SlideShare a Scribd company logo
P3 2018 python_regexes
FBW
23-10-2018
Wim Van Criekinge
Google Calendar
Bioinformatics.be
P3 2018 python_regexes
http://course.fast.ai/index.html
RECAP: Lists
• Flexible arrays, not Lisp-like linked
lists
• a = [99, "bottles of beer", ["on", "the",
"wall"]]
• Same operators as for strings
• a+b, a*3, a[0], a[-1], a[1:], len(a)
• Item and slice assignment
• a[0] = 98
• a[1:2] = ["bottles", "of", "beer"]
-> [98, "bottles", "of", "beer", ["on", "the", "wall"]]
• del a[-1] # -> [98, "bottles", "of", "beer"]
RECAP: Dictionaries
• Hash tables, "associative arrays"
• d = {"duck": "eend", "water": "water"}
• Lookup:
• d["duck"] -> "eend"
• d["back"] # raises KeyError exception
• Delete, insert, overwrite:
• del d["water"] # {"duck": "eend", "back": "rug"}
• d["back"] = "rug" # {"duck": "eend", "back":
"rug"}
• d["duck"] = "duik" # {"duck": "duik", "back":
"rug"}
RECAP
if condition:
statements
[elif condition:
statements] ...
else:
statements
while condition:
statements
for var in sequence:
statements
break
continue
Strings
REGULAR EXPRESSIONS
Regular Expressions
http://en.wikipedia.org/wiki/Regular_expression
In computing, a regular expression, also
referred to as "regex" or "regexp", provides a
concise and flexible means for matching
strings of text, such as particular characters,
words, or patterns of characters. A regular
expression is written in a formal language that
can be interpreted by a regular expression
processor.
Really clever "wild card" expressions for
matching and parsing strings.
Understanding Regular Expressions
• Very powerful and quite cryptic
• Fun once you understand them
• Regular expressions are a language
unto themselves
• A language of "marker characters" -
programming with characters
• It is kind of an "old school"
language - compact
Regular Expression Quick Guide
^ Matches the beginning of a line
$ Matches the end of the line
. Matches any character
s Matches whitespace
S Matches any non-whitespace character
* Repeats a character zero or more times
*? Repeats a character zero or more times (non-greedy)
+ Repeats a chracter one or more times
+? Repeats a character one or more times (non-greedy)
[aeiou] Matches a single character in the listed set
[^XYZ] Matches a single character not in the listed set
[a-z0-9] The set of characters can include a range
( Indicates where string extraction is to start
) Indicates where string extraction is to end
The Regular Expression Module
• Before you can use regular expressions in
your program, you must import the library
using "import re"
• You can use re.search() to see if a string
matches a regular expression similar to
using the find() method for strings
• You can use re.findall() extract portions of
a string that match your regular expression
similar to a combination of find() and
slicing
Wild-Card Characters
• The dot character matches any
character
• If you add the asterisk character,
the character is "any number of
times"
^X.*:
Match the start of the line
Match any character
Many times
Matching and Extracting Data
• The re.search() returns a True/False
depending on whether the string matches
the regular expression
• If we actually want the matching strings
to be extracted, we use re.findall()
>>> import re
>>> x = 'My 2 favorite numbers are 19 and 42'
>>> y = re.findall('[0-9]+',x)
>>> print y
['2', '19', '42']
Warning: Greedy Matching
• The repeat characters (* and +) push outward in both directions
(greedy) to match the largest possible string
>>> import re
>>> x = 'From: Using the : character'
>>> y = re.findall('^F.+:', x)
>>> print y
['From: Using the :']
^F.+:
One or more
characters
First character in the
match is an F
Last character in the
match is a :
Non-Greedy Matching
• Not all regular expression repeat codes are
greedy! If you add a ? character - the + and *
chill out a bit...
>>> import re
>>> x = 'From: Using the : character'
>>> y = re.findall('^F.+?:', x)
>>> print y
['From:']
^F.+?:
One or more
characters but
not greedily
First character in the
match is an F
Last character in the
match is a :
Fine Tuning String Extraction
• Parenthesis are not part of the match -
but they tell where to start and stop what
string to extract
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16
2008
>>> y = re.findall('S+@S+',x)
>>> print y
['stephen.marquard@uct.ac.za']
>>> y = re.findall('^From (S+@S+)',x)
>>> print y
['stephen.marquard@uct.ac.za']
^From (S+@S+)
The Double Split Version
• Sometimes we split a line one way and then grab
one of the pieces of the line and split that piece
again
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16
2008
words = line.split()
email = words[1]
pieces = email.split('@')
print pieces[1]
stephen.marquard@uct.ac.za
['stephen.marquard', 'uct.ac.za']
'uct.ac.za'
The Regex Version
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16
2008
import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:1
y = re.findall('@([^ ]*)',lin)
print y['uct.ac.za']
'@([^ ]*)'
Look through the string until you find an at-sign
Match non-blank character
Match many of them
Escape Character
• If you want a special regular expression
character to just behave normally (most
of the time) you prefix it with ''
>>> import re
>>> x = 'We just received $10.00 for cookies.'
>>> y = re.findall('$[0-9.]+',x)
>>> print y
['$10.00']
$[0-9.]+
A digit or periodA real dollar sign
At least one
or more
Real world problems
• Match IP Addresses, email addresses,
URLs
• Match balanced sets of parenthesis
• Substitute words
• Tokenize
• Validate
• Count
• Delete duplicates
• Natural Language processing
P3 2018 python_regexes
P3 2018 python_regexes
RE in Python
• Unleash the power - built-in re module
• Functions
– to compile patterns
• compile
– to perform matches
• match, search, findall, finditer
– to perform operations on match object
• group, start, end, span
– to substitute
• sub, subn
• - Metacharacters
Regex.py
text = 'abbaaabbbbaaaaa'
pattern = 'ab'
for match in re.finditer(pattern, text):
s = match.start()
e = match.end()
print ('Found "%s" at %d:%d' % (text[s:e], s, e))
27
Reading Files
name = open("filename")
– opens the given file for reading, and returns a file object
name.read() - file's entire contents as a string
name.readline() - next line from file as a string
name.readlines() - file's contents as a list of lines
– the lines from a file object can also be read using a for loop
>>> f = open("hours.txt")
>>> f.read()
'123 Susan 12.5 8.1 7.6 3.2n
456 Brad 4.0 11.6 6.5 2.7 12n
789 Jenn 8.0 8.0 8.0 8.0 7.5n'
28
File Input Template
• A template for reading files in Python:
name = open("filename")
for line in name:
statements
>>> input = open("hours.txt")
>>> for line in input:
... print(line.strip()) # strip() removes n
123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jenn 8.0 8.0 8.0 8.0 7.5
29
Writing Files
name = open("filename", "w")
name = open("filename", "a")
– opens file for write (deletes previous contents), or
– opens file for append (new data goes after previous data)
name.write(str) - writes the given string to the file
name.close() - saves file once writing is done
>>> out = open("output.txt", "w")
>>> out.write("Hello, world!n")
>>> out.write("How are you?")
>>> out.close()
>>> open("output.txt").read()
'Hello, world!nHow are you?'
Question 4
• Program your own prosite parser !
• Download prosite pattern database
(prosite.dat)
• Automatically generate >2000 search
patterns, and search in sequence set
from question 1
>SEQ1
MGNLFENCTHRYSFEYIYENCTNTTNQCGLIRNVASSIDVFHWLDVYISTTIFVISGILNFYCLFIALYT
YYFLDNETRKHYVFVLSRFLSSILVIISLLVLESTLFSESLSPTFAYYAVAFSIYDFSMDTLFFSYIMIS
LITYFGVVHYNFYRRHVSLRSLYIILISMWTFSLAIAIPLGLYEAASNSQGPIKCDLSYCGKVVEWITCS
LQGCDSFYNANELLVQSIISSVETLVGSLVFLTDPLINIFFDKNISKMVKLQLTLGKWFIALYRFLFQMT
NIFENCSTHYSFEKNLQKCVNASNPCQLLQKMNTAHSLMIWMGFYIPSAMCFLAVLVDTYCLLVTISILK
SLKKQSRKQYIFGRANIIGEHNDYVVVRLSAAILIALCIIIIQSTYFIDIPFRDTFAFFAVLFIIYDFSILSLLGSFTGVA
M MTYFGVMRPLVYRDKFTLKTIYIIAFAIVLFSVCVAIPFGLFQAADEIDGPIKCDSESCELIVKWLLFCI
ACLILMGCTGTLLFVTVSLHWHSYKSKKMGNVSSSAFNHGKSRLTWTTTILVILCCVELIPTGLLAAFGK
SESISDDCYDFYNANSLIFPAIVSSLETFLGSITFLLDPIINFSFDKRISKVFSSQVSMFSIFFCGKR
>SEQ2
MLDDRARMEA AKKEKVEQIL AEFQLQEEDL KKVMRRMQKE MDRGLRLETH EEASVKMLPT YVRSTPEGSE
VGDFLSLDLG GTNFRVMLVK VGEGEEGQWS VKTKHQMYSI PEDAMTGTAE MLFDYISECI SDFLDKHQMK
HKKLPLGFTF SFPVRHEDID KGILLNWTKG FKASGAEGNN VVGLLRDAIK RRGDFEMDVV AMVNDTVATM
ISCYYEDHQC EVGMIVGTGC NACYMEEMQN VELVEGDEGR MCVNTEWGAF GDSGELDEFL LEYDRLVDES
SANPGQQLYE KLIGGKYMGE LVRLVLLRLV DENLLFHGEA SEQLRTRGAF ETRFVSQVES DTGDRKQIYN
ILSTLGLRPS TTDCDIVRRA CESVSTRAAH MCSAGLAGVI NRMRESRSED VMRITVGVDG SVYKLHPSFK
ERFHASVRRL TPSCEITFIE SEEGSGRGAA LVSAVACKKA CMLGQ
>SEQ3
MESDSFEDFLKGEDFSNYSYSSDLPPFLLDAAPCEPESLEINKYFVVIIYVLVFLLSLLGNSLVMLVILY
SRVGRSGRDNVIGDHVDYVTDVYLLNLALADLLFALTLPIWAASKVTGWIFGTFLCKVVSLLKEVNFYSGILLLA
CISVDRY
LAIVHATRTLTQKRYLVKFICLSIWGLSLLLALPVLIFRKTIYPPYVSPVCYEDMGNNTANWRMLLRILP
QSFGFIVPLLIMLFCYGFTLRTLFKAHMGQKHRAMRVIFAVVLIFLLCWLPYNLVLLADTLMRTWVIQET
CERRNDIDRALEATEILGILGRVNLIGEHWDYHSCLNPLIYAFIGQKFRHGLLKILAIHGLISKDSLPKDSRPSFVGS
SSGH TSTTL
>SEQ4
MEANFQQAVK KLVNDFEYPT ESLREAVKEF DELRQKGLQK NGEVLAMAPA FISTLPTGAE TGDFLALDFG
GTNLRVCWIQ LLGDGKYEMK HSKSVLPREC VRNESVKPII DFMSDHVELF IKEHFPSKFG CPEEEYLPMG
FTFSYPANQV SITESYLLRW TKGLNIPEAI NKDFAQFLTE GFKARNLPIR IEAVINDTVG TLVTRAYTSK
ESDTFMGIIF GTGTNGAYVE QMNQIPKLAG KCTGDHMLIN MEWGATDFSC LHSTRYDLLL DHDTPNAGRQ
IFEKRVGGMY LGELFRRALF HLIKVYNFNE GIFPPSITDA WSLETSVLSR MMVERSAENV RNVLSTFKFR
FRSDEEALYL WDAAHAIGRR AARMSAVPIA SLYLSTGRAG KKSDVGVDGS LVEHYPHFVD MLREALRELI
GDNEKLISIG IAKDGSGIGA ALCALQAVKE KKGLA MEANFQQAVK KLVNDFEYPT ESLREAVKEF
DELRQKGLQK NGEVLAMAPA FISTLPTGAE TGDFLALDFG GTNLRVCWIQ LLGDGKYEMK HSKSVLPREC
VRNESVKPII DFMSDHVELF IKEHFPSKFG CPEEEYLPMG FTFSYPANQV SITESYLLRW TKGLNIPEAI
NKDFAQFLTE GFKARNLPIR IEAVINDTVG TLVTRAYTSK ESDTFMGIIF GTGTNGAYVE QMNQIPKLAG
KCTGDHMLIN MEWGATDFSC LHSTRYDLLL DHDTPNAGRQ IFEKRVGGMY LGELFRRALF HLIKVYNFNE
GIFPPSITDA WSLETSVLSR MMVERSAENV RNVLSTFKFR FRSDEEALYL WDAAHAIGRR AARMSAVPIA
SLYLSTGRAG KKSDVGVDGS LVEHYPHFVD MLREALRELI GDNEKLISIG IAKDGSGIGA ALCALQAVKE
KKGLA
Oefening 1
Question 3. Swiss-Knife.py
• Using a database as input ! Parse
the entire Swiss Prot collection
– How many entries are there ?
– Average Protein Length (in aa and
MW)
– Relative frequency of amino acids
• Compare to the ones used to construct
the PAM scoring matrixes from 1978 –
1991
Question 3: Getting the database
Uniprot_sprot.dat.gz – 528Mb
(on Github onder Files)
https://github.ugent.be/wvcrieki/Bioinformatics
blob/script_branch/Files/swiss-prot.dat
http://www.ebi.ac.uk/uniprot/download-center
Amino acid frequencies
1978 1991
L 0.085 0.091
A 0.087 0.077
G 0.089 0.074
S 0.070 0.069
V 0.065 0.066
E 0.050 0.062
T 0.058 0.059
K 0.081 0.059
I 0.037 0.053
D 0.047 0.052
R 0.041 0.051
P 0.051 0.051
N 0.040 0.043
Q 0.038 0.041
F 0.040 0.040
Y 0.030 0.032
M 0.015 0.024
H 0.034 0.023
C 0.033 0.020
W 0.010 0.014
Second step: Frequencies of Occurence
Extra Questions
• How many records have a sequence of length 260?
• What are the first 20 residues of 143X_MAIZE?
• What is the identifier for the record with the
shortest sequence? Is there more than one record
with that length?
• What is the identifier for the record with the
longest sequence? Is there more than one record
with that length?
• How many contain the subsequence "ARRA"?
• How many contain the substring "KCIP-1" in the
description?

More Related Content

What's hot (19)

PDF
Begin with Python
Narong Intiruk
 
PDF
Puppet Camp Paris 2015: Power of Puppet 4 (Beginner)
Puppet
 
ODP
Advanced Perl Techniques
Dave Cross
 
PDF
Input and Output
Marieswaran Ramasamy
 
PDF
The Magic Of Elixir
Gabriele Lana
 
PDF
Functional Pattern Matching on Python
Daker Fernandes
 
PDF
Perl6 in-production
Andrew Shitov
 
KEY
Programming Haskell Chapter8
Kousuke Ruichi
 
PDF
Perl 6 by example
Andrew Shitov
 
PPTX
Pa1 session 3_slides
aiclub_slides
 
PPT
05php
sahilshamrma08
 
PDF
Streams for (Co)Free!
John De Goes
 
KEY
Refactor like a boss
gsterndale
 
PDF
Introduction to Perl
worr1244
 
PDF
Docopt
René Ribaud
 
PDF
What's New in PHP 5.5
Corey Ballou
 
PDF
Linked to ArrayList: the full story
José Paumard
 
Begin with Python
Narong Intiruk
 
Puppet Camp Paris 2015: Power of Puppet 4 (Beginner)
Puppet
 
Advanced Perl Techniques
Dave Cross
 
Input and Output
Marieswaran Ramasamy
 
The Magic Of Elixir
Gabriele Lana
 
Functional Pattern Matching on Python
Daker Fernandes
 
Perl6 in-production
Andrew Shitov
 
Programming Haskell Chapter8
Kousuke Ruichi
 
Perl 6 by example
Andrew Shitov
 
Pa1 session 3_slides
aiclub_slides
 
Streams for (Co)Free!
John De Goes
 
Refactor like a boss
gsterndale
 
Introduction to Perl
worr1244
 
Docopt
René Ribaud
 
What's New in PHP 5.5
Corey Ballou
 
Linked to ArrayList: the full story
José Paumard
 

Similar to P3 2018 python_regexes (20)

PPTX
P3 2017 python_regexes
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
Pythonlearn-11-Regex.pptx
Dave Tan
 
PDF
Python - File operations & Data parsing
Felix Z. Hoffmann
 
PDF
Module 3 - Regular Expressions, Dictionaries.pdf
GaneshRaghu4
 
PPTX
Python lec5
Swarup Ghosh
 
PDF
Python regular expressions
Krishna Nanda
 
DOCX
Python - Regular Expressions
Mukesh Tekwani
 
PPTX
Open course(programming languages) 20150121
JangChulho
 
PDF
Python Regular Expressions
BMS Institute of Technology and Management
 
PDF
Python (regular expression)
Chirag Shetty
 
PPTX
Regular expressions in Python
Sujith Kumar
 
PDF
regular-expression.pdf
DarellMuchoko
 
PDF
Regular expressions, Alex Perry, Google, PyCon2014
alex_perry
 
PPTX
Regular expressions,function and glob module.pptx
Ramakrishna Reddy Bijjam
 
PDF
Python : Regular expressions
Emertxe Information Technologies Pvt Ltd
 
PPTX
Python advanced 2. regular expression in python
John(Qiang) Zhang
 
PDF
Regular expressions
Raghu nath
 
PPTX
unit-4 regular expression.pptx
PadreBhoj
 
PPTX
Python- Regular expression
Megha V
 
P3 2017 python_regexes
Prof. Wim Van Criekinge
 
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
Prof. Wim Van Criekinge
 
Pythonlearn-11-Regex.pptx
Dave Tan
 
Python - File operations & Data parsing
Felix Z. Hoffmann
 
Module 3 - Regular Expressions, Dictionaries.pdf
GaneshRaghu4
 
Python lec5
Swarup Ghosh
 
Python regular expressions
Krishna Nanda
 
Python - Regular Expressions
Mukesh Tekwani
 
Open course(programming languages) 20150121
JangChulho
 
Python Regular Expressions
BMS Institute of Technology and Management
 
Python (regular expression)
Chirag Shetty
 
Regular expressions in Python
Sujith Kumar
 
regular-expression.pdf
DarellMuchoko
 
Regular expressions, Alex Perry, Google, PyCon2014
alex_perry
 
Regular expressions,function and glob module.pptx
Ramakrishna Reddy Bijjam
 
Python : Regular expressions
Emertxe Information Technologies Pvt Ltd
 
Python advanced 2. regular expression in python
John(Qiang) Zhang
 
Regular expressions
Raghu nath
 
unit-4 regular expression.pptx
PadreBhoj
 
Python- Regular expression
Megha V
 
Ad

More from Prof. Wim Van Criekinge (20)

PPTX
2020 02 11_biological_databases_part1
Prof. Wim Van Criekinge
 
PPTX
2019 03 05_biological_databases_part5_v_upload
Prof. Wim Van Criekinge
 
PPTX
2019 03 05_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
PPTX
2019 03 05_biological_databases_part3_v_upload
Prof. Wim Van Criekinge
 
PPTX
2019 02 21_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
PPTX
2019 02 12_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
PPTX
P7 2018 biopython3
Prof. Wim Van Criekinge
 
PPTX
P6 2018 biopython2b
Prof. Wim Van Criekinge
 
PPTX
T1 2018 bioinformatics
Prof. Wim Van Criekinge
 
PPTX
P1 2018 python
Prof. Wim Van Criekinge
 
PDF
Bio ontologies and semantic technologies[2]
Prof. Wim Van Criekinge
 
PPTX
2018 05 08_biological_databases_no_sql
Prof. Wim Van Criekinge
 
PPTX
2018 03 27_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
PPTX
2018 03 20_biological_databases_part3
Prof. Wim Van Criekinge
 
PPTX
2018 02 20_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
PPTX
2018 02 20_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
PPTX
P7 2017 biopython3
Prof. Wim Van Criekinge
 
PPTX
P6 2017 biopython2
Prof. Wim Van Criekinge
 
PPTX
Van criekinge 2017_11_13_rodebiotech
Prof. Wim Van Criekinge
 
PPTX
P4 2017 io
Prof. Wim Van Criekinge
 
2020 02 11_biological_databases_part1
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part5_v_upload
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part3_v_upload
Prof. Wim Van Criekinge
 
2019 02 21_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
2019 02 12_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
P7 2018 biopython3
Prof. Wim Van Criekinge
 
P6 2018 biopython2b
Prof. Wim Van Criekinge
 
T1 2018 bioinformatics
Prof. Wim Van Criekinge
 
P1 2018 python
Prof. Wim Van Criekinge
 
Bio ontologies and semantic technologies[2]
Prof. Wim Van Criekinge
 
2018 05 08_biological_databases_no_sql
Prof. Wim Van Criekinge
 
2018 03 27_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
2018 03 20_biological_databases_part3
Prof. Wim Van Criekinge
 
2018 02 20_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
2018 02 20_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
P7 2017 biopython3
Prof. Wim Van Criekinge
 
P6 2017 biopython2
Prof. Wim Van Criekinge
 
Van criekinge 2017_11_13_rodebiotech
Prof. Wim Van Criekinge
 
Ad

Recently uploaded (20)

PPTX
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
PPTX
How to Set Up Tags in Odoo 18 - Odoo Slides
Celine George
 
PDF
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
PPTX
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
PPT
Talk on Critical Theory, Part One, Philosophy of Social Sciences
Soraj Hongladarom
 
PDF
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
PPTX
How to Set Maximum Difference Odoo 18 POS
Celine George
 
PDF
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
PPTX
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
PPTX
SPINA BIFIDA: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PDF
Knee Extensor Mechanism Injuries - Orthopedic Radiologic Imaging
Sean M. Fox
 
PDF
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
PPTX
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
PDF
Exploring the Different Types of Experimental Research
Thelma Villaflores
 
PPTX
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
PDF
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PDF
The Different Types of Non-Experimental Research
Thelma Villaflores
 
PPTX
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
PDF
Biological Bilingual Glossary Hindi and English Medium
World of Wisdom
 
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
How to Set Up Tags in Odoo 18 - Odoo Slides
Celine George
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
Talk on Critical Theory, Part One, Philosophy of Social Sciences
Soraj Hongladarom
 
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
How to Set Maximum Difference Odoo 18 POS
Celine George
 
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
SPINA BIFIDA: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
Knee Extensor Mechanism Injuries - Orthopedic Radiologic Imaging
Sean M. Fox
 
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
Exploring the Different Types of Experimental Research
Thelma Villaflores
 
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
The Different Types of Non-Experimental Research
Thelma Villaflores
 
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
Biological Bilingual Glossary Hindi and English Medium
World of Wisdom
 

P3 2018 python_regexes

  • 7. RECAP: Lists • Flexible arrays, not Lisp-like linked lists • a = [99, "bottles of beer", ["on", "the", "wall"]] • Same operators as for strings • a+b, a*3, a[0], a[-1], a[1:], len(a) • Item and slice assignment • a[0] = 98 • a[1:2] = ["bottles", "of", "beer"] -> [98, "bottles", "of", "beer", ["on", "the", "wall"]] • del a[-1] # -> [98, "bottles", "of", "beer"]
  • 8. RECAP: Dictionaries • Hash tables, "associative arrays" • d = {"duck": "eend", "water": "water"} • Lookup: • d["duck"] -> "eend" • d["back"] # raises KeyError exception • Delete, insert, overwrite: • del d["water"] # {"duck": "eend", "back": "rug"} • d["back"] = "rug" # {"duck": "eend", "back": "rug"} • d["duck"] = "duik" # {"duck": "duik", "back": "rug"}
  • 9. RECAP if condition: statements [elif condition: statements] ... else: statements while condition: statements for var in sequence: statements break continue Strings REGULAR EXPRESSIONS
  • 10. Regular Expressions http://en.wikipedia.org/wiki/Regular_expression In computing, a regular expression, also referred to as "regex" or "regexp", provides a concise and flexible means for matching strings of text, such as particular characters, words, or patterns of characters. A regular expression is written in a formal language that can be interpreted by a regular expression processor. Really clever "wild card" expressions for matching and parsing strings.
  • 11. Understanding Regular Expressions • Very powerful and quite cryptic • Fun once you understand them • Regular expressions are a language unto themselves • A language of "marker characters" - programming with characters • It is kind of an "old school" language - compact
  • 12. Regular Expression Quick Guide ^ Matches the beginning of a line $ Matches the end of the line . Matches any character s Matches whitespace S Matches any non-whitespace character * Repeats a character zero or more times *? Repeats a character zero or more times (non-greedy) + Repeats a chracter one or more times +? Repeats a character one or more times (non-greedy) [aeiou] Matches a single character in the listed set [^XYZ] Matches a single character not in the listed set [a-z0-9] The set of characters can include a range ( Indicates where string extraction is to start ) Indicates where string extraction is to end
  • 13. The Regular Expression Module • Before you can use regular expressions in your program, you must import the library using "import re" • You can use re.search() to see if a string matches a regular expression similar to using the find() method for strings • You can use re.findall() extract portions of a string that match your regular expression similar to a combination of find() and slicing
  • 14. Wild-Card Characters • The dot character matches any character • If you add the asterisk character, the character is "any number of times" ^X.*: Match the start of the line Match any character Many times
  • 15. Matching and Extracting Data • The re.search() returns a True/False depending on whether the string matches the regular expression • If we actually want the matching strings to be extracted, we use re.findall() >>> import re >>> x = 'My 2 favorite numbers are 19 and 42' >>> y = re.findall('[0-9]+',x) >>> print y ['2', '19', '42']
  • 16. Warning: Greedy Matching • The repeat characters (* and +) push outward in both directions (greedy) to match the largest possible string >>> import re >>> x = 'From: Using the : character' >>> y = re.findall('^F.+:', x) >>> print y ['From: Using the :'] ^F.+: One or more characters First character in the match is an F Last character in the match is a :
  • 17. Non-Greedy Matching • Not all regular expression repeat codes are greedy! If you add a ? character - the + and * chill out a bit... >>> import re >>> x = 'From: Using the : character' >>> y = re.findall('^F.+?:', x) >>> print y ['From:'] ^F.+?: One or more characters but not greedily First character in the match is an F Last character in the match is a :
  • 18. Fine Tuning String Extraction • Parenthesis are not part of the match - but they tell where to start and stop what string to extract From [email protected] Sat Jan 5 09:14:16 2008 >>> y = re.findall('S+@S+',x) >>> print y ['[email protected]'] >>> y = re.findall('^From (S+@S+)',x) >>> print y ['[email protected]'] ^From (S+@S+)
  • 19. The Double Split Version • Sometimes we split a line one way and then grab one of the pieces of the line and split that piece again From [email protected] Sat Jan 5 09:14:16 2008 words = line.split() email = words[1] pieces = email.split('@') print pieces[1] [email protected] ['stephen.marquard', 'uct.ac.za'] 'uct.ac.za'
  • 20. The Regex Version From [email protected] Sat Jan 5 09:14:16 2008 import re lin = 'From [email protected] Sat Jan 5 09:14:1 y = re.findall('@([^ ]*)',lin) print y['uct.ac.za'] '@([^ ]*)' Look through the string until you find an at-sign Match non-blank character Match many of them
  • 21. Escape Character • If you want a special regular expression character to just behave normally (most of the time) you prefix it with '' >>> import re >>> x = 'We just received $10.00 for cookies.' >>> y = re.findall('$[0-9.]+',x) >>> print y ['$10.00'] $[0-9.]+ A digit or periodA real dollar sign At least one or more
  • 22. Real world problems • Match IP Addresses, email addresses, URLs • Match balanced sets of parenthesis • Substitute words • Tokenize • Validate • Count • Delete duplicates • Natural Language processing
  • 25. RE in Python • Unleash the power - built-in re module • Functions – to compile patterns • compile – to perform matches • match, search, findall, finditer – to perform operations on match object • group, start, end, span – to substitute • sub, subn • - Metacharacters
  • 26. Regex.py text = 'abbaaabbbbaaaaa' pattern = 'ab' for match in re.finditer(pattern, text): s = match.start() e = match.end() print ('Found "%s" at %d:%d' % (text[s:e], s, e))
  • 27. 27 Reading Files name = open("filename") – opens the given file for reading, and returns a file object name.read() - file's entire contents as a string name.readline() - next line from file as a string name.readlines() - file's contents as a list of lines – the lines from a file object can also be read using a for loop >>> f = open("hours.txt") >>> f.read() '123 Susan 12.5 8.1 7.6 3.2n 456 Brad 4.0 11.6 6.5 2.7 12n 789 Jenn 8.0 8.0 8.0 8.0 7.5n'
  • 28. 28 File Input Template • A template for reading files in Python: name = open("filename") for line in name: statements >>> input = open("hours.txt") >>> for line in input: ... print(line.strip()) # strip() removes n 123 Susan 12.5 8.1 7.6 3.2 456 Brad 4.0 11.6 6.5 2.7 12 789 Jenn 8.0 8.0 8.0 8.0 7.5
  • 29. 29 Writing Files name = open("filename", "w") name = open("filename", "a") – opens file for write (deletes previous contents), or – opens file for append (new data goes after previous data) name.write(str) - writes the given string to the file name.close() - saves file once writing is done >>> out = open("output.txt", "w") >>> out.write("Hello, world!n") >>> out.write("How are you?") >>> out.close() >>> open("output.txt").read() 'Hello, world!nHow are you?'
  • 30. Question 4 • Program your own prosite parser ! • Download prosite pattern database (prosite.dat) • Automatically generate >2000 search patterns, and search in sequence set from question 1
  • 31. >SEQ1 MGNLFENCTHRYSFEYIYENCTNTTNQCGLIRNVASSIDVFHWLDVYISTTIFVISGILNFYCLFIALYT YYFLDNETRKHYVFVLSRFLSSILVIISLLVLESTLFSESLSPTFAYYAVAFSIYDFSMDTLFFSYIMIS LITYFGVVHYNFYRRHVSLRSLYIILISMWTFSLAIAIPLGLYEAASNSQGPIKCDLSYCGKVVEWITCS LQGCDSFYNANELLVQSIISSVETLVGSLVFLTDPLINIFFDKNISKMVKLQLTLGKWFIALYRFLFQMT NIFENCSTHYSFEKNLQKCVNASNPCQLLQKMNTAHSLMIWMGFYIPSAMCFLAVLVDTYCLLVTISILK SLKKQSRKQYIFGRANIIGEHNDYVVVRLSAAILIALCIIIIQSTYFIDIPFRDTFAFFAVLFIIYDFSILSLLGSFTGVA M MTYFGVMRPLVYRDKFTLKTIYIIAFAIVLFSVCVAIPFGLFQAADEIDGPIKCDSESCELIVKWLLFCI ACLILMGCTGTLLFVTVSLHWHSYKSKKMGNVSSSAFNHGKSRLTWTTTILVILCCVELIPTGLLAAFGK SESISDDCYDFYNANSLIFPAIVSSLETFLGSITFLLDPIINFSFDKRISKVFSSQVSMFSIFFCGKR >SEQ2 MLDDRARMEA AKKEKVEQIL AEFQLQEEDL KKVMRRMQKE MDRGLRLETH EEASVKMLPT YVRSTPEGSE VGDFLSLDLG GTNFRVMLVK VGEGEEGQWS VKTKHQMYSI PEDAMTGTAE MLFDYISECI SDFLDKHQMK HKKLPLGFTF SFPVRHEDID KGILLNWTKG FKASGAEGNN VVGLLRDAIK RRGDFEMDVV AMVNDTVATM ISCYYEDHQC EVGMIVGTGC NACYMEEMQN VELVEGDEGR MCVNTEWGAF GDSGELDEFL LEYDRLVDES SANPGQQLYE KLIGGKYMGE LVRLVLLRLV DENLLFHGEA SEQLRTRGAF ETRFVSQVES DTGDRKQIYN ILSTLGLRPS TTDCDIVRRA CESVSTRAAH MCSAGLAGVI NRMRESRSED VMRITVGVDG SVYKLHPSFK ERFHASVRRL TPSCEITFIE SEEGSGRGAA LVSAVACKKA CMLGQ >SEQ3 MESDSFEDFLKGEDFSNYSYSSDLPPFLLDAAPCEPESLEINKYFVVIIYVLVFLLSLLGNSLVMLVILY SRVGRSGRDNVIGDHVDYVTDVYLLNLALADLLFALTLPIWAASKVTGWIFGTFLCKVVSLLKEVNFYSGILLLA CISVDRY LAIVHATRTLTQKRYLVKFICLSIWGLSLLLALPVLIFRKTIYPPYVSPVCYEDMGNNTANWRMLLRILP QSFGFIVPLLIMLFCYGFTLRTLFKAHMGQKHRAMRVIFAVVLIFLLCWLPYNLVLLADTLMRTWVIQET CERRNDIDRALEATEILGILGRVNLIGEHWDYHSCLNPLIYAFIGQKFRHGLLKILAIHGLISKDSLPKDSRPSFVGS SSGH TSTTL >SEQ4 MEANFQQAVK KLVNDFEYPT ESLREAVKEF DELRQKGLQK NGEVLAMAPA FISTLPTGAE TGDFLALDFG GTNLRVCWIQ LLGDGKYEMK HSKSVLPREC VRNESVKPII DFMSDHVELF IKEHFPSKFG CPEEEYLPMG FTFSYPANQV SITESYLLRW TKGLNIPEAI NKDFAQFLTE GFKARNLPIR IEAVINDTVG TLVTRAYTSK ESDTFMGIIF GTGTNGAYVE QMNQIPKLAG KCTGDHMLIN MEWGATDFSC LHSTRYDLLL DHDTPNAGRQ IFEKRVGGMY LGELFRRALF HLIKVYNFNE GIFPPSITDA WSLETSVLSR MMVERSAENV RNVLSTFKFR FRSDEEALYL WDAAHAIGRR AARMSAVPIA SLYLSTGRAG KKSDVGVDGS LVEHYPHFVD MLREALRELI GDNEKLISIG IAKDGSGIGA ALCALQAVKE KKGLA MEANFQQAVK KLVNDFEYPT ESLREAVKEF DELRQKGLQK NGEVLAMAPA FISTLPTGAE TGDFLALDFG GTNLRVCWIQ LLGDGKYEMK HSKSVLPREC VRNESVKPII DFMSDHVELF IKEHFPSKFG CPEEEYLPMG FTFSYPANQV SITESYLLRW TKGLNIPEAI NKDFAQFLTE GFKARNLPIR IEAVINDTVG TLVTRAYTSK ESDTFMGIIF GTGTNGAYVE QMNQIPKLAG KCTGDHMLIN MEWGATDFSC LHSTRYDLLL DHDTPNAGRQ IFEKRVGGMY LGELFRRALF HLIKVYNFNE GIFPPSITDA WSLETSVLSR MMVERSAENV RNVLSTFKFR FRSDEEALYL WDAAHAIGRR AARMSAVPIA SLYLSTGRAG KKSDVGVDGS LVEHYPHFVD MLREALRELI GDNEKLISIG IAKDGSGIGA ALCALQAVKE KKGLA Oefening 1
  • 32. Question 3. Swiss-Knife.py • Using a database as input ! Parse the entire Swiss Prot collection – How many entries are there ? – Average Protein Length (in aa and MW) – Relative frequency of amino acids • Compare to the ones used to construct the PAM scoring matrixes from 1978 – 1991
  • 33. Question 3: Getting the database Uniprot_sprot.dat.gz – 528Mb (on Github onder Files) https://github.ugent.be/wvcrieki/Bioinformatics blob/script_branch/Files/swiss-prot.dat http://www.ebi.ac.uk/uniprot/download-center
  • 34. Amino acid frequencies 1978 1991 L 0.085 0.091 A 0.087 0.077 G 0.089 0.074 S 0.070 0.069 V 0.065 0.066 E 0.050 0.062 T 0.058 0.059 K 0.081 0.059 I 0.037 0.053 D 0.047 0.052 R 0.041 0.051 P 0.051 0.051 N 0.040 0.043 Q 0.038 0.041 F 0.040 0.040 Y 0.030 0.032 M 0.015 0.024 H 0.034 0.023 C 0.033 0.020 W 0.010 0.014 Second step: Frequencies of Occurence
  • 35. Extra Questions • How many records have a sequence of length 260? • What are the first 20 residues of 143X_MAIZE? • What is the identifier for the record with the shortest sequence? Is there more than one record with that length? • What is the identifier for the record with the longest sequence? Is there more than one record with that length? • How many contain the subsequence "ARRA"? • How many contain the substring "KCIP-1" in the description?