SlideShare a Scribd company logo
OPTE: Online Per-title Encoding for Live Video Streaming
Vignesh V Menon, Hadi Amirpour, Mohammad Ghanbari, Christian Timmerer
Christian Doppler Laboratory ATHENA, Institute of Information Technology (ITEC), University of Klagenfurt, Austria
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
24 May 2022
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 1
Outline
1 Background
2 Per-title Encoding
3 OPTE
4 Evaluation
5 Conclusions
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 2
Background
Background
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 3
Background
Background
HTTP Adaptive Streaming (HAS)1
Why Adaptive Streaming?
Adapt for a wide range of devices.
Adapt for a broad set of Internet speeds.
What HAS does?
Each source video is split into segments.
Encoded at multiple bitrates, resolutions, and codecs.
Delivered to the client based on the device capability, network speed etc.
1
A. Bentaleb et al. “A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP”. In: IEEE Communications Surveys Tutorials 21.1 (2019),
pp. 562–585. doi: 10.1109/COMST.2018.2862938.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 4
Background
Background
Video coding in HTTP Adaptive Streaming (HAS)
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 5
Per-title Encoding
Per-title Encoding
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 6
Per-title Encoding
Per-title Encoding
HTTP Adaptive Streaming (HAS) continues to grow and has become the de-facto standard
in recent years for delivering video over the Internet.
In HAS, each video is encoded at a set of bitrate-resolution pairs, referred to as bitrate
ladder. Traditionally, a fixed bitrate ladder, e.g., HTTP Live Streaming (HLS) bitrate
ladder,2 is used for all video contents.
However, due to the vast diversity in video content characteristics and network condi-
tions, the “one-size-fits-all” can be optimized per title to increase the Quality of Experi-
ence (QoE).3
2
Apple Inc. HLS Authoring Specification for Apple Devices.
https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices.
3
J. De Cock et al. “Complexity-based consistent-quality encoding in the cloud”. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016.
doi: 10.1109/ICIP.2016.7532605.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 7
Per-title Encoding
Per-title Encoding
Figure: Rate-Distortion (RD) curves using VMAF as the quality metric of Beauty and Golf sequences
of UVG and BVI datasets4,5
encoded at 540p and 1080p resolutions.
4
Alexandre Mercat, Marko Viitanen, and Jarno Vanne. “UVG Dataset: 50/120fps 4K Sequences for Video Codec Analysis and Development”. In: Proceedings
of the 11th ACM Multimedia Systems Conference. New York, NY, USA: Association for Computing Machinery, 2020, 297–302. isbn: 9781450368452. url:
https://doi.org/10.1145/3339825.3394937.
5
Alex Mackin, Fan Zhang, and David R. Bull. “A study of subjective video quality at various frame rates”. In: 2015 IEEE International Conference on Image
Processing (ICIP). 2015, pp. 3407–3411. doi: 10.1109/ICIP.2015.7351436.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 8
Per-title Encoding
Per-title Encoding
Determining convex-hull is computationally very expensive, making it suitable for only VoD
streaming applications.
State-of-the-art per-title approaches yield latency much higher than the accepted latency
in live streaming.6,7,8,9
6
Bitmovin. “White Paper: Per Title Encoding”. In: 2018. url: https://bitmovin.com/whitepapers/Bitmovin-Per-Title.pdf.
7
A. V. Katsenou, J. Sole, and D. R. Bull. “Content-gnostic Bitrate Ladder Prediction for Adaptive Video Streaming”. In: 2019 Picture Coding Symposium
(PCS). 2019. doi: 10.1109/PCS48520.2019.8954529.
8
Madhukar Bhat, Jean-Marc Thiesse, and Patrick Le Callet. “Combining Video Quality Metrics To Select Perceptually Accurate Resolution In A Wide Quality
Range: A Case Study”. In: 2021 IEEE International Conference on Image Processing (ICIP). 2021, pp. 2164–2168. doi: 10.1109/ICIP42928.2021.9506310.
9
Madhukar Bhat, Jean-Marc Thiesse, and Patrick Le Callet. “A Case Study of Machine Learning Classifiers for Real-Time Adaptive Resolution Prediction in
Video Coding”. In: 2020 IEEE International Conference on Multimedia and Expo (ICME). 2020, pp. 1–6. doi: 10.1109/ICME46284.2020.9102934.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 9
OPTE
OPTE
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 10
OPTE
OPTE architecture
Input
Segment
Feature
Extraction
Resolution
Prediction
Resolutions
(R)
Bitrates
(B)
Encoding
Figure: OPTE architecture.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 11
OPTE Phase 1: Feature Extraction
OPTE
Phase 1: Feature Extraction
Compute texture energy per block
A DCT-based energy function is used to determine the block-wise feature of each frame
defined as:
Hk =
w−1
X
i=0
w−1
X
j=0
e|( ij
wh
)2−1|
|DCT(i, j)| (1)
where wxw is the size of the block, and DCT(i, j) is the (i, j)th DCT component when
i + j > 0, and 0 otherwise.
The energy values of blocks in a frame is averaged to determine the energy per frame.10
E =
C−1
X
k=0
Hp,k
C · w2
(2)
10
Michael King, Zinovi Tauber, and Ze-Nian Li. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on
Multimedia and Expo. 2007, pp. 1647–1650. doi: 10.1109/ICME.2007.4284983.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 12
OPTE Phase 1: Feature Extraction
Proposed Algorithm
Phase 1: Feature Extraction
hp: SAD of the block level energy values of frame p to that of the previous frame p − 1.
hp =
C−1
X
k=0
SAD(Hp,k, Hp−1,k)
C · w2
(3)
where C denotes the number of blocks in frame p.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 13
OPTE Phase 2: Resolution prediction
OPTE
Phase 2: Resolution prediction
Inputs:
f : original framerate
rmax : original spatial resolution
R : set of all resolutions
B : set of all target bitrates
Output: ˆ
r(b) ∀ b ∈ B
Compute E, h features.
for each b ∈ B do
Determine the optimized resolution.
ˆ
r(b) = rmax · (1 − s0e−
ΓMA(rmax ,f )·h·b
E )
Map ˆ
r(b) to its closest value in R.
Please note that ˆ
r is an exponentially decaying (increasing) function.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 14
OPTE Phase 2: Resolution prediction
OPTE
Determining ΓMA
The half-life of the ˆ
r function is evaluated, i.e., the bitrate when ˆ
r becomes rmax
2 . ˆ
r is an
exponentially decaying (increasing) function where:
b1
2
=
ln(2)
K
(4)
ΓMA can thus be determined as:
ΓMA =
ln(2) · E
h · b1
2
(5)
ΓMA values obtained for the training sequences of each resolution and framerate is averaged to
determine ΓMA(rmax , f ).
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 15
Evaluation
Evaluation
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 16
Evaluation
Evaluation
E and h values are extracted using VCA open-source software11 at a speed of 370fps for
UHD content.
Table: Results of OPTE against fixed bitrate ladder approach.
Dataset Video f SI TI BDRV BDRP
MCML Bunny 30 23.38 6.43 -39.48% -32.25%
MCML Characters 30 50.43 29.85 -51.90% -68.81%
MCML Crowd 30 33.76 10.13 -29.82% -14.18%
MCML Dolls 30 16.88 19.91 -1.43% -8.49%
SJTU BundNightScape 30 48.82 7.06 -61.22% -60.86%
SJTU Fountains 30 43.37 11.42 -32.93% -8.49%
SJTU TrafficFlow 30 33.57 13.80 -50.54% -40.90%
SJTU TreeShade 30 52.88 5.29 -47.76% -38.55%
VQEG CrowdRun 50 50.77 22.33 -8.50% -1.90%
VQEG DucksTakeOff 50 47.77 15.10 -2.99% -2.79%
VQEG IntoTree 50 24.41 12.09 -26.50% -5.75%
VQEG OldTownCross 50 29.66 11.62 -30.91% -22.53%
VQEG ParkJoy 50 62.78 27.00 -12.08% -2.62%
JVET CatRobot 60 44.45 11.84 -13.43% -5.95%
JVET DaylightRoad2 60 40.51 16.21 -27.52% -9.35%
JVET FoodMarket4 60 38.26 17.68 -18.11% -3.74%
Average -28.45% -20.45%
11
Vignesh V Menon et al. “VCA: Video Complexity Analyzer”. In: Proceedings of the 13th ACM Multimedia Systems Conference. 2022. isbn: 9781450392839.
doi: 10.1145/3524273.3532896. url: https://doi.org/10.1145/3524273.3532896.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 17
Evaluation
Evaluation
0 5 10 15
Bitrate (in Mbps)
40
60
80
100
VMAF
Default
OPTE
(a) BundNightScape
0 5 10 15
Bitrate (in Mbps)
40
60
80
100
VMAF
Default
OPTE
(b) Bunny
Figure: Comparison of RD curves for encoding the first segment of BundNightScape and Bunny sequences
using the fixed bitrate ladder and OPTE.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 18
Conclusions
Conclusions
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 19
Conclusions
Conclusions
Proposed OPTE, an online per-title encoding scheme for live streaming applications.
DCT-energy-based features are used to determine the spatial and temporal complexity of
the video, which is fast and effective.
Predicts optimized resolutions for a set of bitrates defined in a bitrate ladder for every
video, which helps in improving the overall performance (QoE) of UHD video streaming.
Live streaming using OPTE requires 20.45% fewer bits to maintain the same PSNR and
28.45% fewer bits to maintain the same VMAF.
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 20
Conclusions
Q & A
Thank you for your attention!
Vignesh V Menon (vignesh.menon@aau.at)
Hadi Amirpour (hadi.amirpour@aau.at)
Mohammad Ghanbari (ghan@essex.ac.uk)
Christian Timmerer (christian.timmerer@aau.at)
Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 21

More Related Content

PDF
Perceptually-aware Per-title Encoding for Adaptive Video Streaming
Alpen-Adria-Universität
 
PDF
Perceptually-aware Per-title Encoding for Adaptive Video Streaming.pdf
Vignesh V Menon
 
PDF
OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming
Alpen-Adria-Universität
 
PDF
OPSE_Online Per-Scene Encoding for Adaptive HTTP Live Streaming.pdf
Vignesh V Menon
 
PDF
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Alpen-Adria-Universität
 
PDF
VCIP_MCBE_presentation.pdf
Vignesh V Menon
 
PDF
Optimal Quality and Efficiency in Adaptive Live Streaming with JND-Aware Low ...
Alpen-Adria-Universität
 
PDF
Optimal Quality and Efficiency in Adaptive Live Streaming with JND-Aware Low ...
Vignesh V Menon
 
Perceptually-aware Per-title Encoding for Adaptive Video Streaming
Alpen-Adria-Universität
 
Perceptually-aware Per-title Encoding for Adaptive Video Streaming.pdf
Vignesh V Menon
 
OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming
Alpen-Adria-Universität
 
OPSE_Online Per-Scene Encoding for Adaptive HTTP Live Streaming.pdf
Vignesh V Menon
 
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
Alpen-Adria-Universität
 
VCIP_MCBE_presentation.pdf
Vignesh V Menon
 
Optimal Quality and Efficiency in Adaptive Live Streaming with JND-Aware Low ...
Alpen-Adria-Universität
 
Optimal Quality and Efficiency in Adaptive Live Streaming with JND-Aware Low ...
Vignesh V Menon
 

Similar to OPTE: Online Per-title Encoding for Live Video Streaming (20)

PDF
LiveVBR presentation at VQEG NORM.pdf
Vignesh V Menon
 
PDF
TQPM.pdf
Vignesh V Menon
 
PDF
Video Coding Enhancements for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
PDF
Research@Lunch_Presentation.pdf
Vignesh V Menon
 
PDF
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
Vignesh V Menon
 
PDF
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
Alpen-Adria-Universität
 
PDF
Doctoral Symposium presentation.pdf
Vignesh V Menon
 
PDF
Green_VCA_presentation.pdf
Vignesh V Menon
 
PDF
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
PDF
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Ijripublishers Ijri
 
PDF
CODA_presentation.pdf
JunZhao68
 
PDF
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Ijripublishers Ijri
 
PDF
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Vignesh V Menon
 
PDF
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdf
Vignesh V Menon
 
PDF
Content-adaptive Video Coding for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
PDF
HTTP Adaptive Streaming – Quo Vadis (2024)
Alpen-Adria-Universität
 
PDF
Online Bitrate ladder prediction for Adaptive VVC Streaming
Vignesh V Menon
 
PDF
INCEPT: Intra CU Depth Prediction for HEVC
Alpen-Adria-Universität
 
PDF
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
Vignesh V Menon
 
PPTX
MHV'22 - Super-resolution Based Bitrate Adaptation for HTTP Adaptive Streamin...
Minh Nguyen
 
LiveVBR presentation at VQEG NORM.pdf
Vignesh V Menon
 
TQPM.pdf
Vignesh V Menon
 
Video Coding Enhancements for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
Research@Lunch_Presentation.pdf
Vignesh V Menon
 
ETPS_Efficient_Two_pass_Encoding_Scheme_for_Adaptive_Streaming.pdf
Vignesh V Menon
 
ETPS: Efficient Two-pass Encoding Scheme for Adaptive Live Streaming
Alpen-Adria-Universität
 
Doctoral Symposium presentation.pdf
Vignesh V Menon
 
Green_VCA_presentation.pdf
Vignesh V Menon
 
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Ijripublishers Ijri
 
CODA_presentation.pdf
JunZhao68
 
Jiri ece-01-03 adaptive temporal averaging and frame prediction based surveil...
Ijripublishers Ijri
 
Energy-efficient Adaptive Video Streaming with Latency-Aware Dynamic Resoluti...
Vignesh V Menon
 
Content_adaptive_video_coding_for_HTTP_Adaptive_Streaming.pdf
Vignesh V Menon
 
Content-adaptive Video Coding for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
HTTP Adaptive Streaming – Quo Vadis (2024)
Alpen-Adria-Universität
 
Online Bitrate ladder prediction for Adaptive VVC Streaming
Vignesh V Menon
 
INCEPT: Intra CU Depth Prediction for HEVC
Alpen-Adria-Universität
 
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
Vignesh V Menon
 
MHV'22 - Super-resolution Based Bitrate Adaptation for HTTP Adaptive Streamin...
Minh Nguyen
 
Ad

More from Alpen-Adria-Universität (20)

PDF
Energy-Quality-aware Variable Framerate Pareto-Front for Adaptive Video Strea...
Alpen-Adria-Universität
 
PPTX
End-to-end Quality of Experience Evaluation for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
PDF
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Alpen-Adria-Universität
 
PDF
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
PDF
VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instances
Alpen-Adria-Universität
 
PDF
GREEM: An Open-Source Energy Measurement Tool for Video Processing
Alpen-Adria-Universität
 
PDF
VEEP: Video Encoding Energy and CO₂ Emission Prediction
Alpen-Adria-Universität
 
PPTX
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...
Alpen-Adria-Universität
 
PPTX
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Vid...
Alpen-Adria-Universität
 
PPTX
Optimizing Video Streaming for Sustainability and Quality: The Role of Prese...
Alpen-Adria-Universität
 
PPTX
Machine Learning Based Resource Utilization Prediction in the Computing Conti...
Alpen-Adria-Universität
 
PDF
Evaluation of Quality of Experience of ABR Schemes in Gaming Stream
Alpen-Adria-Universität
 
PDF
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...
Alpen-Adria-Universität
 
PDF
Multi-access Edge Computing for Adaptive Video Streaming
Alpen-Adria-Universität
 
PPTX
Policy-Driven Dynamic HTTP Adaptive Streaming Player Environment
Alpen-Adria-Universität
 
PDF
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...
Alpen-Adria-Universität
 
PDF
Energy Consumption in Video Streaming: Components, Measurements, and Strategies
Alpen-Adria-Universität
 
PDF
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...
Alpen-Adria-Universität
 
PDF
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine Learning
Alpen-Adria-Universität
 
PDF
Optimizing QoE and Latency of Live Video Streaming Using Edge Computing a...
Alpen-Adria-Universität
 
Energy-Quality-aware Variable Framerate Pareto-Front for Adaptive Video Strea...
Alpen-Adria-Universität
 
End-to-end Quality of Experience Evaluation for HTTP Adaptive Streaming
Alpen-Adria-Universität
 
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Alpen-Adria-Universität
 
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
VEED: Video Encoding Energy and CO2 Emissions Dataset for AWS EC2 instances
Alpen-Adria-Universität
 
GREEM: An Open-Source Energy Measurement Tool for Video Processing
Alpen-Adria-Universität
 
VEEP: Video Encoding Energy and CO₂ Emission Prediction
Alpen-Adria-Universität
 
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Video...
Alpen-Adria-Universität
 
Empowerment of Atypical Viewers via Low-Effort Personalized Modeling of Vid...
Alpen-Adria-Universität
 
Optimizing Video Streaming for Sustainability and Quality: The Role of Prese...
Alpen-Adria-Universität
 
Machine Learning Based Resource Utilization Prediction in the Computing Conti...
Alpen-Adria-Universität
 
Evaluation of Quality of Experience of ABR Schemes in Gaming Stream
Alpen-Adria-Universität
 
Network-Assisted Delivery of Adaptive Video Streaming Services through CDN, S...
Alpen-Adria-Universität
 
Multi-access Edge Computing for Adaptive Video Streaming
Alpen-Adria-Universität
 
Policy-Driven Dynamic HTTP Adaptive Streaming Player Environment
Alpen-Adria-Universität
 
VE-Match: Video Encoding Matching-based Model for Cloud and Edge Computing In...
Alpen-Adria-Universität
 
Energy Consumption in Video Streaming: Components, Measurements, and Strategies
Alpen-Adria-Universität
 
Exploring the Energy Consumption of Video Streaming: Components, Challenges, ...
Alpen-Adria-Universität
 
Video Coding Enhancements for HTTP Adaptive Streaming Using Machine Learning
Alpen-Adria-Universität
 
Optimizing QoE and Latency of Live Video Streaming Using Edge Computing a...
Alpen-Adria-Universität
 
Ad

Recently uploaded (20)

PDF
Software Development Methodologies in 2025
KodekX
 
PDF
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PDF
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 
PDF
How-Cloud-Computing-Impacts-Businesses-in-2025-and-Beyond.pdf
Artjoker Software Development Company
 
PPTX
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
PDF
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
PDF
REPORT: Heating appliances market in Poland 2024
SPIUG
 
PDF
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
PDF
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
PDF
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
PDF
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
PDF
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
PDF
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
PDF
Doc9.....................................
SofiaCollazos
 
PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
PPTX
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
Software Development Methodologies in 2025
KodekX
 
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 
How-Cloud-Computing-Impacts-Businesses-in-2025-and-Beyond.pdf
Artjoker Software Development Company
 
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
REPORT: Heating appliances market in Poland 2024
SPIUG
 
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
Doc9.....................................
SofiaCollazos
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 

OPTE: Online Per-title Encoding for Live Video Streaming

  • 1. OPTE: Online Per-title Encoding for Live Video Streaming Vignesh V Menon, Hadi Amirpour, Mohammad Ghanbari, Christian Timmerer Christian Doppler Laboratory ATHENA, Institute of Information Technology (ITEC), University of Klagenfurt, Austria 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 24 May 2022 Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 1
  • 2. Outline 1 Background 2 Per-title Encoding 3 OPTE 4 Evaluation 5 Conclusions Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 2
  • 3. Background Background Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 3
  • 4. Background Background HTTP Adaptive Streaming (HAS)1 Why Adaptive Streaming? Adapt for a wide range of devices. Adapt for a broad set of Internet speeds. What HAS does? Each source video is split into segments. Encoded at multiple bitrates, resolutions, and codecs. Delivered to the client based on the device capability, network speed etc. 1 A. Bentaleb et al. “A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP”. In: IEEE Communications Surveys Tutorials 21.1 (2019), pp. 562–585. doi: 10.1109/COMST.2018.2862938. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 4
  • 5. Background Background Video coding in HTTP Adaptive Streaming (HAS) Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 5
  • 6. Per-title Encoding Per-title Encoding Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 6
  • 7. Per-title Encoding Per-title Encoding HTTP Adaptive Streaming (HAS) continues to grow and has become the de-facto standard in recent years for delivering video over the Internet. In HAS, each video is encoded at a set of bitrate-resolution pairs, referred to as bitrate ladder. Traditionally, a fixed bitrate ladder, e.g., HTTP Live Streaming (HLS) bitrate ladder,2 is used for all video contents. However, due to the vast diversity in video content characteristics and network condi- tions, the “one-size-fits-all” can be optimized per title to increase the Quality of Experi- ence (QoE).3 2 Apple Inc. HLS Authoring Specification for Apple Devices. https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices. 3 J. De Cock et al. “Complexity-based consistent-quality encoding in the cloud”. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016. doi: 10.1109/ICIP.2016.7532605. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 7
  • 8. Per-title Encoding Per-title Encoding Figure: Rate-Distortion (RD) curves using VMAF as the quality metric of Beauty and Golf sequences of UVG and BVI datasets4,5 encoded at 540p and 1080p resolutions. 4 Alexandre Mercat, Marko Viitanen, and Jarno Vanne. “UVG Dataset: 50/120fps 4K Sequences for Video Codec Analysis and Development”. In: Proceedings of the 11th ACM Multimedia Systems Conference. New York, NY, USA: Association for Computing Machinery, 2020, 297–302. isbn: 9781450368452. url: https://doi.org/10.1145/3339825.3394937. 5 Alex Mackin, Fan Zhang, and David R. Bull. “A study of subjective video quality at various frame rates”. In: 2015 IEEE International Conference on Image Processing (ICIP). 2015, pp. 3407–3411. doi: 10.1109/ICIP.2015.7351436. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 8
  • 9. Per-title Encoding Per-title Encoding Determining convex-hull is computationally very expensive, making it suitable for only VoD streaming applications. State-of-the-art per-title approaches yield latency much higher than the accepted latency in live streaming.6,7,8,9 6 Bitmovin. “White Paper: Per Title Encoding”. In: 2018. url: https://bitmovin.com/whitepapers/Bitmovin-Per-Title.pdf. 7 A. V. Katsenou, J. Sole, and D. R. Bull. “Content-gnostic Bitrate Ladder Prediction for Adaptive Video Streaming”. In: 2019 Picture Coding Symposium (PCS). 2019. doi: 10.1109/PCS48520.2019.8954529. 8 Madhukar Bhat, Jean-Marc Thiesse, and Patrick Le Callet. “Combining Video Quality Metrics To Select Perceptually Accurate Resolution In A Wide Quality Range: A Case Study”. In: 2021 IEEE International Conference on Image Processing (ICIP). 2021, pp. 2164–2168. doi: 10.1109/ICIP42928.2021.9506310. 9 Madhukar Bhat, Jean-Marc Thiesse, and Patrick Le Callet. “A Case Study of Machine Learning Classifiers for Real-Time Adaptive Resolution Prediction in Video Coding”. In: 2020 IEEE International Conference on Multimedia and Expo (ICME). 2020, pp. 1–6. doi: 10.1109/ICME46284.2020.9102934. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 9
  • 10. OPTE OPTE Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 10
  • 11. OPTE OPTE architecture Input Segment Feature Extraction Resolution Prediction Resolutions (R) Bitrates (B) Encoding Figure: OPTE architecture. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 11
  • 12. OPTE Phase 1: Feature Extraction OPTE Phase 1: Feature Extraction Compute texture energy per block A DCT-based energy function is used to determine the block-wise feature of each frame defined as: Hk = w−1 X i=0 w−1 X j=0 e|( ij wh )2−1| |DCT(i, j)| (1) where wxw is the size of the block, and DCT(i, j) is the (i, j)th DCT component when i + j > 0, and 0 otherwise. The energy values of blocks in a frame is averaged to determine the energy per frame.10 E = C−1 X k=0 Hp,k C · w2 (2) 10 Michael King, Zinovi Tauber, and Ze-Nian Li. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on Multimedia and Expo. 2007, pp. 1647–1650. doi: 10.1109/ICME.2007.4284983. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 12
  • 13. OPTE Phase 1: Feature Extraction Proposed Algorithm Phase 1: Feature Extraction hp: SAD of the block level energy values of frame p to that of the previous frame p − 1. hp = C−1 X k=0 SAD(Hp,k, Hp−1,k) C · w2 (3) where C denotes the number of blocks in frame p. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 13
  • 14. OPTE Phase 2: Resolution prediction OPTE Phase 2: Resolution prediction Inputs: f : original framerate rmax : original spatial resolution R : set of all resolutions B : set of all target bitrates Output: ˆ r(b) ∀ b ∈ B Compute E, h features. for each b ∈ B do Determine the optimized resolution. ˆ r(b) = rmax · (1 − s0e− ΓMA(rmax ,f )·h·b E ) Map ˆ r(b) to its closest value in R. Please note that ˆ r is an exponentially decaying (increasing) function. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 14
  • 15. OPTE Phase 2: Resolution prediction OPTE Determining ΓMA The half-life of the ˆ r function is evaluated, i.e., the bitrate when ˆ r becomes rmax 2 . ˆ r is an exponentially decaying (increasing) function where: b1 2 = ln(2) K (4) ΓMA can thus be determined as: ΓMA = ln(2) · E h · b1 2 (5) ΓMA values obtained for the training sequences of each resolution and framerate is averaged to determine ΓMA(rmax , f ). Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 15
  • 16. Evaluation Evaluation Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 16
  • 17. Evaluation Evaluation E and h values are extracted using VCA open-source software11 at a speed of 370fps for UHD content. Table: Results of OPTE against fixed bitrate ladder approach. Dataset Video f SI TI BDRV BDRP MCML Bunny 30 23.38 6.43 -39.48% -32.25% MCML Characters 30 50.43 29.85 -51.90% -68.81% MCML Crowd 30 33.76 10.13 -29.82% -14.18% MCML Dolls 30 16.88 19.91 -1.43% -8.49% SJTU BundNightScape 30 48.82 7.06 -61.22% -60.86% SJTU Fountains 30 43.37 11.42 -32.93% -8.49% SJTU TrafficFlow 30 33.57 13.80 -50.54% -40.90% SJTU TreeShade 30 52.88 5.29 -47.76% -38.55% VQEG CrowdRun 50 50.77 22.33 -8.50% -1.90% VQEG DucksTakeOff 50 47.77 15.10 -2.99% -2.79% VQEG IntoTree 50 24.41 12.09 -26.50% -5.75% VQEG OldTownCross 50 29.66 11.62 -30.91% -22.53% VQEG ParkJoy 50 62.78 27.00 -12.08% -2.62% JVET CatRobot 60 44.45 11.84 -13.43% -5.95% JVET DaylightRoad2 60 40.51 16.21 -27.52% -9.35% JVET FoodMarket4 60 38.26 17.68 -18.11% -3.74% Average -28.45% -20.45% 11 Vignesh V Menon et al. “VCA: Video Complexity Analyzer”. In: Proceedings of the 13th ACM Multimedia Systems Conference. 2022. isbn: 9781450392839. doi: 10.1145/3524273.3532896. url: https://doi.org/10.1145/3524273.3532896. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 17
  • 18. Evaluation Evaluation 0 5 10 15 Bitrate (in Mbps) 40 60 80 100 VMAF Default OPTE (a) BundNightScape 0 5 10 15 Bitrate (in Mbps) 40 60 80 100 VMAF Default OPTE (b) Bunny Figure: Comparison of RD curves for encoding the first segment of BundNightScape and Bunny sequences using the fixed bitrate ladder and OPTE. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 18
  • 19. Conclusions Conclusions Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 19
  • 20. Conclusions Conclusions Proposed OPTE, an online per-title encoding scheme for live streaming applications. DCT-energy-based features are used to determine the spatial and temporal complexity of the video, which is fast and effective. Predicts optimized resolutions for a set of bitrates defined in a bitrate ladder for every video, which helps in improving the overall performance (QoE) of UHD video streaming. Live streaming using OPTE requires 20.45% fewer bits to maintain the same PSNR and 28.45% fewer bits to maintain the same VMAF. Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 20
  • 21. Conclusions Q & A Thank you for your attention! Vignesh V Menon ([email protected]) Hadi Amirpour ([email protected]) Mohammad Ghanbari ([email protected]) Christian Timmerer ([email protected]) Vignesh V Menon OPTE: Online Per-title Encoding for Live Video Streaming 21