Pitfalls in alignment of observation models
resolved using PROV as an upper ontology
Simon Cox | Research Scientist | Environmental Informatics
16 December2015
LAND AND WATER
Overlapping terminology
Sources:
OGC SensorML
OGC Observations and Measurements (O&M)
 ISO General Feature Model
Semantic Sensor Network Ontology (SSN)
 DOLCE UltraLite
Biological Collections Ontology (BCO)
 Basic Formal Ontology
Contentious terms:
Observation
Process
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
SensorML - Process
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
All components
modeled as processes,
including
• Hardware - transducers,
sensors, platforms
• Software
Botts & Robin, OGC SensorML – OGC Implementation Specification
OGC document 07-000, 12-000
O&M – Process, Observation
OM_Observation
+ phenomenonTime
+ resultTime
+ validTime [0..1]
+ resultQuality [0..*]
+ parameter [0..*]
GF_PropertyType
GFI_Feature
OM_Process Any
+observedProperty
1
0..*
+featureOfInterest 1
0..*
+procedure1 +result
An Observation is an action whose result is an estimate of the value
of some property of the feature-of-interest, obtained using a specified procedure
Simon Cox - AGU Fall Meeting 2015 - IN33F-07 Cox, OGC Abstract Specification – Topic 20: Observations and Measurements 2.0
ISO 19156:2011 Geographic Information – Observations and measurements
‘Observation’ produces result
at a known time
Before resultTime: no data
After resultTime: data available
‘Process’ is reusable observation
procedure
om-lite <http://def.seegrid.csiro.au/ontology/om/om-lite>
Simon Cox - AGU Fall Meeting 2015 - IN33F-07 S.J.D. Cox, Ontology for observations and sampling features, with alignments to existing
models, Semant. Web J. (2015) Accepted
http://www.semantic-web-journal.net/content/ontology-observations-and-sampling-features-alignments-existing-models-0
SSN – Process, Observation
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
• Observation, Process both ‘Social Objects’
• Stimulus is the only ‘Event’
M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S.J.D. Cox, et al.,
The SSN ontology of the W3C semantic sensor network incubator group,
Web Semant. Sci. Serv. Agents World Wide Web. 17 (2012) 25–32. doi:10.1016/j.websem.2012.05.003.
Walls RL, Deck J, Guralnick R, Baskauf S, Beaman R, et al. (2014) Semantics in Support of
Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and
Related Ontologies. PLoS ONE 9(3): e89606. doi:10.1371/journal.pone.0089606
BCO - ObservingProcess
ObservingProcess subClassOf* BFO:Occurrent
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
Process-flow model
Core PROV
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
Developed primarily for datasets, data products, reports
T. Lebo, S. Sahoo, D.L. McGuinness, PROV-O: The PROV Ontology, (2013).
http://www.w3.org/TR/prov-o/ (accessed February 13, 2014).
Core PROV– aligned with BFO/BCO
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
bfo:Occurrent
??
bfo:Continuant
bco:ObservingProcess
Core PROV– alignment with O&M
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
om:Observation
om:Process
om:Result
Core PROV– alignment with SSN
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
??
ssn:Sensor
ssn:Observation
SSNX aligned with PROV
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
M. Compton, D. Corsar, K. Taylor, Sensor Data Provenance:
SSNO and PROV-O Together at Last,
in: 7th Int. Work. Semant. Sens. Networks, 2014.
Core PROV– alignment with SSNX
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
ssnx:ActivityOfSensing
ssn:Sensor
ssn:Observation
Relates to sensor as an asset?
bfo:Continuant
Core PROV– all alignments
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
ssnx:ActivityOfSensing
ssn:Sensor
ssn:Observation
bfo:Occurrent
bco:ObservingProcess
om:Observation
om:Process
Generation of observation data matches a generic process model
 PROV is a convenient upper-ontology for alignments
Reusable agents
Sampling Features - sam-lite ontology
Simon Cox - AGU Fall Meeting 2015 - IN33F-07 S.J.D. Cox, Ontology for observations and sampling features, with alignments to existing
models, Semant. Web J. (2015) Accepted
http://www.semantic-web-journal.net/content/ontology-observations-and-sampling-features-alignments-existing-models-0
Core PROV– alignment with Specimen prep
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
sam:Process
sam:Specimen
sam:PreparationStep
Specimen preparation and observation trace
Lifecycle events modelled as
prov:Activity instances
• Analysis
• Sieving
• Grinding
• Splitting
• Specimen retrieval
People and machines modelled
as prov:Agent instances
• Lab Tech, Geologist
• Sieve stack
• Mill
• Saw
• Hammer
Simon Cox - AGU Fall Meeting 2015 - IN33F-07 Cox, SJD & Car, NJ Provenance of things - describing geochemistry
observation workflows using PROV-O, IN33A-1784
Other alignments and
extensions
prov:Entity ← :PhysicalEntity ← :Specimen
prov:Entity ← prov:Plan ← :SamplingProtocol
prov:Agent ← :SampleProcessingSystem
← :GrindingSystem, :PolishingSystem, :DissolvingSystem, :FusingSystem
prov:Agent ← :SampleRetrievalSystem ← :FieldSamplingSystem
prov:Agent ← :SubSamplingSystem
← :BiasedSplittingSystem
← :SizeSeparationSystem , :DensitySeparationSystem, :MagneticSeparationSystem
prov:Agent ← Instrument , Sensor
prov:wasAssociatedWith ← :wasControlledBy, :wasSponsoredBy, :wasRequestedBy
prov:wasDerivedFrom ← :unbiasedSplitFrom, :biasedSplitFrom
prov:wasDerivedFrom ← prov:hadPrimarySource ← :fieldSpecimen
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
Summary - in praise of PROV 
• Observation models/ontologies use terms “observation” and “process”
• Inter-community discussions are vulnerable to misunderstandings
• Grounding in traditional ‘upper ontologies’ doesn’t necessarily help!
• Generating results of observations is essentially a process-chain
 PROV provides a lightweight ‘upper ontology’ that can help
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
LAND AND WATER
Thank youCSIRO Land and Water
Simon Cox
Research Scientist
t +61 3 9252 6342
e simon.cox@csiro.au
w www.csiro.au/people/simon.cox
OBOE observation model
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
One Observation is
composed of multiple
Measurements
Each for a different
Characteristic of the
same Entity
OBOE observation model
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
Simon Cox - AGU Fall Meeting 2015 - IN33F-07
om:ObservationCollection  oboe:Observation
common feature-of-interest, phenomenonTime
om:Observation  oboe:Measurement
feature-of-interest, phenomenonTime from collection

More Related Content

PPTX
Vocabularies and vocabulary services for water data
PPTX
Prov and real things
PPTX
OM-JSON - a JSON implementation of O&M
PPTX
A standard for geospatial observations and measurements
PPTX
O&M Specimen model – alignments with PROV, BCO
PPTX
Thermatic simulation platform for nano materials design in kist
PPTX
Sbst2018 contest2018
PPT
From copert2 to copert4
Vocabularies and vocabulary services for water data
Prov and real things
OM-JSON - a JSON implementation of O&M
A standard for geospatial observations and measurements
O&M Specimen model – alignments with PROV, BCO
Thermatic simulation platform for nano materials design in kist
Sbst2018 contest2018
From copert2 to copert4

What's hot (10)

PDF
A Benchmark for Simulated Manipulation
PPT
Introduction to STILT – an on-demand CO2 footprint calculator service
PPTX
FR3.TO5.5.pptx
PPT
15.30 o10 p cottrell
PDF
Krol, Maarten: COS-OCS: Carbonyl Sulfide, new ways of Observing the Climate S...
PDF
Backscatter Working Group Software Inter-comparison Project Requesting and Co...
PDF
Potential of continental CO2 and 14CO2 observational networks to estimate fos...
PPT
Improved Emissions Inventories for NOx and Particulate Matter from Small Comb...
PDF
Marcello Fiorentini
PPT
AQ GCI Infrastructure
A Benchmark for Simulated Manipulation
Introduction to STILT – an on-demand CO2 footprint calculator service
FR3.TO5.5.pptx
15.30 o10 p cottrell
Krol, Maarten: COS-OCS: Carbonyl Sulfide, new ways of Observing the Climate S...
Backscatter Working Group Software Inter-comparison Project Requesting and Co...
Potential of continental CO2 and 14CO2 observational networks to estimate fos...
Improved Emissions Inventories for NOx and Particulate Matter from Small Comb...
Marcello Fiorentini
AQ GCI Infrastructure
Ad

Viewers also liked (17)

PDF
‘India and Africa – collaboration for growth’
PPT
Managing Problems in the Restorative Phase of Dental Treatment
PDF
Итоговый отчет по мониторингу подразделений МВД в 2015г.
PDF
無題プレゼンテーション13
PDF
India@75 newsletter Sep 2015
PDF
контроль за полицией киров-2014
PPTX
How to RSS Feed in Search Engine Optimization and their Benefits.
PDF
2007q4 Developer Roadmap
PPS
Paradigm created
PDF
Medical appointment confirm
PPT
Slfknwvp
PDF
2012 Sustainability Report
PPTX
All bound up? Monetary policy in recovery and beyond
PDF
MSME Conclave - Facilitating Financing & Enhancing Competitiveness
PDF
Multilateral newsletter November 2014
PPTX
Identifying and Handling Children with Disabilities
PPTX
Your business cycle
‘India and Africa – collaboration for growth’
Managing Problems in the Restorative Phase of Dental Treatment
Итоговый отчет по мониторингу подразделений МВД в 2015г.
無題プレゼンテーション13
India@75 newsletter Sep 2015
контроль за полицией киров-2014
How to RSS Feed in Search Engine Optimization and their Benefits.
2007q4 Developer Roadmap
Paradigm created
Medical appointment confirm
Slfknwvp
2012 Sustainability Report
All bound up? Monetary policy in recovery and beyond
MSME Conclave - Facilitating Financing & Enhancing Competitiveness
Multilateral newsletter November 2014
Identifying and Handling Children with Disabilities
Your business cycle
Ad

Similar to Pitfalls in alignment of observation models resolved using PROV as an upper ontology (14)

PPTX
PROV ontology supports alignment of observational data (models)
PPTX
Ontology alignment – is PROV-O good enough?
PPTX
Observations to Information
PDF
Ontologies for biodiversity informatics, UiO DSC June 2023
PPT
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
PPTX
PROV and Real Things
PPTX
Using the Biological Collections Ontology to Advance Biodiversity Science
PPTX
Vocabularies, ontologies, standards for observations: developments from RDA, ...
PDF
Fois2010 final
PPT
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
PDF
Combining Process and Sensor Ontologies to Support Geo-Sensor Data Retrieval
PPTX
Complex Data Modeling for Simpler Data Access
PDF
Event core and new datatypes in GBIF - 10th European GBIF Nodes Meeting in Ta...
PPTX
Community Standards and Tools for Biodiversity Science at NIEHD
PROV ontology supports alignment of observational data (models)
Ontology alignment – is PROV-O good enough?
Observations to Information
Ontologies for biodiversity informatics, UiO DSC June 2023
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
PROV and Real Things
Using the Biological Collections Ontology to Advance Biodiversity Science
Vocabularies, ontologies, standards for observations: developments from RDA, ...
Fois2010 final
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
Combining Process and Sensor Ontologies to Support Geo-Sensor Data Retrieval
Complex Data Modeling for Simpler Data Access
Event core and new datatypes in GBIF - 10th European GBIF Nodes Meeting in Ta...
Community Standards and Tools for Biodiversity Science at NIEHD

More from Simon Cox (13)

PPTX
Cross-domain data discovery and integration
PPTX
The SOSA ontology
PPTX
Web standards support science data
PPTX
A common model for scientific observations and samples
PPTX
OWL-Time and enhancements
PPTX
Re-use of standard ontologies in a water quality vocabulary
PPTX
A harmonized vocabulary for water quality
PPTX
Harmonization of vocabularies for water data
PPTX
Some problems with standard geospatial metadata
PPT
Information Viewpoints and Geoscience Service Architectures
PPT
Leverage and Delegation in Developing an Information Model for Geology
PPTX
Technologies and practices for maintaining and publishing earth science vocab...
PPTX
Developing and publishing vocabularies
Cross-domain data discovery and integration
The SOSA ontology
Web standards support science data
A common model for scientific observations and samples
OWL-Time and enhancements
Re-use of standard ontologies in a water quality vocabulary
A harmonized vocabulary for water quality
Harmonization of vocabularies for water data
Some problems with standard geospatial metadata
Information Viewpoints and Geoscience Service Architectures
Leverage and Delegation in Developing an Information Model for Geology
Technologies and practices for maintaining and publishing earth science vocab...
Developing and publishing vocabularies

Recently uploaded (20)

PDF
final prehhhejjehehhehehehebesentation.pdf
PDF
TOPIC-1-Introduction-to-Bioinformatics_for dummies
PDF
Sumer, Akkad and the mythology of the Toradja Sa'dan.pdf
PPT
Chapter 6 Introductory course Biology Camp
PDF
SOCIAL PSYCHOLOGY_ CHAPTER 2.pdf- the self in a social world
PDF
Sustainable Biology- Scopes, Principles of sustainiability, Sustainable Resou...
PPTX
EPILEPSY UPDATE in kkm malaysia today new
PPTX
Introduction to Immunology (Unit-1).pptx
PPTX
Arterial Blood Pressure_Blood Flow_Hemodynamics.pptx
PPT
ecg for noob ecg interpretation ecg recall
PPTX
02_OpenStax_Chemistry_Slides_20180406 copy.pptx
PDF
Telemedicine: Transforming Healthcare Delivery in Remote Areas (www.kiu.ac.ug)
PDF
CHEM - GOC general organic chemistry.ppt
PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PPT
ZooLec Chapter 13 (Digestive System).ppt
PDF
2024_PohleJellKlug_CambrianPlectronoceratidsAustralia.pdf
PPTX
BPharm_Hospital_Organization_Complete_PPT.pptx
PPTX
Chapter 1 Introductory course Biology Camp
PDF
CuO Nps photocatalysts 15156456551564161
PPTX
Spectroscopic Techniques for M Tech Civil Engineerin .pptx
final prehhhejjehehhehehehebesentation.pdf
TOPIC-1-Introduction-to-Bioinformatics_for dummies
Sumer, Akkad and the mythology of the Toradja Sa'dan.pdf
Chapter 6 Introductory course Biology Camp
SOCIAL PSYCHOLOGY_ CHAPTER 2.pdf- the self in a social world
Sustainable Biology- Scopes, Principles of sustainiability, Sustainable Resou...
EPILEPSY UPDATE in kkm malaysia today new
Introduction to Immunology (Unit-1).pptx
Arterial Blood Pressure_Blood Flow_Hemodynamics.pptx
ecg for noob ecg interpretation ecg recall
02_OpenStax_Chemistry_Slides_20180406 copy.pptx
Telemedicine: Transforming Healthcare Delivery in Remote Areas (www.kiu.ac.ug)
CHEM - GOC general organic chemistry.ppt
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
ZooLec Chapter 13 (Digestive System).ppt
2024_PohleJellKlug_CambrianPlectronoceratidsAustralia.pdf
BPharm_Hospital_Organization_Complete_PPT.pptx
Chapter 1 Introductory course Biology Camp
CuO Nps photocatalysts 15156456551564161
Spectroscopic Techniques for M Tech Civil Engineerin .pptx

Pitfalls in alignment of observation models resolved using PROV as an upper ontology

  • 1. Pitfalls in alignment of observation models resolved using PROV as an upper ontology Simon Cox | Research Scientist | Environmental Informatics 16 December2015 LAND AND WATER
  • 2. Overlapping terminology Sources: OGC SensorML OGC Observations and Measurements (O&M)  ISO General Feature Model Semantic Sensor Network Ontology (SSN)  DOLCE UltraLite Biological Collections Ontology (BCO)  Basic Formal Ontology Contentious terms: Observation Process Simon Cox - AGU Fall Meeting 2015 - IN33F-07
  • 3. SensorML - Process Simon Cox - AGU Fall Meeting 2015 - IN33F-07 All components modeled as processes, including • Hardware - transducers, sensors, platforms • Software Botts & Robin, OGC SensorML – OGC Implementation Specification OGC document 07-000, 12-000
  • 4. O&M – Process, Observation OM_Observation + phenomenonTime + resultTime + validTime [0..1] + resultQuality [0..*] + parameter [0..*] GF_PropertyType GFI_Feature OM_Process Any +observedProperty 1 0..* +featureOfInterest 1 0..* +procedure1 +result An Observation is an action whose result is an estimate of the value of some property of the feature-of-interest, obtained using a specified procedure Simon Cox - AGU Fall Meeting 2015 - IN33F-07 Cox, OGC Abstract Specification – Topic 20: Observations and Measurements 2.0 ISO 19156:2011 Geographic Information – Observations and measurements ‘Observation’ produces result at a known time Before resultTime: no data After resultTime: data available ‘Process’ is reusable observation procedure
  • 5. om-lite <http://def.seegrid.csiro.au/ontology/om/om-lite> Simon Cox - AGU Fall Meeting 2015 - IN33F-07 S.J.D. Cox, Ontology for observations and sampling features, with alignments to existing models, Semant. Web J. (2015) Accepted http://www.semantic-web-journal.net/content/ontology-observations-and-sampling-features-alignments-existing-models-0
  • 6. SSN – Process, Observation Simon Cox - AGU Fall Meeting 2015 - IN33F-07 • Observation, Process both ‘Social Objects’ • Stimulus is the only ‘Event’ M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S.J.D. Cox, et al., The SSN ontology of the W3C semantic sensor network incubator group, Web Semant. Sci. Serv. Agents World Wide Web. 17 (2012) 25–32. doi:10.1016/j.websem.2012.05.003.
  • 7. Walls RL, Deck J, Guralnick R, Baskauf S, Beaman R, et al. (2014) Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies. PLoS ONE 9(3): e89606. doi:10.1371/journal.pone.0089606 BCO - ObservingProcess ObservingProcess subClassOf* BFO:Occurrent Simon Cox - AGU Fall Meeting 2015 - IN33F-07
  • 8. Process-flow model Core PROV Simon Cox - AGU Fall Meeting 2015 - IN33F-07 Developed primarily for datasets, data products, reports T. Lebo, S. Sahoo, D.L. McGuinness, PROV-O: The PROV Ontology, (2013). http://www.w3.org/TR/prov-o/ (accessed February 13, 2014).
  • 9. Core PROV– aligned with BFO/BCO Simon Cox - AGU Fall Meeting 2015 - IN33F-07 bfo:Occurrent ?? bfo:Continuant bco:ObservingProcess
  • 10. Core PROV– alignment with O&M Simon Cox - AGU Fall Meeting 2015 - IN33F-07 om:Observation om:Process om:Result
  • 11. Core PROV– alignment with SSN Simon Cox - AGU Fall Meeting 2015 - IN33F-07 ?? ssn:Sensor ssn:Observation
  • 12. SSNX aligned with PROV Simon Cox - AGU Fall Meeting 2015 - IN33F-07 M. Compton, D. Corsar, K. Taylor, Sensor Data Provenance: SSNO and PROV-O Together at Last, in: 7th Int. Work. Semant. Sens. Networks, 2014.
  • 13. Core PROV– alignment with SSNX Simon Cox - AGU Fall Meeting 2015 - IN33F-07 ssnx:ActivityOfSensing ssn:Sensor ssn:Observation Relates to sensor as an asset?
  • 14. bfo:Continuant Core PROV– all alignments Simon Cox - AGU Fall Meeting 2015 - IN33F-07 ssnx:ActivityOfSensing ssn:Sensor ssn:Observation bfo:Occurrent bco:ObservingProcess om:Observation om:Process Generation of observation data matches a generic process model  PROV is a convenient upper-ontology for alignments Reusable agents
  • 15. Sampling Features - sam-lite ontology Simon Cox - AGU Fall Meeting 2015 - IN33F-07 S.J.D. Cox, Ontology for observations and sampling features, with alignments to existing models, Semant. Web J. (2015) Accepted http://www.semantic-web-journal.net/content/ontology-observations-and-sampling-features-alignments-existing-models-0
  • 16. Core PROV– alignment with Specimen prep Simon Cox - AGU Fall Meeting 2015 - IN33F-07 sam:Process sam:Specimen sam:PreparationStep
  • 17. Specimen preparation and observation trace Lifecycle events modelled as prov:Activity instances • Analysis • Sieving • Grinding • Splitting • Specimen retrieval People and machines modelled as prov:Agent instances • Lab Tech, Geologist • Sieve stack • Mill • Saw • Hammer Simon Cox - AGU Fall Meeting 2015 - IN33F-07 Cox, SJD & Car, NJ Provenance of things - describing geochemistry observation workflows using PROV-O, IN33A-1784
  • 18. Other alignments and extensions prov:Entity ← :PhysicalEntity ← :Specimen prov:Entity ← prov:Plan ← :SamplingProtocol prov:Agent ← :SampleProcessingSystem ← :GrindingSystem, :PolishingSystem, :DissolvingSystem, :FusingSystem prov:Agent ← :SampleRetrievalSystem ← :FieldSamplingSystem prov:Agent ← :SubSamplingSystem ← :BiasedSplittingSystem ← :SizeSeparationSystem , :DensitySeparationSystem, :MagneticSeparationSystem prov:Agent ← Instrument , Sensor prov:wasAssociatedWith ← :wasControlledBy, :wasSponsoredBy, :wasRequestedBy prov:wasDerivedFrom ← :unbiasedSplitFrom, :biasedSplitFrom prov:wasDerivedFrom ← prov:hadPrimarySource ← :fieldSpecimen Simon Cox - AGU Fall Meeting 2015 - IN33F-07
  • 19. Summary - in praise of PROV  • Observation models/ontologies use terms “observation” and “process” • Inter-community discussions are vulnerable to misunderstandings • Grounding in traditional ‘upper ontologies’ doesn’t necessarily help! • Generating results of observations is essentially a process-chain  PROV provides a lightweight ‘upper ontology’ that can help Simon Cox - AGU Fall Meeting 2015 - IN33F-07
  • 20. LAND AND WATER Thank youCSIRO Land and Water Simon Cox Research Scientist t +61 3 9252 6342 e [email protected] w www.csiro.au/people/simon.cox
  • 21. OBOE observation model Simon Cox - AGU Fall Meeting 2015 - IN33F-07 One Observation is composed of multiple Measurements Each for a different Characteristic of the same Entity
  • 22. OBOE observation model Simon Cox - AGU Fall Meeting 2015 - IN33F-07
  • 23. Simon Cox - AGU Fall Meeting 2015 - IN33F-07 om:ObservationCollection  oboe:Observation common feature-of-interest, phenomenonTime om:Observation  oboe:Measurement feature-of-interest, phenomenonTime from collection