Parametric and non-parametric tests differ in their assumptions about the population from which data is drawn. Parametric tests assume the population is normally distributed and variables are measured on an interval scale, while non-parametric tests make fewer assumptions. Examples of parametric tests include t-tests and ANOVA, while non-parametric examples include chi-square, Mann-Whitney U, and Wilcoxon signed-rank. Parametric tests are more powerful but rely on stronger assumptions, while non-parametric tests are more flexible but less powerful. Researchers must consider the characteristics of their data and questions being asked to determine the appropriate test.