This document discusses performance analysis and parallelization of the cosine similarity algorithm for calculating document similarity. It proposes an optimized algorithm that utilizes parallel computing to calculate cosine similarity for large sets of retrieved documents more efficiently. The conventional cosine similarity algorithm becomes inefficient for large document sets. The parallelized approach aims to enhance efficiency and reduce latency by processing more documents in less time. The document reviews related work applying techniques like parallelization, cosine similarity, and dimensionality reduction to problems involving document clustering, text summarization, and information retrieval.