULTS
At this stage we propose a classification by increasing difficulty of solving the problems dealt
with in this paper. First place is occupied by the second FLT case with the odd exponent: it is
obvious that if(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น2๐‘, with ๐‘a prime number, then ๐‘2
โˆ’ ๐‘Ž2
= 1is impossible by simple
making factorisation. The second position is occupied simultaneously by the first and second
FLT cases ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘): if (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘Then ๐‘’๐‘
โˆ’ ๐‘‘๐‘
= 1. Then you'll have to factor and
major. You'll conclude that this relationship is impossible. This case is more difficult than the
previous one. The third place is occupied by FLT with nonprime exponent. To prove this, we had
to distinguish two sub-problems: Prove that FLT is true for the odd non-prime exponent and then
for the even exponent.In the last position is the second case of Abel's conjecture. Indeed, it turned
out to be a little more difficult than previous problem because it was necessary to use the
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
15
relations ๐‘ โˆ’ ๐‘Ž = 1, ๐‘ โˆ’ ๐‘ = 1, the Kimou's principal divisors and ๐‘ adic valuations to establish
a contradiction. As surprising as it may seem, it explains the difficulty of prove this problem.
5. CONCLUSION
In this paper we establish Diophantine proofs of Abel's conjecture, Fermat Last Theorem for the
exponents even, non-prime exponent, the first case and the second case ๐‘ง โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). We
analyse these proofs and establish a ranking in order of increasing difficulty in solving the Fermat
problems treated.In perspective, we intend to:
- establish a Diophantine proof of the second remaining cases, i.e. to prove that if
๐‘ฅ๐‘ฆ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) then ๐‘ฅ๐‘
+ ๐‘ฆ๐‘
โ‰  ๐‘ง๐‘
.
- extend methods to broader classes of equations: Catalanโ€™s equation, Beal problem and
others General Fermat problem.
- introduce new concepts such as the universe and Diophantine galaxies, as well as the
similarity principle, and then find applications for them in astronomy, astrophysics,
cosmology and artificial intelligence.
REFERENCES
[1] P. Rimbenboim (1979), 13 Lectures on Fermat Last Theorem, ISBN-0-387-90432-8, Springer-
Verlag New York Inc, 1999.
http://www.numdam.org/item?id=SB_1984-1985__27__309_0
[2] P. Rimbenboim (1999), Fermatโ€™s last Theorem for amateurs, ISBN-0-387-98508-7, Springer-
Verlag New York Inc, 1999.
http://www.numdam.org/item?id=SB_1984-1985__27__309_0
[3] A. J. Wiles*, Modular elliptic curves and Fermatโ€™s Last Theorem, 1995, Annals of Mathematics,
141, pp. 443-551.
[4] Kimou, P. K.,Tanoรฉ, F.E. and Kouakou, K. V. (2023). Fermat and Pythagoras Divisors for a New
Explicit Proof of Fermat's Theorem: a ^4 + b^ 4 = c ^4 . Part I, Advances in Pure Mathematics,
14,303-319. https://doi.org/10.4236/apm.2024.144017.
[5] Kimou, P. K.,Tanoรฉ, F.E. and Kouakou, K. V. (2023). A new proof of Fermat Last Theorem for
exponent 4
using Fermat Divisors (2023)
https://www.researchgate.net/publication/371159864
[6] Kimou, P. K. (2023) A efficient proof of the first case of Abelโ€™s Conjecture using new tools (2023)
https://www.researchgate.net/publication/37262223
[7] Kimou, P. K. (2023). On Fermat Last Theorem: The new Efficient Expression of a Hypothetical
Solution as a function of its Fermat Divisors. American Journal of Computational Mathematics, 13,
82-90. https://doi.org/10.4236/ajcm.2023.131002
[8] Kimou, P.K. and Tanoรฉ, F.E. (2023). Diophantine Quotients and Remainders with Applications to
Fermat and Pythagorean Equations. American Journal of Computational Mathematics, 13, 199-210.
https://doi.org/10.4236/ajcm.2023.131010.
[9] Kimou, P. K. (2024) New Kimou Unified theorem for principal divisors of x^p+y^p =z^p, p a prime
Research Gate
[10] Kimou P. K. (2024), On Direct Proof of FLT: A fundamental Surprising Theorem
Research Gate.
[11] Kimou P., K. (2024), On Direct Proof of FLT: A crucial Relation,
Recherche Gate.
[12] Nicolas B. (2018) Thรฉorie des nombres, Universitรฉ de Saint Boniface.
[13] Zhong Chuixiang (1989), Fermat's Last Theorem: A Note about Abel's Conjecture, C.R. Hath. Rep.
Acad. Sci. Canada - Vol. XI, No. 1, February 1989 fรฉvrier
[14] Moller, K., (1955) UntereSchianke fur die Anzahl der Piimazahlen, ausdenenx,y,z der Fer
matshenOdchung๐‘ฅ๐‘›
+ ๐‘ฆ๐‘›
= ๐‘ง๐‘›
ยฐ besteden muss. Math. Nachr., 14, 1955,25-28.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025
16
[15] Kimou Kouadio Prosper, Kouakou Kouassi Vincent (2024), On Direct Proof of Fermat Last
Theorem: The Abel conjecture, the even and nonprime exponent, and the first case, 2nd
International
Conference on Mathematics, Computer Sciences & Engineering (MATHCS2024), 28-29/12/2024,
DUBAI, ERU.
AUTHORS
Kimou Kouadio Prosper,,
I am an Ivorian. I am a teacherresearcher at the Institute
Polytechnique Felix Houphouet-Boigny of Yamoussoukro, RCI (INPHB) . Since
May 2011. I carry out my teaching and research activities there. My research
work is mainly focused on artificial intelligence, number theory and computer
security, especially cryptography.

More Related Content

PDF
project
Amit Kumar Singh
ย 
PDF
Proof of Fermat's Last Theorem (Using 6 Methods)
nikos mantzakouras
ย 
PDF
Fermat's Last Theorem (Final Copy)
Yogesh Karunavannan
ย 
PDF
Number theory
MenglinLiu1
ย 
PDF
Chapter 6
Kuan-Lun Wang
ย 
PPT
wilson's and fermat little theorem .ppt
JayLagman3
ย 
PDF
Research Project Primus
Predrag Terzic
ย 
PDF
Proof of Beal's conjecture
nikos mantzakouras
ย 
project
Amit Kumar Singh
ย 
Proof of Fermat's Last Theorem (Using 6 Methods)
nikos mantzakouras
ย 
Fermat's Last Theorem (Final Copy)
Yogesh Karunavannan
ย 
Number theory
MenglinLiu1
ย 
Chapter 6
Kuan-Lun Wang
ย 
wilson's and fermat little theorem .ppt
JayLagman3
ย 
Research Project Primus
Predrag Terzic
ย 
Proof of Beal's conjecture
nikos mantzakouras
ย 

Similar to On a Diophantine Proofs of FLT: The First Case and the Secund Case zโ‰ก0 (mod p) and Significant Related Problems (20)

PPTX
ppt-number-theory-fermats-theorem_(2).pptx
MarjorieEstuita1
ย 
PDF
CHAPTER final.pdf
vivek827170
ย 
PDF
A0740103
IOSR Journals
ย 
PDF
ALGEBRAIC SOLUTION OF FERMAT'S THEOREM (MATHEMATICS, NUMBER THEORY)
BRNSS Publication Hub
ย 
PDF
03. AJMS_02_18[Research].pdf
BRNSS Publication Hub
ย 
PDF
03. AJMS_02_18[Research].pdf
BRNSS Publication Hub
ย 
PDF
Euler's work on Fermat's Last Theorem
Lee Stemkoski
ย 
PDF
fermat_last_theorem.pdf
nikos mantzakouras
ย 
PDF
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ต
mathsjournal
ย 
PDF
Research Inventy : International Journal of Engineering and Science
inventy
ย 
PDF
preprints202รกs informaciรณn para sus 6 407.0759.v1.pdf
ReyDuke1
ย 
PDF
A disproof of the Riemann hypothesis
iosrjce
ย 
PDF
Famous problem IMO 1988 Q6.pdf
AbdulHannif2
ย 
PPT
09-FermatEuler.ppt
mnadil1
ย 
PDF
4-Corner Rational Distance Problems
Sara Alvarez
ย 
PDF
D0741420
IOSR Journals
ย 
PPT
Ch08
nathanurag
ย 
PDF
Imc2017 day1-solutions
Christos Loizos
ย 
PDF
Teorema de Green-Tao
XequeMateShannon
ย 
PDF
QFP k=2 paper write-up
Brice Merwine
ย 
ppt-number-theory-fermats-theorem_(2).pptx
MarjorieEstuita1
ย 
CHAPTER final.pdf
vivek827170
ย 
A0740103
IOSR Journals
ย 
ALGEBRAIC SOLUTION OF FERMAT'S THEOREM (MATHEMATICS, NUMBER THEORY)
BRNSS Publication Hub
ย 
03. AJMS_02_18[Research].pdf
BRNSS Publication Hub
ย 
03. AJMS_02_18[Research].pdf
BRNSS Publication Hub
ย 
Euler's work on Fermat's Last Theorem
Lee Stemkoski
ย 
fermat_last_theorem.pdf
nikos mantzakouras
ย 
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ต
mathsjournal
ย 
Research Inventy : International Journal of Engineering and Science
inventy
ย 
preprints202รกs informaciรณn para sus 6 407.0759.v1.pdf
ReyDuke1
ย 
A disproof of the Riemann hypothesis
iosrjce
ย 
Famous problem IMO 1988 Q6.pdf
AbdulHannif2
ย 
09-FermatEuler.ppt
mnadil1
ย 
4-Corner Rational Distance Problems
Sara Alvarez
ย 
D0741420
IOSR Journals
ย 
Ch08
nathanurag
ย 
Imc2017 day1-solutions
Christos Loizos
ย 
Teorema de Green-Tao
XequeMateShannon
ย 
QFP k=2 paper write-up
Brice Merwine
ย 
Ad

More from mathsjournal (20)

PDF
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
mathsjournal
ย 
PDF
MULTIPOINT MOVING NODES FOR P ARABOLIC EQUATIONS
mathsjournal
ย 
PDF
THE VORTEX IMPULSE THEORY FOR FINITE WINGS
mathsjournal
ย 
PDF
On Ideals via Generalized Reverse Derivation On Factor Rings
mathsjournal
ย 
PDF
A PROBABILISTIC ALGORITHM FOR COMPUTATION OF POLYNOMIAL GREATEST COMMON WITH ...
mathsjournal
ย 
PDF
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
mathsjournal
ย 
PDF
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
mathsjournal
ย 
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
mathsjournal
ย 
PDF
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
mathsjournal
ย 
PDF
On Nano Semi Generalized B - Neighbourhood in Nano Topological Spaces
mathsjournal
ย 
PDF
A Mathematical Model in Public Health Epidemiology: Covid-19 Case Resolution ...
mathsjournal
ย 
PDF
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
mathsjournal
ย 
PDF
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal
ย 
PDF
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
mathsjournal
ย 
PDF
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
mathsjournal
ย 
PDF
A NEW STUDY OF TRAPEZOIDAL, SIMPSONโ€™S1/3 AND SIMPSONโ€™S 3/8 RULES OF NUMERICAL...
mathsjournal
ย 
PDF
Fractional pseudo-Newton method and its use in the solution of a nonlinear sy...
mathsjournal
ย 
PDF
LASSO MODELING AS AN ALTERNATIVE TO PCA BASED MULTIVARIATE MODELS TO SYSTEM W...
mathsjournal
ย 
PDF
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...
mathsjournal
ย 
PDF
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...
mathsjournal
ย 
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
mathsjournal
ย 
MULTIPOINT MOVING NODES FOR P ARABOLIC EQUATIONS
mathsjournal
ย 
THE VORTEX IMPULSE THEORY FOR FINITE WINGS
mathsjournal
ย 
On Ideals via Generalized Reverse Derivation On Factor Rings
mathsjournal
ย 
A PROBABILISTIC ALGORITHM FOR COMPUTATION OF POLYNOMIAL GREATEST COMMON WITH ...
mathsjournal
ย 
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
mathsjournal
ย 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
mathsjournal
ย 
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
mathsjournal
ย 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
mathsjournal
ย 
On Nano Semi Generalized B - Neighbourhood in Nano Topological Spaces
mathsjournal
ย 
A Mathematical Model in Public Health Epidemiology: Covid-19 Case Resolution ...
mathsjournal
ย 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
mathsjournal
ย 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal
ย 
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
mathsjournal
ย 
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
mathsjournal
ย 
A NEW STUDY OF TRAPEZOIDAL, SIMPSONโ€™S1/3 AND SIMPSONโ€™S 3/8 RULES OF NUMERICAL...
mathsjournal
ย 
Fractional pseudo-Newton method and its use in the solution of a nonlinear sy...
mathsjournal
ย 
LASSO MODELING AS AN ALTERNATIVE TO PCA BASED MULTIVARIATE MODELS TO SYSTEM W...
mathsjournal
ย 
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...
mathsjournal
ย 
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...
mathsjournal
ย 
Ad

Recently uploaded (20)

PPTX
database slide on modern techniques for optimizing database queries.pptx
aky52024
ย 
PDF
dse_final_merit_2025_26 gtgfffffcjjjuuyy
rushabhjain127
ย 
PPTX
Chapter_Seven_Construction_Reliability_Elective_III_Msc CM
SubashKumarBhattarai
ย 
PDF
Zero carbon Building Design Guidelines V4
BassemOsman1
ย 
PDF
The Effect of Artifact Removal from EEG Signals on the Detection of Epileptic...
Partho Prosad
ย 
PPTX
22PCOAM21 Data Quality Session 3 Data Quality.pptx
Guru Nanak Technical Institutions
ย 
PPTX
Information Retrieval and Extraction - Module 7
premSankar19
ย 
PPTX
Color Model in Textile ( RGB, CMYK).pptx
auladhossain191
ย 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
ย 
PPTX
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
ย 
PDF
Zero Carbon Building Performance standard
BassemOsman1
ย 
PDF
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
ย 
PPTX
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
ย 
PPT
SCOPE_~1- technology of green house and poyhouse
bala464780
ย 
PPTX
Victory Precisions_Supplier Profile.pptx
victoryprecisions199
ย 
PDF
Software Testing Tools - names and explanation
shruti533256
ย 
PDF
July 2025: Top 10 Read Articles Advanced Information Technology
ijait
ย 
PPTX
AgentX UiPath Community Webinar series - Delhi
RohitRadhakrishnan8
ย 
PPT
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
ย 
PPT
Ppt for engineering students application on field effect
lakshmi.ec
ย 
database slide on modern techniques for optimizing database queries.pptx
aky52024
ย 
dse_final_merit_2025_26 gtgfffffcjjjuuyy
rushabhjain127
ย 
Chapter_Seven_Construction_Reliability_Elective_III_Msc CM
SubashKumarBhattarai
ย 
Zero carbon Building Design Guidelines V4
BassemOsman1
ย 
The Effect of Artifact Removal from EEG Signals on the Detection of Epileptic...
Partho Prosad
ย 
22PCOAM21 Data Quality Session 3 Data Quality.pptx
Guru Nanak Technical Institutions
ย 
Information Retrieval and Extraction - Module 7
premSankar19
ย 
Color Model in Textile ( RGB, CMYK).pptx
auladhossain191
ย 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
ย 
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
ย 
Zero Carbon Building Performance standard
BassemOsman1
ย 
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
ย 
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
ย 
SCOPE_~1- technology of green house and poyhouse
bala464780
ย 
Victory Precisions_Supplier Profile.pptx
victoryprecisions199
ย 
Software Testing Tools - names and explanation
shruti533256
ย 
July 2025: Top 10 Read Articles Advanced Information Technology
ijait
ย 
AgentX UiPath Community Webinar series - Delhi
RohitRadhakrishnan8
ย 
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
ย 
Ppt for engineering students application on field effect
lakshmi.ec
ย 

On a Diophantine Proofs of FLT: The First Case and the Secund Case zโ‰ก0 (mod p) and Significant Related Problems

  • 1. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 DOI : 10.5121/mathsj.2025.12101 1 ON A DIOPHANTINE PROOFS OF FLT: THE FIRST CASE AND THE SECOND CASE ๐’› โ‰ก ๐ŸŽ (๐’Ž๐’๐’…๐’‘) AND SIGNIFICANT RELATED PROBLEMS Kimou Kouadio Prosper 1 , Kouakou Kouassi Vincent 2 1 UMRI MSN, Felix Houphouet-Boigny National Polytechnic Institute, Yamoussoukro, Ivory Coast 2 Nangui Abrogoua University, Applied Fundamental Sciences Department, Abidjan, Ivory Coast ABSTRACT In this paper, we study Fermat's equation, ๐‘ฅ๐‘› + ๐‘ฆ๐‘› = ๐‘ง๐‘› (1) with ๐‘› > 2, ๐‘ฅ, ๐‘ฆ, ๐‘ง non-zero positive integers. Let (๐‘Ž, ๐‘, ๐‘) be a triple of non-zero positive integers relativity prime. Consider the equation (1) with prime exponent ๐‘ > 2. We establish the following results: - ๐‘Ž๐‘ + ๐‘๐‘ โ‰  (๐‘ + 1)๐‘ . This completes the general direct proof of Abel's conjecture only prove in the first case ๐‘Ž๐‘(๐‘ + 1) โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). - ๐‘Ž2๐‘ + ๐‘2๐‘ โ‰  ๐‘2๐‘ . This completes the direct proof of Terjanian Theorem only prove in the first case ๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)). - ๐‘Ž๐‘› + ๐‘๐‘› โ‰  ๐‘๐‘› with๐‘› is a non-prime integer.A new result almost absent in the literature of this problem. - If ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) then๐‘Ž๐‘ + ๐‘๐‘ โ‰  ๐‘๐‘ . This provides simultaneous Diophantine evidence for the first case oand the second case๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) of FLT. We analyse each of the evidence from the previous results and propose a ranking in order of increasing difficulty to establish them. KEYWORDS Fermat Last Theorem (FLT), Fermat equation, Abel conjecture, the first case, the secund case, prime exponent, non-prime exponent, even exponent, the principal Kimou divisors. 1. INTRODUCTION. In 1670 Fermat wrote that "It is impossible for a cube to be written as the sum of two cubes or for a fourth power to be written as the sum of two fourth powers or, in general, for any number equal to a power greater than two to be written as the sum of two powers" [1] p.1-2.Fermat claimed to have "woven" a wonderful proof of his problem. He gave the principle of is proof, the infinite descent, and illustrated it by proving the exponent 4 of his problem. For a little more than three centuries, Fermat's proposition, hitherto called Fermat's conjecture, had not yet been demonstrated in generality, even for the first case. However, non-obvious elementary proofs based on the principle of Fermat's infinite descent or not have been obtained for the small exponents of 3, 5, โ€ฆ ,100 (first case) and 3, โ€ฆ,14 (general case) [1] p. 64. Using computer tools,
  • 2. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 2 these limits had been pushed to 57*109 (Morishima and Gunderson, 1948) for the first case and to 125 000 (Wagstaff,1976) for the general case [1] p.19. Apart from these results concerning precise values of the exponents or its programming, there are other partial results involving families of prime exponents and based on relatively elementary theories [2] p. 109-122,203- 211,360-361: - In 1823, Sophie Germain and Legendre established the first case of FLT for exponents n less than 100. It also states that if n = p is prime number such that 2p + 1 is still prime, then the first case of FLT for exponent p is true. - In 1846, Kummer used the theory of cyclotomic fields to obtain some very remarkable results: The impossibility of Fermat's equation for regular prime number n and deduce that the first case of FLT failsfor all prime exponents less than 100 except 37, 59 and 67. - In 1977, Terjanian proved the first case of even exponent of FLT. He considered๐‘ฅ2๐‘ + ๐‘ฆ2๐‘ = ๐‘ง2๐‘ with pa prime and he used the law of reciprocity to prove an important lemma involving quotients ๐‘ง๐‘โˆ’๐‘ฆ๐‘ ๐‘งโˆ’๐‘ฆ , ๐‘ง๐‘žโˆ’๐‘ฆ๐‘ž ๐‘งโˆ’๐‘ฆ and Jacobi's symbols. Despite these results, general proof was still slow to be found.It was in 1985 that Andrews Wiles provided the first recognized proof by the scientific community of Fermat's conjecture, which would become the Fermat-Wiles theorem [2] [3]. In 2023, Kimou K. P. took the decisive step by introducing Kimou 's divisors for a hypothetical solution of xn + yn = zn with n = 4, p, 2pand proposing new proofs of FLT for exponent 4, the first case of the Abel conjecture, and proved some properties related to Fermat problem [4]-[15]. Then, he proved new fundamental and decisive results for this problem: A crucial relationship and a fundamental theorem that will allow him to reach the "Heart" of the problem [10]-[11]. Then, in oral communication, he used them to prove the first and second cases ๐‘ง โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘) of FLT [15].A solution (x, y, z) to the equation (1) will be called primitive if gcd(x, y, z) = 1. This solution will be called trivial if xyz = 0. Let n > 2 a natural number. Consider the set Fnof triples of non-trivial positive integers solution to equation (1) define as follow: ๐น๐‘› = {(๐‘ฅ, ๐‘ฆ, ๐‘ง) โˆˆ โ„•โˆ—3 , ๐‘ฅ๐‘› + ๐‘ฆ๐‘› = ๐‘ง๐‘›}. The objective of this paper is to give a Diophantine proof for following main results. Theorem 1.1. Let p > 2 be a primenumber and (a, b, c) be a triple of non-zero positive integers relatively prime. Then. ๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘Ž๐‘ + ๐‘๐‘ โ‰  ๐‘๐‘ . Theorem 1.2. Let pbe a prime number. Then, ๐‘ > 2 โŸน ๐น2๐‘ = โˆ…. Theorem 1.3. Let nbe a nonprimepositive integer. Then, ๐‘› > 2 โŸน ๐น๐‘› = โˆ…. Theorem 1.4. Let p > 2be a primenumber and let (a, b, c) be a triple of non-null positive integers relatively prime. Then ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘ + ๐‘๐‘ โ‰  ๐‘๐‘ .
  • 3. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 3 We present our work by organizing it as follows. Section 2 preliminaries, we recall the theorems of principal Kimouโ€™s divisors and Diophantine quotients and remainders, the Fundamental Relation of the Fermat equation and its corollary. In Section 3, we prove our main results. In section 4, we give a classification in increasing order of the difficulty of the Fermat problems studied here. In section 5, we conclude this work with a conclusion with perspectives. 2. PRELIMINARIES In this section we define commonly used terms, state and prove theorems and lemmas necessary for the proofs of our main results. Definitions 2.1. 1. Diophantine proof is direct proof based on the natural integers, using only the properties of addition, multiplication, Euclidean division, the order relation in โ„• and the fundamental theorem of arithmetic to analyze a Diophantine equation. 2. A hypothetical solution (๐‘Ž, ๐‘, ๐‘)of Fermat's equation is primitive if gcd(๐‘Ž, ๐‘, ๐‘) = 1. Remark 2.1. 1. In our research on FLT, we use classical tools such as Newton's binomial formula, factorization, the fundamental theorem of arithmetic (implicitly), Fermatโ€™s little theorem and intensively modular arithmetic. We have developed some very effective new tools for analyzing the Fermat equation. These tools are all Diophantine [Definition 2.1]. 2. If (๐‘Ž, ๐‘, ๐‘) is a non-trivial primitive solution of Fermat equation, then: gcd(๐‘Ž, ๐‘) = gcd(๐‘Ž, ๐‘) = gcd(๐‘, ๐‘) = 1. Notation 2.1. 1. We use the symbol โ—ปto represent the empty clause. It is the proposition that is always false or absurd. 2. Let ๐‘ > 2 a prime number, (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ such that ๐‘Ž < ๐‘ < ๐‘. Let ๐‘‡๐‘(๐‘ฅ, ๐‘ฆ) be the quantity defined by ๐‘‡๐‘(๐‘ฅ, ๐‘ฆ) = ๐‘ฆ๐‘ โˆ’ ๐‘ฅ๐‘ ๐‘ฆ โˆ’ ๐‘ฅ with ๐‘ฅ, ๐‘ฆ โˆˆ {๐‘, ยฑ๐‘Ž, ๐‘}, ๐‘ฆ > ๐‘ฅ. ๐‘‡๐‘(๐‘ฅ, ๐‘ฆ)is a positive integer. Theorem 2.1. (Fermatโ€™s little theorem). If ๐‘ is a prime number, then for any integer ๐‘Ž, where ๐‘ does not divide ๐‘Ž (๐‘Ž โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)) the following holds ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) Proof. See [12] p.33 Theorem2.2.Let ๐‘› > 2 be an odd integer and let ๐‘ > 2be a prime number. Then ๐น๐‘ = โˆ… โŸน ๐น๐‘› = โˆ…. Proof. Proving Theorem 2.2. is equivalent to proving that if ๐น๐‘› โ‰  โˆ… then ๐น๐‘ โ‰  โˆ…. We proceed by contraposed reasoning. Let us consider that ๐น๐‘› โ‰  โˆ…. We distinguish two cases.
  • 4. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 4 On the one hand, if ๐‘› = 2๐‘™ with๐‘™ โ‰ฅ 2. Consider the case ๐‘™ = 2. In that case ๐‘› = 4 and equation (1) becomes ๐‘ฅ4 + ๐‘ฆ4 = ๐‘ง4 . This is Fermat's biquadraticequation and we all know that it does not admit non-trivial solutions [2] p.13 (2C). Consider the case where ๐‘™ > 2 then ๐‘› = 2๐‘™ โ‰ก 0 (๐‘š๐‘œ๐‘‘ 4). Therefore, there exists a natural number k such that ๐‘› = 4๐‘˜. Equation (1) becomes ๐‘ฅ4๐‘˜ + ๐‘ฆ4๐‘˜ = ๐‘ง4๐‘˜ . As a result ๐‘ฅ4๐‘˜ + ๐‘ฆ4๐‘˜ = ๐‘ง4๐‘˜ โŸน (๐‘ฅ๐‘˜) 4 + (๐‘ฆ๐‘˜) 4 = (๐‘ง๐‘˜) 4 โŸนโ—ป. Hence ๐‘› โ‰  2๐‘™ , with ๐‘™ > 2. In short ๐‘› โ‰  2๐‘™ with ๐‘™ โ‰ฅ 2. On the other hand, if ๐‘› โ‰  2๐‘™ then ๐‘› admits a prime factor ๐‘ž > 2. There exist๐‘˜ โ‰ฅ 2such as ๐‘› = ๐‘˜๐‘ž. Then ๐น๐‘› โ‰  โˆ… โŸน โˆƒ(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘›, ๐‘Ž๐‘๐‘ โ‰  1 โŸน (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘˜๐‘ž โŸน ๐‘Ž๐‘˜๐‘ž + ๐‘๐‘˜๐‘ž = ๐‘๐‘˜๐‘ž โŸน (๐‘Ž๐‘˜) ๐‘ž + (๐‘๐‘˜) ๐‘ž = (๐‘๐‘˜) ๐‘ž ๐‘ค๐‘–๐‘กโ„Ž ๐‘ž > 2 ๐‘Ž ๐‘๐‘Ÿ๐‘–๐‘š๐‘’ โŸน (๐‘Ž๐‘˜ ,๐‘๐‘˜ , ๐‘๐‘˜) โˆˆ ๐น๐‘ž, ๐‘Ž๐‘˜ ๐‘๐‘˜ ๐‘๐‘˜ โ‰  0 โŸน ๐น๐‘ž โ‰  โˆ…. Hence if ๐น๐‘ = โˆ… then ๐น๐‘› = โˆ…. Lemma 2.1. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ such that ๐‘ > ๐‘Ž. Consider (๐‘ž1, ๐‘ž2) and (๐‘Ÿ1, ๐‘Ÿ2) the quotients and the remainders of the Euclidean division of ๐‘ and ๐‘ by ๐‘Ž: ๐‘ = ๐‘Ž๐‘ž1 + ๐‘Ÿ1 and ๐‘ = ๐‘Ž๐‘ž2 + ๐‘Ÿ2. Then, ๐‘ = ๐‘Ž + 1 โŸน ๐‘ž1 = ๐‘ž2 = 1. Proof. See [8]. Lemma 2.2. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution such that ๐‘ > ๐‘Ž. Consider ๐‘ = ๐‘Ž๐‘ž2+๐‘Ÿ2 ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ2 < ๐‘Žand ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž). Then, ๐‘ž2 = 1 โŸน { ๐‘Ÿ2 = ๐‘’๐‘ ๐‘ if ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) ๐‘Ÿ2 = ๐‘’๐‘ otherwise. . Proof.See [8]. Theorem 2.3. (Kimou-Fermat). Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) be a triple of positive integers relativity prime such that ๐‘ > ๐‘Ž. Then, (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน { ๐‘ โˆ’ ๐‘Ž = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ ๐‘Ž = 2 otherwise. . Proof. See [10]. Lemma 2.3. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution such that ๐‘ > ๐‘Ž. Then
  • 5. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 5 ๐‘ โˆ’ ๐‘Ž = 1 โŸบ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2). Proof. According to the assumptions of the previous lemma, we have: On the one hand, let us show that if๐‘ โˆ’ ๐‘Ž = 1 then๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2). We have: ๐‘ โˆ’ ๐‘Ž = 1 โŸน ๐‘ = ๐‘Ž + 1 โŸน ๐‘Ž, ๐‘ are opposite parity โŸน ๐‘ is odd because gcd(๐‘Ž, ๐‘, ๐‘) = 1. Reciprocally, let us show that if๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2)then ๐‘ โˆ’ ๐‘Ž = 1. We proceeded by reasoning by absurd: ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) , ๐‘ โˆ’ ๐‘Ž = 2 โŸน ๐‘, ๐‘Ž have the same parity โŸน ๐‘, ๐‘Ž are odd because gcd(๐‘Ž, ๐‘, ๐‘) = 1. โŸน ๐‘is even โŸนโ—ป. Hence ๐‘ โˆ’ ๐‘Ž = 1. Lemma 2.4. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive solution such that ๐‘ > ๐‘Ž. Then ๐‘ โˆ’ ๐‘Ž = 2 โŸบ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ 2). Proof.Can be deduced by contraposition of the previous lemma. Lemma 2.5. Let ๐‘ > 2be a prime number and let(๐‘Ž, ๐‘, ๐‘) be a triple of relativity primeintegers. Then (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน { ๐‘ โˆ’ ๐‘ = ๐‘‘๐‘ gcd(๐‘‘, ๐‘) , ๐‘‡๐‘(๐‘, ๐‘) = gcd(๐‘‘, ๐‘)๐›ผ๐‘ , ๐‘Ž = ๐‘‘๐›ผ ๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘ gcd(๐‘’, ๐‘) , ๐‘‡๐‘(๐‘Ž, ๐‘) = gcd(๐‘’, ๐‘)๐›ฝ๐‘ , ๐‘ = ๐‘’๐›ฝ ๐‘Ž + ๐‘ = ๐‘“๐‘ gcd(๐‘“, ๐‘) , ๐‘‡๐‘(โˆ’๐‘Ž, ๐‘) = gcd(๐‘“, ๐‘)๐›พ๐‘ , ๐‘ = ๐‘“๐›พ. where the sextuple (๐‘‘, ๐‘’, ๐‘“, ๐›ผ, ๐›ฝ, ๐›พ) of positive integers is the Kimou divisors of (๐‘Ž, ๐‘, ๐‘). Proof. See [7], [9]. Remark 2.2. 1. The triple (๐‘‘, ๐‘’, ๐‘“) of non-zero positive integers is called Kimou primaries divisors of (๐‘Ž, ๐‘, ๐‘) and defined by follow: ๐‘‘ = gcd(๐‘Ž, ๐‘ โˆ’ ๐‘) , ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž) ๐‘Ž๐‘›๐‘‘ ๐‘“ = gcd(๐‘, ๐‘Ž + ๐‘). 2. Lemma 2.5 is the concise and unified version of Lemmas 2.4, 2.5 and Remarks 2.3,2.4. in [8] pp. 87-89. 3. If (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ then
  • 6. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 6 { gcd(๐‘‘, ๐‘) = gcd(๐‘’, ๐‘) = gcd(๐‘“, ๐‘) = 1 ๐‘–๐‘“ ๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) gcd(๐‘‘, ๐‘) = ๐‘, gcd(๐‘’, ๐‘) = gcd(๐‘“, ๐‘) = 1 ๐‘–๐‘“ ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) gcd(๐‘’, ๐‘) = ๐‘, gcd(๐‘‘, ๐‘) = gcd(๐‘“, ๐‘) = 1 ๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) gcd(๐‘“, ๐‘) = ๐‘, gcd(๐‘‘, ๐‘) = gcd(๐‘’, ๐‘) = 1 ๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). Lemma 2.6. Let ๐‘ > 2be a prime number, let (๐‘Ž, ๐‘, ๐‘) be a triple of relativity prime integers. Then (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน gcd(๐‘‘, ๐›ผ) = gcd(๐‘’, ๐›ฝ) = gcd(๐‘“, ๐›พ) = 1 where the sextuple (๐‘‘, ๐‘’, ๐‘“, ๐›ผ, ๐›ฝ, ๐›พ) of positive integers is the Kimouโ€™s divisors of (๐‘Ž, ๐‘, ๐‘) [Lemma 2.5]. Proof.Under the assumptions of the previous lemma, we have: (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน { ๐‘‘ = gcd(๐‘Ž, ๐‘ โˆ’ ๐‘) ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž) ๐‘“ = gcd(๐‘, ๐‘Ž + ๐‘) [๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2. ][7]๐‘. 84 โŸน { ๐‘‘ = gcd (๐‘Ž, ๐‘‘๐‘ gcd(๐‘‘, ๐‘) ) ๐‘’ = gcd (๐‘, ๐‘’๐‘ gcd(๐‘’, ๐‘) ) ๐‘“ = gcd (๐‘, ๐‘“๐‘ gcd(๐‘“, ๐‘) ) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5] โŸน { ๐‘‘ = gcd (๐‘‘๐›ผ, ๐‘‘๐‘ gcd(๐‘‘, ๐‘) ) ๐‘’ = gcd (๐‘’๐›ฝ, ๐‘’๐‘ gcd(๐‘’, ๐‘) ) ๐‘“ = gcd (๐‘“๐›พ, ๐‘“๐‘ gcd(๐‘“, ๐‘) ) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5] โŸน { 1 = gcd (๐›ผ, ๐‘‘๐‘โˆ’1 gcd(๐‘‘, ๐‘) ) 1 = gcd (๐›ฝ, ๐‘’๐‘โˆ’1 gcd(๐‘’, ๐‘) ) 1 = gcd (๐›พ, ๐‘“๐‘โˆ’1 gcd(๐‘“, ๐‘) ) โŸน { 1 = gcd(๐›ผ, ๐‘‘) 1 = gcd(๐›ฝ, ๐‘’) 1 = gcd(๐›พ, ๐‘“). Lemma 2.7. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution. Then ๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน (๐‘ โˆ’ ๐‘)(๐‘ โˆ’ ๐‘Ž)(๐‘Ž + ๐‘) โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) Proof. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of non-zero primitive positive integers. Consider the sextuple (๐‘‘, ๐‘’, ๐‘“, ๐›ผ, ๐›ฝ, ๐›พ)of positive integers, its Kimou divisors. We have ๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘‘๐‘’๐‘“ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘)otherwise ๐‘Ž๐‘๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘)
  • 7. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 7 โŸน ๐‘‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘’ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘“ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘’๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘), ๐‘“๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘ โˆ’ ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘ โˆ’ ๐‘Ž โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘),๐‘Ž + ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5. ] Lemma 2.8. Let ๐‘ > 2be a prime number and (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution. Consider the triple (๐›ผ, ๐›ฝ, ๐›พ) theauxiliary Kimou divisors of (๐‘Ž, ๐‘, ๐‘).Then ๐›ผ โ‰ก ๐›ฝ โ‰ก ๐›พ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) Proof. Let's deal with the first case of this problem. We have ๐‘Ž๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) = ๐‘๐‘ โˆ’ ๐‘Ž๐‘ ๐‘ โˆ’ ๐‘Ž โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) โ‰ก ๐‘๐‘ โˆ’ ๐‘Ž๐‘ ๐‘ โˆ’ ๐‘Ž (๐‘š๐‘œ๐‘‘ ๐‘)[๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.7. ] โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) โ‰ก ๐‘ โˆ’ ๐‘Ž ๐‘ โˆ’ ๐‘Ž (๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1. ] โŸน ๐‘‡๐‘(๐‘Ž, ๐‘) โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐›ผ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5] โŸน ๐›ผ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1. ] The same approach is followed to show that ๐›ฝ โ‰ก ๐›พ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘). In the second case, let us illustrate the evidence on the case ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). On the one hand, ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘ + ๐‘๐‘ = ๐‘๐‘ โŸน ๐‘๐‘ โ‰ก ๐‘๐‘ (๐‘š๐‘œ๐‘‘ ๐‘๐‘ ) โŸน ๐‘ โ‰ก ๐‘ (๐‘š๐‘œ๐‘‘ ๐‘๐‘โˆ’1 ) โŸน ๐‘ โ‰ก ๐‘ (๐‘š๐‘œ๐‘‘ ๐‘2) ๐‘๐‘’๐‘๐‘Ž๐‘ข๐‘ ๐‘’ ๐‘ โ‰ฅ 3) On the other hand, ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘‡๐‘(๐‘, ๐‘) = ๐‘๐›ผ๐‘ [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5, ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2. ] โŸน ๐‘‡๐‘(๐‘, ๐‘) โ‰ก ๐‘๐›ผ๐‘ (๐‘š๐‘œ๐‘‘ ๐‘2 ) โŸน ๐‘๐‘๐‘โˆ’1 โ‰ก ๐‘๐›ผ๐‘(๐‘š๐‘œ๐‘‘ ๐‘2), ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘’๐‘ฃ๐‘–๐‘œ๐‘ข๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘ข๐‘™๐‘ก โŸน ๐‘๐‘โˆ’1 โ‰ก ๐›ผ๐‘ (๐‘š๐‘œ๐‘‘ ๐‘) โŸน 1 โ‰ก ๐›ผ๐‘(๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1] โŸน 1 โ‰ก ๐›ผ (๐‘š๐‘œ๐‘‘ ๐‘) [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.1]. A similar approach is followed to deal with cases ๐‘๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). Remark 2.3. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘)be a triple of relativity prime integers. Then (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน ๐›ผ โ‰ฅ ๐‘, ๐›ฝ โ‰ฅ ๐‘, ๐›พ โ‰ฅ ๐‘ โŸน ๐›ผ > 2, ๐›ฝ > 2, ๐›พ > 2. 3. PROOF OF OUR MAIN RESULTS 3.1. Proof of Theorem 1.1. Conjecture (Abel). Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution. Then none of the ๐‘Ž, ๐‘and๐‘ is the power of a prime number.
  • 8. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 8 The cases where ๐‘ and ๐‘ are powers of a prime number have been proved by Moller [14]. He also proved that if ๐‘Ž is a prime power, then ๐‘ โˆ’ ๐‘ = 1 [13], [14].The first case of this conjecture was proved by Abel himself. New evidence was given by Kimou P. in 2023 [6]. The second case has yet to receive direct proof. That's precisely the aim of this subsection.In what follows, we prove this conjecture in full. Lemma 3.1. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive solution such that ๐‘Ž๐‘๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). If โˆ€๐‘ฅ โˆˆ {๐‘Ž, ๐‘, ๐‘}, โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2 with ๐œ‹is a prime number and ๐‘ฅ = ๐œ‹๐‘š then ๐‘ฅ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). Proof.Under the assumptions of the previous lemma, we will proceed by absurdity, assuming that ๐‘ฅ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). On the one hand, ๐‘ = ๐œ‹๐‘š ,๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐œ‹๐‘š โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐œ‹ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐œ‹ = ๐‘ ๐‘œ๐‘Ÿ ๐‘ = 1 โŸน ๐œ‹ = ๐‘. On the other hand, according to the above, we have: ๐‘ = ๐œ‹๐‘š ,๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘’๐›ฝ = ๐‘๐‘š [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5] โŸน ๐‘’๐›ฝ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘’ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.8]) โŸน ๐‘’ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘๐‘š ) โŸน ๐‘’ = ๐‘˜๐‘ = ๐‘ ๐‘ค๐‘–๐‘กโ„Ž ๐‘˜ โ‰ฅ 1 ๐‘–๐‘  ๐‘Ž ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ โŸน ๐‘’ = ๐‘, ๐›ฝ = 1 โŸนโ—ป [๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.3]. Hence๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘).We proceed in the same way with ๐‘Ž and ๐‘. Remark 3.1. When ๐‘ is even, it is treated as follows.If ๐‘ is even, then ๐‘ = 2๐‘š and consequently ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘). According to lemma 3.1. we treat in the following the triplets (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ such that ๐‘๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘) with ๐‘ = ๐‘ + 1. Lemma 3.2. Let ๐‘ > 2 be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution such that ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž) and ๐‘ = ๐‘’๐›ฝ. Then ๐›ฝ > ๐‘’๐‘โˆ’1 . Proof. (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น โŸน ๐‘Ž + ๐‘ โˆ’ ๐‘ = ๐‘ โˆ’ (๐‘ โˆ’ ๐‘Ž) = ๐‘’๐›ฝ โˆ’ ๐‘’๐‘ โŸน ๐‘Ž + ๐‘ โˆ’ ๐‘ = ๐‘’(๐›ฝ โˆ’ ๐‘’๐‘โˆ’1 ) โŸน ๐›ฝ โˆ’ ๐‘’๐‘โˆ’1 > 0 โŸน ๐›ฝ > ๐‘’๐‘โˆ’1 . Lemma 3.3. Let ๐‘ > 2 be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution such that ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž) and ๐‘ = ๐‘’๐›ฝ. Then
  • 9. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 9 { ๐›พ > ๐‘“๐‘โˆ’1 2๐‘ ๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) ๐›พ > ๐‘“๐‘โˆ’1 2๐‘ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ . Proof. Consider the assumptions of the previous lemma and (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ a triple of primitive solution. On the one hand ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน 2๐‘ = ๐‘‘๐‘ + ๐‘’๐‘ + ๐‘“๐‘ ๐‘ [7] โŸน 2๐‘ > ๐‘“๐‘ ๐‘ โŸน 2๐‘“๐›พ > ๐‘“๐‘ ๐‘ โŸน ๐›พ > ๐‘“๐‘โˆ’1 2๐‘ . On the other hand ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน 2๐‘ = ๐‘‘๐‘ ๐‘ + ๐‘’๐‘ + ๐‘“๐‘ ๐‘œ๐‘Ÿ 2๐‘ = ๐‘‘๐‘ + ๐‘’๐‘ ๐‘ + ๐‘“๐‘ [7] โŸน 2๐‘ > ๐‘“๐‘ โŸน 2๐‘“๐›พ > ๐‘“๐‘ โŸน ๐›พ > ๐‘“๐‘โˆ’1 2 . Remark. If ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) then ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘2 )[2] p. Hence ๐‘“ โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘2 )as a result: ๐‘“ โ‰ฅ ๐‘2 > 4. When๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘)let consider the following case: ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘ โ‰ก ๐‘Ž (๐‘š๐‘œ๐‘‘ ๐‘2 ) โŸน ๐‘“ โ‰ก ๐‘‘ (๐‘š๐‘œ๐‘‘ ๐‘2 ) โŸน ๐‘“ = ๐‘‘ + ๐‘˜๐‘2 โŸน ๐‘“ > ๐‘2 The same procedure is followed for the other cases. Lemma 3.4. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘. Consider ๐‘’ = gcd(๐‘, ๐‘ โˆ’ ๐‘Ž). Then ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2 , ๐‘ = ๐œ‹๐‘š with ๐œ‹ is prime number. Proof. Let ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). We proceed by reasoning by the absurd. Letโ€™s assume that (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ ๐‘Ž๐‘›๐‘‘๐‘ = ๐œ‹๐‘š .We have: ๐‘ = ๐œ‹๐‘š โŸน ๐‘’๐›ฝ = ๐œ‹๐‘š [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5] โŸน ๐‘’ = 1 ๐‘๐‘Ž๐‘Ÿ ๐›ฝ > ๐‘’ [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.2] โŸน ๐‘’๐‘ = 1 โŸน ๐‘ โˆ’ ๐‘Ž = 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5] โŸน ๐‘ = ๐‘Ž + 1 โŸนโ—ป because ๐‘Ž < ๐‘ < ๐‘. Hence โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2 , ๐‘ = ๐œ‹๐‘š with ๐œ‹ a prime number. Lemma3.5. Let ๐‘ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution. Then ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2 , ๐‘ = ๐œ‹๐‘š with ฯ€ is a prime
  • 10. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 10 Proof. Let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ and ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). We reason from the absurd by supposing that ๐‘ = ๐œ‹๐‘š .We have (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘, ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘“๐›พ = ๐œ‹๐‘š โŸน ๐‘“ = 1 ๐‘๐‘’๐‘๐‘Ž๐‘ข๐‘ ๐‘’ ๐›พ > ๐‘“ [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.3. ] โŸน ๐‘“๐‘ = 1 โŸน ๐‘Ž + ๐‘ = 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5] โŸน ๐‘Ž๐‘ = 0 โŸนโ—ป. Hence โˆ„(๐œ‹, ๐‘š) โˆˆ โ„•โˆ—2 , ๐‘ = ๐œ‹๐‘š with ๐œ‹ a prime number. Lemma 3.6. Let ๐œ‹ > 2be a prime and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive positive integers solution of equation (1).Then, ๐‘Ž = ๐œ‹๐‘š โŸน ๐‘ โˆ’ ๐‘ = 1. Proof. Under the assumptions of lemma 3.4. we proceedby absurd supposing that ๐‘ โˆ’ ๐‘ > 1. We have: ๐‘ โˆ’ ๐‘ > 1 โŸน ๐‘‘๐›ผ = ๐œ‹๐‘š ,๐‘‘๐‘ > 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž๐‘  2.5, 2.6] โŸน ๐‘‘๐›ผ = ๐œ‹๐‘š ,๐‘‘ > 1 โŸน ๐‘‘๐›ผ = ๐œ‹๐‘š , ๐‘‘ > 1, ๐›ผ > ๐‘‘ > 1. โŸนโ—ป because gcd(๐‘‘, ๐›ผ) = 1 [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.6]. Hence ๐‘ โˆ’ ๐‘ = 1. Lemme 3.7. Let ๐‘ > 2be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘be a triple of primitive solution. Then ๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘Ž โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2). Proof. ๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘ = ๐‘ + 1 โŸน ๐‘ or ๐‘ is even โŸน ๐‘Ž is odd. Lemme 3.8. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ be a triple of primitive solution. Then ๐‘ โˆ’ ๐‘ = 1 โŸน { ๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ ๐‘Ž = 3 otherwise Proof. Under the assumptions of the previous lemma, we have: ๐‘ โˆ’ ๐‘ = 1 โŸน ๐‘ = ๐‘ โˆ’ 1 โŸน { ๐‘ โˆ’ ๐‘Ž = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ ๐‘Ž = 2 otherwise [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.3. ] โŸน { ๐‘ โˆ’ 1 โˆ’ ๐‘Ž = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ 1 โˆ’ ๐‘Ž = 2 otherwise โŸน { ๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ ๐‘Ž = 3 otherwise
  • 11. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 11 Lemma 3.9. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers relativity primesuch that ๐‘ โˆ’ ๐‘ = 1. Then ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘ + ๐‘๐‘ โ‰  ๐‘๐‘ Proof. Under the assumptions of the previous lemma, we have if ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘). Consider ๐‘ฃ1 and ๐‘ฃ2 respectively the 2-adic and 3-adic valuations of ๐‘’. Then ๐‘ โˆ’ ๐‘ = 1 โŸน {๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ ๐‘Ž = 3 otherwise [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.8] โŸน { ๐‘’๐‘ = 2 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘’๐‘ = 3 otherwise [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5, ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2] โŸน { ๐‘˜1 ๐‘ 2๐‘ฃ1๐‘โˆ’1 = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘˜2 ๐‘ 3๐‘ฃ2๐‘โˆ’1 = 1 otherwise with ๐‘’ = ๐‘˜12๐‘ฃ1 = ๐‘˜23๐‘ฃ2 โŸน { 2๐‘ฃ1๐‘โˆ’1 = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) 3๐‘ฃ2๐‘โˆ’1 = 1 otherwise โŸน { ๐‘ = 1 ๐‘ฃ1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ = 1 ๐‘ฃ2 otherwise โŸน { ๐‘ = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ = 1 otherwise โŸน ๐‘ = 1 โŸนโ—ป because ๐‘ > 2. Hence ๐‘ โˆ’ ๐‘ > 1. Remark 3.2. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers relativity prime such that ๐‘ โˆ’ ๐‘ = 1. When ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘), we have ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘) and consequently, according to the preceding Lemma, ๐‘Ž๐‘ + ๐‘๐‘ โ‰  ๐‘๐‘ . Lemma 3.10. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers relativity prime such that ๐‘ โˆ’ ๐‘ = 1. Then ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน ๐‘Ž๐‘ + ๐‘๐‘ โ‰  ๐‘๐‘ Proof. Under the assumptions of the previous lemma, we haveโ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). Consider ๐‘ฃ1, ๐‘ฃ2and ๐‘ฃ3 respectively the 2-adic, 3-adic and ๐‘-adic valuations of ๐‘’. Then ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน { ๐‘ โˆ’ ๐‘Ž = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ ๐‘Ž = 3 otherwise [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 3.8] โŸน { ๐‘’๐‘ ๐‘ = 2 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘’๐‘ ๐‘ = 3 otherwise [๐ฟ๐‘’๐‘š๐‘š๐‘Ž 2.5, ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2] โŸน { ๐‘˜1 ๐‘ 2๐‘ฃ1๐‘โˆ’1 = ๐‘ if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘˜2 ๐‘ 3๐‘ฃ2๐‘โˆ’1 = ๐‘ otherwise โŸน { ๐‘˜1 ๐‘ 2๐‘ฃ1๐‘โˆ’1 ๐‘๐‘ฃ3๐‘โˆ’1 = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘˜2 ๐‘ 3๐‘ฃ2๐‘โˆ’1 ๐‘๐‘ฃ3๐‘โˆ’1 = 1 otherwise โŸน { ๐‘˜1 = ๐‘˜2 = 1 2๐‘ฃ1๐‘โˆ’1 ๐‘๐‘ฃ3๐‘โˆ’1 = 1 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) 3๐‘ฃ2๐‘โˆ’1 ๐‘๐‘ฃ3๐‘โˆ’1 = 1 otherwise
  • 12. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 12 โŸน { ๐‘ฃ1๐‘ โˆ’ 1 = 0, ๐‘ฃ3๐‘ โˆ’ 1 = 0 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ฃ2๐‘ โˆ’ 1 = 0, ๐‘ฃ3๐‘ โˆ’ 1 = 0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ โŸน { ๐‘ = 1 ๐‘ฃ1 , ๐‘ = 1 ๐‘ฃ3 if ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ = 1 ๐‘ฃ2 , ๐‘ = 1 ๐‘ฃ3 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ โŸน { ๐‘ฃ1 = ๐‘ฃ2 = ๐‘ฃ3 = 1 ๐‘ = 1 โŸน ๐‘ = 1 โŸนโ—ป. Hence ๐‘ โˆ’ ๐‘ > 1. Remark 3.3. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) a triple of non-null positive integers relativity prime such that ๐‘ โˆ’ ๐‘ = 1. When ๐‘ โ‰ข 0(๐‘š๐‘œ๐‘‘๐‘), we have ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘๐‘)or ๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘๐‘) . In both cases, lemmas 3.9 and 3.10 confirm that ๐‘Ž๐‘ + ๐‘๐‘ โ‰  ๐‘๐‘ . Proof of Theorem 1.1. Immediate consequences of Lemmas 3.9 and 3.10, and Remark 3.2 and 3.3. 3.2. Proof of Theorem 1.2 Proof. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) be a triple of relativity prime integers. Then (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น2๐‘ โŸน (๐‘Ž2 , ๐‘2 , ๐‘2) โˆˆ ๐น๐‘, ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) โŸน ๐‘2 โˆ’ ๐‘Ž2 = 1 [Theorem 2.3.] โŸน (๐‘ โˆ’ ๐‘Ž)(๐‘Ž + ๐‘) = 1 โŸน ๐‘Ž + ๐‘ = 1 ๐‘’๐‘ก ๐‘ โˆ’ ๐‘Ž = 1 โŸน ๐‘ = 1 โŸนโ—ป because ๐‘ > 1. Hence the result. Remark 3.4. Because ofTheorem1.2 and [1] p.13 (2C), Fermat's theorem is true for all even exponents. 3.3. Proof of Theorem 1.3 3.3.1. Proof of FLT for Odd No-Prime Exponent Theorem 3.3. Let ๐‘š > 2be a positive integer. Then. ๐‘š ๐‘–๐‘  ๐‘Ž๐‘› odd nonprime integer โŸน ๐น๐‘š = โˆ…. Proof. Let ๐‘š > 2be an odd no-prime number. (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘š. Then: ๐‘š is odd nonprime integer โŸน โˆƒ(๐‘ , ๐‘˜), ๐‘  > 2, ๐‘˜ > 2 are odd prime, ๐‘Ž๐‘˜๐‘  + ๐‘๐‘˜๐‘  = ๐‘๐‘˜๐‘  โŸน (๐‘Ž๐‘˜) ๐‘  + (๐‘๐‘˜) ๐‘  = (๐‘๐‘˜) ๐‘  โŸน ๐‘๐‘˜ โˆ’ ๐‘Ž๐‘˜ = 1 or๐‘๐‘˜ โˆ’ ๐‘Ž๐‘˜ = 2 [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.3] โŸน (๐‘ โˆ’ ๐‘Ž)๐‘‡๐‘˜(๐‘Ž, ๐‘) = 1 or ๐‘ โˆ’ ๐‘Ž = 2 because ๐‘˜ is odd โŸน 1 > ๐‘˜(๐‘ โˆ’ ๐‘Ž)๐‘Ž๐‘˜โˆ’1 or 2 > ๐‘˜(๐‘ โˆ’ ๐‘Ž)๐‘Ž๐‘˜โˆ’1 โŸน ๐‘ = ๐‘Ž โŸนโ—ป;
  • 13. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 13 Hence ๐‘š cannot be an odd nonprime integer and consequently ๐น๐‘š = โˆ…. Remark 3.5. FLT is true for odd nonprime exponent. 3.3.2. Proof FLT for Nonprime Exponent Under the assumptions of Theorem 1.3. let consider(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘› be a triple of primitive integers with ๐‘›a nonprime positive integer. We proceed by the absurd: ๐‘› โ‰ก 0 (๐‘š๐‘œ๐‘‘2) โŸน โˆƒ(๐‘™, ๐‘ž) โˆˆ โ„•2 , ๐‘™ > 1, ๐‘ž > 3 ๐‘Ž๐‘›๐‘œ๐‘‘๐‘‘๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ, ๐‘› = 2๐‘ž๐‘œ๐‘Ÿ2๐‘™ ๐‘ž โŸน ๐‘Ž2๐‘ž + ๐‘2๐‘ = ๐‘2๐‘ž ๐‘œ๐‘Ÿ ๐‘Ž2๐‘™๐‘ž + ๐‘2๐‘™๐‘ = ๐‘2๐‘™๐‘ž โŸน โˆƒ ๐‘ > 3 ๐‘Ž ๐‘๐‘Ÿ๐‘–๐‘š๐‘’, ๐‘™1 โ‰ฅ 1, ๐‘Ž2๐‘๐‘ž1 + ๐‘2๐‘๐‘ž1 = ๐‘2๐‘๐‘ž1 ๐‘œ๐‘Ÿ ๐‘Ž4๐‘™1๐‘ž + ๐‘4๐‘™1 = ๐‘4๐‘™1๐‘ž โŸน (๐‘Ž๐‘ž1)2๐‘ + (๐‘Ž๐‘ž1)2๐‘ = (๐‘Ž๐‘ž1)2๐‘ ๐‘œ๐‘Ÿ (๐‘Ž๐‘™1๐‘ž) 4 + (๐‘Ž๐‘™1๐‘ž) 4 = (๐‘๐‘™1๐‘ž) 4 โŸนโ—ป. [Theorem 1.2] [2] p.13 (2C). Hence ๐‘› โ‰ข 0 (๐‘š๐‘œ๐‘‘2). Par suite ๐‘› โ‰ก 1 (๐‘š๐‘œ๐‘‘2). Traitons ce cas : ๐‘› โ‰ก 1 (๐‘š๐‘œ๐‘‘2) โŸน ๐‘› ๐‘–๐‘  ๐‘Ž๐‘› ๐‘œ๐‘‘๐‘‘ ๐‘›๐‘œ๐‘›๐‘๐‘Ÿ๐‘–๐‘š๐‘’ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ โŸน ๐น๐‘› = โˆ…. Hence if n is nonprime integer FLT is true. This proves Theorem 1.3. 3.4. Proof of Theorem 1.4 In this section we prove the first case of FLT and the second case ๐‘ง โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). We distinguish two new cases: The case ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) or ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ 2) Lemma 3.8. Let ๐‘ > 2 be a prime number and let (๐‘Ž, ๐‘, ๐‘) be a triple of relativity prime integers. Then (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน { ๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘ โˆ’ ๐‘‘๐‘ ๐‘–๐‘“ ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) ๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘ โˆ’ ๐‘‘๐‘ ๐‘ ๐‘–๐‘“ ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) ๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘ ๐‘ โˆ’ ๐‘‘๐‘ ๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) where (๐‘‘, ๐‘’) is the couple of Kimouโ€™s primaries divisors of (๐‘Ž, ๐‘). Proof. According to [7], [9], we have If(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ then ๐‘ โˆ’ ๐‘Ž = (โˆ’ ๐‘‘๐‘ gcd(๐‘‘, ๐‘) + ๐‘’๐‘ gcd(๐‘’, ๐‘) + ๐‘“๐‘ gcd(๐‘“, ๐‘) ) โˆ’ ( ๐‘‘๐‘ gcd(๐‘‘, ๐‘) โˆ’ ๐‘’๐‘ gcd(๐‘’, ๐‘) + ๐‘“๐‘ gcd(๐‘“, ๐‘) ) = ๐‘’๐‘ gcd(๐‘’, ๐‘) โˆ’ ๐‘‘๐‘ gcd(๐‘‘, ๐‘) . Hence,
  • 14. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 14 (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘ โŸน { ๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘ โˆ’ ๐‘‘๐‘ ๐‘–๐‘“ ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) ๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘ โˆ’ ๐‘‘๐‘ ๐‘ ๐‘–๐‘“ ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) ๐‘ โˆ’ ๐‘Ž = ๐‘’๐‘ ๐‘ โˆ’ ๐‘‘๐‘ ๐‘–๐‘“ ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) [๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 2.2. ] Proof of Theorem 1.4. Under the assumptions of the Theorem 1.4. we proceed to a proof by the absurd by assuming that (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘. We have: ๐‘Ž๐‘ โ‰ข 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน { ๐‘ โˆ’ ๐‘Ž = 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘ โˆ’ ๐‘Ž = 2 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ [๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2.2. ] โŸน { ๐‘’๐‘ โˆ’ ๐‘‘๐‘ = 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘’๐‘ โˆ’ ๐‘‘๐‘ = 2 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ = 1 [๐ฟ๐‘’๐‘š๐‘š๐‘’ 3.8] โŸน { 1 > ๐‘(๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) 2 > ๐‘(๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ โŸน 2 > ๐‘(๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1 โŸน (๐‘’ โˆ’ ๐‘‘) ๐‘‘๐‘โˆ’1 < 2 ๐‘ < 1 โŸน ๐‘’ = ๐‘‘ โŸนโ—ป. Hence the result. Remark 3.6. We have just proved Fermat's last theorem with the even exponent, in its first case and in the second case where ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) . However, when ๐‘Ž๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) we have: ๐‘Ž โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน { ๐‘’๐‘ โˆ’ ๐‘‘๐‘ ๐‘ = 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘’๐‘ โˆ’ ๐‘‘๐‘ ๐‘ = 2 otherwise , and ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) โŸน { ๐‘’๐‘ ๐‘ โˆ’ ๐‘‘๐‘ = 1 ๐‘–๐‘“ ๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) ๐‘’๐‘ ๐‘ โˆ’ ๐‘‘๐‘ = 2 otherwise. These new Diophantine equations promise to be difficult despite their simple appearances. 4. ANALYSIS OF THE DIFFICULTY OF ESTABLISHING RESULTS At this stage we propose a classification by increasing difficulty of solving the problems dealt with in this paper. First place is occupied by the second FLT case with the odd exponent: it is obvious that if(๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น2๐‘, with ๐‘a prime number, then ๐‘2 โˆ’ ๐‘Ž2 = 1is impossible by simple making factorisation. The second position is occupied simultaneously by the first and second FLT cases ๐‘ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘): if (๐‘Ž, ๐‘, ๐‘) โˆˆ ๐น๐‘Then ๐‘’๐‘ โˆ’ ๐‘‘๐‘ = 1. Then you'll have to factor and major. You'll conclude that this relationship is impossible. This case is more difficult than the previous one. The third place is occupied by FLT with nonprime exponent. To prove this, we had to distinguish two sub-problems: Prove that FLT is true for the odd non-prime exponent and then for the even exponent.In the last position is the second case of Abel's conjecture. Indeed, it turned out to be a little more difficult than previous problem because it was necessary to use the
  • 15. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 15 relations ๐‘ โˆ’ ๐‘Ž = 1, ๐‘ โˆ’ ๐‘ = 1, the Kimou's principal divisors and ๐‘ adic valuations to establish a contradiction. As surprising as it may seem, it explains the difficulty of prove this problem. 5. CONCLUSION In this paper we establish Diophantine proofs of Abel's conjecture, Fermat Last Theorem for the exponents even, non-prime exponent, the first case and the second case ๐‘ง โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘). We analyse these proofs and establish a ranking in order of increasing difficulty in solving the Fermat problems treated.In perspective, we intend to: - establish a Diophantine proof of the second remaining cases, i.e. to prove that if ๐‘ฅ๐‘ฆ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘) then ๐‘ฅ๐‘ + ๐‘ฆ๐‘ โ‰  ๐‘ง๐‘ . - extend methods to broader classes of equations: Catalanโ€™s equation, Beal problem and others General Fermat problem. - introduce new concepts such as the universe and Diophantine galaxies, as well as the similarity principle, and then find applications for them in astronomy, astrophysics, cosmology and artificial intelligence. REFERENCES [1] P. Rimbenboim (1979), 13 Lectures on Fermat Last Theorem, ISBN-0-387-90432-8, Springer- Verlag New York Inc, 1999. http://www.numdam.org/item?id=SB_1984-1985__27__309_0 [2] P. Rimbenboim (1999), Fermatโ€™s last Theorem for amateurs, ISBN-0-387-98508-7, Springer- Verlag New York Inc, 1999. http://www.numdam.org/item?id=SB_1984-1985__27__309_0 [3] A. J. Wiles*, Modular elliptic curves and Fermatโ€™s Last Theorem, 1995, Annals of Mathematics, 141, pp. 443-551. [4] Kimou, P. K.,Tanoรฉ, F.E. and Kouakou, K. V. (2023). Fermat and Pythagoras Divisors for a New Explicit Proof of Fermat's Theorem: a ^4 + b^ 4 = c ^4 . Part I, Advances in Pure Mathematics, 14,303-319. https://doi.org/10.4236/apm.2024.144017. [5] Kimou, P. K.,Tanoรฉ, F.E. and Kouakou, K. V. (2023). A new proof of Fermat Last Theorem for exponent 4 using Fermat Divisors (2023) https://www.researchgate.net/publication/371159864 [6] Kimou, P. K. (2023) A efficient proof of the first case of Abelโ€™s Conjecture using new tools (2023) https://www.researchgate.net/publication/37262223 [7] Kimou, P. K. (2023). On Fermat Last Theorem: The new Efficient Expression of a Hypothetical Solution as a function of its Fermat Divisors. American Journal of Computational Mathematics, 13, 82-90. https://doi.org/10.4236/ajcm.2023.131002 [8] Kimou, P.K. and Tanoรฉ, F.E. (2023). Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations. American Journal of Computational Mathematics, 13, 199-210. https://doi.org/10.4236/ajcm.2023.131010. [9] Kimou, P. K. (2024) New Kimou Unified theorem for principal divisors of x^p+y^p =z^p, p a prime Research Gate [10] Kimou P. K. (2024), On Direct Proof of FLT: A fundamental Surprising Theorem Research Gate. [11] Kimou P., K. (2024), On Direct Proof of FLT: A crucial Relation, Recherche Gate. [12] Nicolas B. (2018) Thรฉorie des nombres, Universitรฉ de Saint Boniface. [13] Zhong Chuixiang (1989), Fermat's Last Theorem: A Note about Abel's Conjecture, C.R. Hath. Rep. Acad. Sci. Canada - Vol. XI, No. 1, February 1989 fรฉvrier [14] Moller, K., (1955) UntereSchianke fur die Anzahl der Piimazahlen, ausdenenx,y,z der Fer matshenOdchung๐‘ฅ๐‘› + ๐‘ฆ๐‘› = ๐‘ง๐‘› ยฐ besteden muss. Math. Nachr., 14, 1955,25-28.
  • 16. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.12, No.1, March 2025 16 [15] Kimou Kouadio Prosper, Kouakou Kouassi Vincent (2024), On Direct Proof of Fermat Last Theorem: The Abel conjecture, the even and nonprime exponent, and the first case, 2nd International Conference on Mathematics, Computer Sciences & Engineering (MATHCS2024), 28-29/12/2024, DUBAI, ERU. AUTHORS Kimou Kouadio Prosper,, I am an Ivorian. I am a teacherresearcher at the Institute Polytechnique Felix Houphouet-Boigny of Yamoussoukro, RCI (INPHB) . Since May 2011. I carry out my teaching and research activities there. My research work is mainly focused on artificial intelligence, number theory and computer security, especially cryptography.