The document discusses the differences between machine learning (ML), statistical learning, data mining (DM), and automated learning (AL). It argues that while ML and statistical learning developed similar techniques starting in the 1960s, DM emerged in the 1990s from a merging of database research and automated learning. However, industry was much more enthusiastic about adopting DM techniques compared to AL techniques, even though many DM systems are just friendly interfaces of AL systems. The document aims to explain the key differences between DM and AL that led to DM's greater commercial success.