SlideShare a Scribd company logo
Asynchronous I/O
with Java and Scala
LinkedIn uses a service oriented architecture
(SOA)
Hundreds of different types of services,
thousands of instances in multiple data centers.
Internet Load
Balancer
Profile
frontend
Company
frontend
Recruiter
frontend
Profile
backend
Search
backend
Company
backend
Recruiter
backend
Ads
backend
Data
Store
Data
Store
Data
Store
Data
Store
Services communicate with each other via
remote calls
Profile frontend Profile backend
/profile/123
HTTP request
Profile frontend Profile backend
JSON response
{
"id": 123,
"first": "Yevgeniy",
"last": "Brikman"
}
Most people are used to synchronous I/O when
making requests between servers
The most popular frameworks typically use
one-thread-per-request and blocking I/O
executeMethod blocks the thread until the
response comes back
void doGet(HttpServletRequest req, HttpServletResponse res) {
// Apache HttpClient
HttpClient client = new HttpClient();
GetMethod method = new GetMethod("www.example.com");
// executeMethod is a blocking, synchronous call
int statusCode = client.executeMethod(method);
System.out.println("Response " + statusCode);
}
MyServlet.java
Evented servers have one thread/process per
CPU core and use non-blocking I/O
http.request is a non-blocking call: the next
line executes before the response comes back
MyNodeApp.js
var callback = function(data) {
console.log("Response: " + data);
};
var options = {
hostname: 'www.google.com',
path: '/upload'
};
// Non-blocking HTTP call
http.request(options, callback);
console.log('This line may execute before the callback!');
Why threaded vs. evented matters for
LinkedIn
void doGet(HttpServletRequest req, HttpServletResponse res) {
// Call a number of backend services to get data
Profile profile = profileSvc.getProfile();
Company company = companySvc.getCompany();
Skills skills = skillsSvc.getSkills();
}
MyServlet.java
Our services spend most of their time waiting
for data from other services and data stores
I/O is very expensive
http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html
In a threaded server, threads spend most of
the time idle, waiting on I/O
Threading dilemma
1. Creating new threads on the fly is expensive:
a. Use a thread pool
2. Too many threads in the thread pool:
a. Memory overhead
b. Context switching overhead
3. Too few threads in the thread pool:
a. Run out of threads, latency goes up
b. Sensitive to downstream latency!
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
Let's say latency goes
up a little here
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
Causes threads to get
backed up here
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
Latency goes up
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
Now threads get
backed up here
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
And here
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
Here too
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
And there
Internet Load
Balancer
Frontend
Server
Frontend
Server
Frontend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Backend
Server
Data
Store
Data
Store
Data
Store
Data
Store
And... the site is down.
This is thread pool hell
Play is built on top of Netty, so it supports non-
blocking I/O
NIO benefits
1. No sensitivity to downstream slowness
2. Easy to parallelize I/O
3. Supports many concurrent and long-running
connections, enabling:
a. WebSockets
b. Comet
c. Server-Sent Events
This talk is a brief introduction to writing
asynchronous code with the Play Framework.
For each section, I will include simplified
examples: first in Java and then Scala.
The world’s largest professional network
at
We've been using Play in production for
more than 6 months
A few apps built on Play
Channels (frontend)
Premium Subscriptions (frontend)
Polls (frontend + backend)
REST search (internal tool)
About me
Leading the Play project as part of LinkedIn's Service Infrastructure Team.
Also: hackdays, engineering blog, incubator, open source.
Outline
1. A quick intro to Play
2. Basic async code
3. map and flatMap
4. Parallel and sequential
5. Errors and timeouts
6. Coming soon
Outline
1. A quick intro to Play
2. Basic async code
3. map and flatMap
4. Parallel and sequential
5. Errors and timeouts
6. Coming soon
Download and install Play from
http://www.playframework.com
> play new my-app
> play idea
> play eclipse
> play run
http://localhost:9000
Application layout
app → Application sources
└ assets → Compiled asset sources
└ controllers → Application controllers
└ models → Application business layer
└ views → Templates
conf → Configurations files
└ application.conf → Main configuration file
└ routes → Routes definition
public → Public assets
└ stylesheets → CSS files
└ javascripts → Javascript files
└ images → Image files
project → sbt configuration files
└ Build.scala → Application build script
└ plugins.sbt → sbt plugins
lib → Unmanaged libraries
dependencies
logs → Standard logs folder
target → Generated stuff
test → Unit or functional tests
Let's get a feel for Play by creating a
Java Controller
public class HelloWorld extends Controller {
public static Result index() {
return ok("Hello World");
}
}
Controllers are Java classes with methods that
return a Result, such as a 200 OK
app/controllers/HelloWorld.java
Don't worry about the use of static. Yes,
Play supports IOC. Using static (and other
shortcuts) lets me keep the examples simple.
GET /hello controllers.HelloWorld.index()
Expose the controller/action at a URL
conf/routes
http://localhost:9000/hello
Woohoo, hot reload!
public class HelloWorld extends Controller {
public static Result index(String name) {
return ok("Hello " + name);
}
}
Add a parameter
app/controllers/HelloWorld.java
GET /hello controllers.HelloWorld.index( name)
Read the parameter from the query string
conf/routes
http://localhost:9000/hello?name=Jim
GET /hello/:name controllers.HelloWorld.index(name)
Read the parameter from the URL instead
conf/routes
http://localhost:9000/hello/Jim
public class HelloWorld extends Controller {
public static Result index(String name, int age) {
return ok("Hello " + name + " you are " + age +
" years old");
}
}
Add another parameter, this time an int
app/controllers/HelloWorld.java
GET /hello/:name/ :age controllers.HelloWorld.index(name: String, age: Int)
Add the parameter. Note the type checking!
conf/routes
http://localhost:9000/hello/Jim/28
@(name: String, age: Int)
<html>
<head></head>
<body>
<img src="/assets/images/play-logo.png"/>
<p>
Hello <b>@name</b>, you are <b>@age</b> years old
</p>
</body>
</html>
Add a view
app/views/hello.scala.html
public class HelloWorld extends Controller {
public static Result index(String name, int age) {
return ok(views.html.hello.render(name, age));
}
}
Render the view from the controller
app/controllers/HelloWorld.java
http://localhost:9000/hello/Jim/28
Play also natively supports Scala
app/controllers/HelloWorldScala.scala
Just add a .scala file under /app and
Play will compile it
object HelloWorldScala extends Controller {
def index = Action {
Ok("Hello World Scala")
}
}
GET /scala controllers.HelloWorldScala.index()
Add it to the routes file as usual
conf/routes
http://localhost:9000/scala
Outline
1. A quick intro to Play
2. Basic async code
3. map and flatMap
4. Parallel and sequential
5. Errors and timeouts
6. Coming soon
Let's use Play's Web Services library (WS) to
make some non-blocking HTTP calls
public class Proxy extends Controller {
public static Result index(String url) {
// Non blocking HTTP call
Promise<Response> responsePromise = WS.url(url).get();
// How do we turn a Promise into a Play Result?
}
}
app/controllers/Proxy.java
Create a new controller and use WS to make an
HTTP GET
A Promise<T> will eventually contain the
value T (or an error)
(Play Framework source code)
Play has a built-in subclass of Result called
AsyncResult that takes a Promise<Result>
public static class AsyncResult implements Result {
private final Promise<Result> promise;
public AsyncResult(Promise<Result> promise) {
this.promise = promise;
}
}
public class Proxy extends Controller {
public static Result index(String url) {
Promise<Response> response = WS.url(url).get();
// Transform asynchronously into a Play Result
Promise<Result> result = response.map(toResult);
return async(result);
}
// A function that can transform a Response into a Result
private static Function<Response, Result> toResult =
new Function<Response, Result>() {
public Result apply(Response response) {
return ok(response.getBody()).as(("text/html");
}
};
}
app/controllers/Proxy.java
We can use the map method to turn a
Promise<Response> into a Promise<Result>
GET /proxy controllers.Proxy.index(url)
Add this endpoint to the routes file
conf/routes
http://localhost:9000/proxy?url=http://example.com
We just built a completely
non-blocking proxy!
public class Proxy extends Controller {
public static Result index(String url) {
Logger.info("Before the HTTP call");
Promise<Response> response = WS.url(url).get();
Promise<Result> result = response.map(toResult);
Logger.info("After the HTTP call");
return async(result);
}
private static Function<Response, Result> toResult =
new Function<Response, Result>() {
public Result apply(Response response) {
Logger.info("Inside the toResult function");
return ok(response.getBody()).as("text/html");
}
};
}
app/controllers/Proxy.java
To see that it's non-blocking, add logging
Refresh the page and the logs show the
HTTP call really is non-blocking
Let's create the same Proxy in Scala
object ProxyScala extends Controller {
def index(url: String) = Action {
val future: Future[Response] = WS.url(url).get()
// How do we turn a Future into a Play Result?
}
}
app/controllers/ProxyScala.scala
Create a new controller and use WS to make an
HTTP GET
A Future[T] will eventually contain the
value T (or an error)
(Play Framework source code)
Play has a built-in subclass of Result called
AsyncResult that takes a Future<Result>
case class AsyncResult(result: Future[Result]) extends
Result
// Convenience function to create an AsyncResult
def Async(promise: Promise[Result]) = AsyncResult(promise)
object ProxyScala extends Controller {
def index(url: String) = Action {
val future: Future[Response] = WS.url(url).get()
Async {
future.map { response =>
Ok(response.body).as("text/html")
}
}
}
}
app/controllers/ProxyScala.scala
We can use the map method to turn a Future
[Response] into a Future[Result]
GET /scala/proxy controllers.ProxyScala.index
(url)
Add this endpoint to the routes file
conf/routes
http://localhost:9000/scala/proxy?url=http://example.com
Outline
1. A quick intro to Play
2. Basic async code
3. map and flatMap
4. Parallel and sequential
5. Errors and timeouts
6. Coming soon
What is this "map" thing all about?
It's easiest to think about map with Lists.
val names = List("Jim", "Dean", "Kunal")
Let's start with a List of Strings
val names = List("Jim", "Dean", "Kunal")
def lower(str: String): String = str.toLowerCase
And a simple function that converts a String to
lowercase
List.map(f) will return a new List where
each element in the new List is the result of
calling f on each element of the original
List
val names = List("Jim", "Dean", "Kunal")
def lower(str: String): String = str.toLowerCase
names.map(lower)
// Output: List("jim", "dean", "kunal")
Mapping the lower function over names gives us
a new List where each name is lowercase
We saw map transform a List[String] into
a new List[String]. Can we transform a
List[X] into some other type List[Y]?
val names = List("Jim", "Dean", "Kunal")
def strlen(str: String): Int = str.length
Start with the same List, but now a new function
strlen that returns the length of a String
val names = List("Jim", "Dean", "Kunal")
def strlen(str: String): Int = str.length
names.map(strlen)
// Output: List(3, 4, 5)
Mapping strlen over names returns a new List
with the length of each String in names
Now we see that map can transform a List
[String] into a new List[Int].
class List[A] {
def map[B](f: A => B): List[B]
}
More generally, this is map's signature
Let's look at one more example
val names = List("Jim", "Dean", "Kunal")
def explode(str: String): List[Char] = str.toCharArray.
toList
Same List, but now a new function explode that
returns a List of Characters in a String
val names = List("Jim", "Dean", "Kunal")
def explode(str: String): List[Char] = str.toCharArray.
toList
names.map(explode)
// Output:
// List(List(J, i, m), List(D, e, a, n), List(K, u, n, a,
l))
If we map explode over names, we get nested
Lists. But what if we want just one, flat List?
class List[A] {
def flatMap[B](f: A => List[B]): List[B]
}
We can use flatMap , which will combine (flatten)
any nested Lists
val names = List("Jim", "Dean", "Kunal")
def explode(str: String): List[Char] = str.toCharArray.
toList
names.flatMap(explode)
// Output: List(J, i, m, D, e, a, n, K, u, n, a, l)
Using flatMap gives us a single List with each
individual character
map and flatMap are defined on any
"collection" or "container": List, Set, Map, etc
val namesSet = Set("Jim", "Dean", "Kunal")
def explode(str: String): List[Char] = str.toCharArray.
toList
namesSet.flatMap(explode)
// Output: Set(e, n, J, u, a, m, i, l, K, D)
Using flatMap on a Set
Futures and Promises are also "containers":
they just happen to contain 1 item.
val future: Future[Response] = WS.url(url).get()
val future: Future[Result] = future.map { response =>
Ok(response.body).as("text/html")
}
This is why it makes sense to use map to turn a
Future[Response] into a Future[Result]
The "container" class controls when the function
passed to map or flatMap actually gets
applied!
Outline
1. A quick intro to Play
2. Basic async code
3. map and flatMap
4. Parallel and sequential
5. Errors and timeouts
6. Coming soon
Making I/O requests in parallel is essential for
performance in a Service Oriented Architecture
With non-blocking I/O, parallel is the default
// These 3 HTTP requests will execute in parallel
Promise<Response> yahoo = WS.url("http://yahoo.com").get();
Promise<Response> google = WS.url("http://google.com").get();
Promise<Response> bing = WS.url("http://bing.com").get();
Let's fetch 3 websites in parallel and time them
First, define a function that makes makes an HTTP
GET and returns a Promise with timing info
public Promise<Timing> timed(final String url) {
final long start = System.currentTimeMillis();
return WS.url(url).get().map(new Function<Response, Timing>() {
public Timing apply(Response response) throws Throwable {
return new Timing(url, System.currentTimeMillis() - start);
}
});
}
public class Timing {
public String url;
public long latency;
}
Next, make a controller that fires 3 requests in
parallel using the timed function we just created
public class Parallel extends Controller {
public static Result index() {
final Promise<Timing> yahoo = timed("http://www.yahoo.com");
final Promise<Timing> google = timed("http://www.google.com");
final Promise<Timing> bing = timed("http://www.bing.com");
}
}
Compose the 3 Promises into a single Promise
that will redeem when all 3 are done
public class Parallel extends Controller {
public static Result index() {
final Promise<Long> yahoo = timed("http://www.yahoo.com");
final Promise<Long> google = timed("http://www.google.com");
final Promise<Long> bing = timed("http://www.bing.com");
Promise<List<Timing>> all = Promise.waitAll(yahoo, google, bing);
}
}
Render the results as JSON
public class Parallel extends Controller {
public static Result index() {
final Promise<Timing> yahoo = timed("http://www.yahoo.com");
final Promise<Timing> google = timed("http://www.google.com");
final Promise<Timing> bing = timed("http://www.bing.com");
Promise<List<Timing>> all = Promise.waitAll(yahoo, google, bing);
return async(all.map(new Function<List<Timing>, Result>() {
public Result apply(List<Timing> timings) throws Throwable {
return ok(Json.toJson(timings));
}
}));
}
}
GET /parallel controllers.Parallel.index()
Add it to the routes file
conf/routes
http://localhost:9000/parallel
How about parallel requests in Scala?
Once again, define a function that makes an HTTP
GET and returns a Future with timing info
def timed(url: String): Future[Timing] = {
val start = System.currentTimeMillis()
WS.url(url).get().map(_ =>
Timing(url, System.currentTimeMillis() - start)
)
}
case class Timing(url: String, latency: Long)
Next, make a controller that fires 3 requests in
parallel using the timed function we just created
object ParallelScala extends Controller {
def index = Action {
val yahoo = timed("http://www.yahoo.com")
val google = timed("http://www.google.com")
val bing = timed("http://www.bing.com")
}
}
Compose the 3 Futures into a single Future that
will redeem when all 3 are done
object ParallelScala extends Controller {
def index = Action {
val yahoo = timed("http://www.yahoo.com")
val google = timed("http://www.google.com")
val bing = timed("http://www.bing.com")
val all = Future.sequence(Seq(yahoo, google, bing))
}
}
Render the results as JSON
object ParallelScala extends Controller {
def index = Action {
val yahoo = timed("http://www.yahoo.com")
val google = timed("http://www.google.com")
val bing = timed("http://www.bing.com")
val all = Future.sequence(Seq(yahoo, google, bing))
Async {
all.map(timings => Ok(Json.toJson(timings)))
}
}
}
GET /scala/parallel controllers.ParallelScala.index()
Add it to the routes file
conf/routes
http://localhost:9000/scala/parallel
If parallel is the default, how do you do
sequential steps that depend on each other?
Example: make a request to duckduckgo's
instant answer API (step 1) and proxy an image
from the response (step 2)
First, call make a non-blocking call to duckduckgo
public class LuckyImage extends Controller {
public static Result index(String query) {
Promise<Response> duck = WS.url("http://www.duckduckgo.com")
.setQueryParameter("q", query)
.setQueryParameter("format", "json")
.get();
}
}
As a first step, we'll just proxy the response
public class LuckyImage extends Controller {
public static Result index(String query) {
Promise<Response> duck = WS.url("http://www.duckduckgo.com")
.setQueryParameter("q", query)
.setQueryParameter("format", "json")
.get();
return async(duck.map(new Function<Response, Result>() {
public Result apply(Response response) throws Throwable {
return ok(response.getBodyAsStream())
.as(response.getHeader("Content-Type"));
}
}));
}
}
GET /lucky controllers.LuckyImage.index
(url)
Add it to the routes file
conf/routes
http://localhost:9000/lucky?query=linkedin
As the second step, get the image URL from the
response and proxy just that.
Promise<Response> duck = // ... (same request as before)
return async(duck.flatMap(new Function<Response, Promise<Result>>(){
public Promise<Result> apply(Response response) {
String url = getImageUrlFromResponse(response);
return WS.url(url).get().map(new Function<Response, Result>() {
public Result apply(Response response) {
return ok(response.getBodyAsStream())
.as(response.getHeader("Content-Type"));
}
});
}
}));
http://localhost:9000/lucky?query=linkedin
Ok, let's try the same example in Scala
First, make the request
object LuckyImageScala extends Controller {
def index(query: String) = Action {
val duck = WS.url("http://www.duckduckgo.com")
.withQueryString("q" -> query, "format" -> "json").get()
}
}
Then extract the image URL and proxy it
object LuckyImageScala extends Controller {
def index(query: String) = Action {
val duck = WS.url("http://www.duckduckgo.com")
.withQueryString("q" -> query, "format" -> "json").get()
Async {
duck.flatMap { response =>
val url = getImageUrlFromResponse(response)
WS.url(url).get().map { r =>
Ok(r.getAHCResponse.getResponseBodyAsBytes)
.as(r.getAHCResponse.getHeader("Content-Type"))
}
}
}
}
}
GET /scala/lucky controllers.LuckyImageScala.index
(url)
Add it to the routes file
conf/routes
http://localhost:9000/lucky?query=play+framework
In both Java and Scala, you order async actions
sequentially by nesting map and flatMap calls.
Many sequential steps will lead to lots of nesting.
step1.flatMap(new Function<Response, Promise<Result>>(){
public Promise<Result> apply(Response response1) {
step2.flatMap(new Function<Response, Promise<Result>>(){
public Promise<Result> apply(Response response2) {
step3.flatMap(new Function<Response, Promise<Result>>(){
public Promise<Result> apply(Response response3) {
// etc
}
}
}
});
}
});
This is "callback hell"
ParSeq
https://github.com/linkedin/parseq
ParSeq is a framework that makes it easier to
write asynchronous code in Java
Wrap asynchronous work in ParSeq Task objects,
which are similar to Promises and Futures
Task<Response> yahoo = Tasks.wrap(WS.url("http://www.yahoo.com"))
Task<Response> google = Tasks.wrap(WS.url("http://www.google.com"))
Task<Response> bing = Tasks.wrap(WS.url("http://www.bing.com"))
Use Tasks.par to compose tasks in parallel
Task<Response> yahoo = Tasks.wrap(WS.url("http://www.yahoo.com"))
Task<Response> google = Tasks.wrap(WS.url("http://www.google.com"))
Task<Response> bing = Tasks.wrap(WS.url("http://www.bing.com"))
// Create a new Task that will run all 3 tasks above at the same time
// and redeem when they are all done
Task<?> parallel = Tasks.par(yahoo, google, bing)
Use Tasks.seq to compose tasks sequentially
Task<Response> step1 = new Task() { ... }
Task<Response> step2 = new Task() { ... }
Task<Response> step3 = new Task() { ... }
// Create a new Task that will run the tasks above one at a time,
// in the order specified, and complete with the return value of the
// last one
Task<Response> sequential = Tasks.seq(task1, task2, task3)
ParSeq makes async code declarative and easier
to reason about: you can read it top to bottom!
Task<Result> complex = Tasks.seq(
Tasks.par(profileTask, companyTask, skillsTask),
Tasks.par(recommendedJobsTask, wvmxTask),
Tasks.par(hydrateImagesTask, hydrateJobsTask, hydrateSkillsTask)
Tasks.seq(assemblePageTask, fireTrackingTask)
)
We'll soon be open sourcing a plugin soon to
make it easy to use ParSeq in Play.
Sequence Comprehensions
Syntactic sugar built into Scala. Translates into
map and flatMap calls without the nesting.
Instead of this...
aFuture.flatMap { a =>
bFuture.flatMap { b =>
cFuture.flatMap { c =>
dFuture.map { d =>
// Build a result using a, b, c, d
}
}
}
}
Use this. Note that this syntax works for any object
with map and flatMap methods.
for {
a <- aFuture
b <- bFuture
c <- cFuture
d <- dFuture
} yield {
// Build a result using a, b, c, d
}
Sequential async I/O example. Note that each step
can refer to previous ones.
for {
a <- WS.url(...).get()
b <- WS.url(a).get()
c <- WS.url(a + b).get()
d <- WS.url(a + b + c).get()
} yield {
// Build a result using a, b, c, d
}
Parallel async I/O example. Only difference is that
the async calls are outside the for statement.
val futureA = WS.url(...)
val futureB = WS.url(...)
val futureC = WS.url(...)
val futureD = WS.url(...)
for {
a <- futureA
b <- futureB
c <- futureC
d <- futureD
} yield {
// Build a result using a, b, c, d
}
Sequence comprehensions provide a clean and
consistent API for async code: you can read it
top to bottom!
Outline
1. A quick intro to Play
2. Basic async code
3. map and flatMap
4. Parallel and sequential
5. Errors and timeouts
6. Coming soon
With a single server, the odds of hitting an error
are relatively low
In a distributed system with thousands of servers,
the odds that you hit an error are very high
Internet Load
Balancer
Profile
frontend
Company
frontend
Recruiter
frontend
Profile
backend
Search
backend
Company
backend
Recruiter
backend
Ads
backend
Data
Store
Data
Store
Data
Store
Data
Store
Even if a single server is up 99.999% of the
time, with 1000 servers, the odds that one is
down are
1 - 0.999991000
= ~1%
Here is how to make your async code more
resilient to errors and slow performance
We can use the recover method on a Promise
to specify how to handle errors
public class Errors extends Controller {
public static Result index(String url) {
F.Promise<WS.Response> promise = WS.url(url).get();
return async(promise.map(new F.Function<WS.Response, Result>() {
public Result apply(WS.Response response) throws Throwable {
return ok("Got a response!");
}
}).recover(new F.Function<Throwable, Result>() {
public Result apply(Throwable throwable) throws Throwable {
return internalServerError("Got an exception: " + throwable);
}
}));
}
}
There is an analogous recover method on Scala
Futures as well
object ErrorsScala extends Controller {
def index(url: String) = Action {
Async {
WS.url(url).get().map { response =>
Ok("Got a response: " + response.status)
}.recover { case t: Throwable =>
InternalServerError("Got an exception: " + t)
}
}
}
}
GET /errors controllers.Errors.index(url)
GET /scala/errors controllers.ErrorsScala.index(url)
Add to the routes file
conf/routes
http://localhost:9000/errors?url=http://www.example.com
http://localhost:9000/errors?url=http://www.not-a-real-url.com
If some of the data you fetch isn't required to
render the page, you can use an Option
pattern
Create a helper method: on success, return
Some<T>. On failure, log the error, return None.
public static <T> Promise<Option<T>> optional(Promise<T> promise){
return promise.map(new Function<T, Option<T>>() {
public Option<T> apply(T value) throws Throwable {
if (value == null) {
return Option.None();
}
return Option.Some(value);
}
}).recover(new Function<Throwable, Option<T>>() {
public Option<T> apply(Throwable t) throws Throwable {
Logger.error("Hit an error", t);
return Option.None();
}
});
}
Wrap Promises with optional and inside of
map, use isDefined to see if you have a value
public static Result index(String url) {
Promise<Option<Response>> promise = optional(WS.url(url).get());
return async(promise.map(new Function<Option<Response>, Result>() {
public Result apply(Option<Response> responseOpt){
if (responseOpt.isDefined()) {
Response response = responseOpt.get();
// Use the response to build the page
} else {
// Build the page without the response
}
}
}));
}
The same pattern is even prettier in Scala, as
Option is a first-class citizen of the language
Reusable helper method to convert Future[T] to
Future[Option[T]]
def optional[T](future: Future[T]): Future[Option[T]] = {
future.map(Option.apply).recover { case t: Throwable =>
Logger.error("Hit an error", t)
None
}
}
Wrap Futures with optional and use pattern
matching, comprehensions, etc within map
object OptionExampleScala extends Controller {
def index(url: String) = Action {
Async {
optional(WS.url(url).get()).map {
case Some(response) => // Use the response to build the page
case _ => // Build the page without the response
}
}
}
}
Sometimes, waiting too long for data is worse
than not showing that data at all
You can create a Promise that will be redeemed
with someValue after the specified timeout
Promise.timeout(someValue, 500, TimeUnit.MILLISECONDS)
Compose two Promises using or: the result takes
on the value of the first one to complete
Promise<Response> response = WS.url(url).get();
Promise<Either<Object, Response>> withTimeout =
Promise.timeout(null, timeout, TimeUnit.MILLISECONDS).or(response);
If right is defined, you got a value in time;
otherwise, it must have timed out first.
Promise<Response> response = WS.url(url).get();
Promise<Either<Object, Response>> withTimeout =
Promise.timeout(null, timeout, TimeUnit.MILLISECONDS).or(response);
withTimeout.map(new Function<Either<Object, Response>, Result>(){
public Result apply(Either<Object, Response> either) {
if (either.right.isDefined()) {
Response response = either.right.get();
// Use the response to build the page
} else {
// Hit a timeout, build the page without the response
}
}
});
The Scala version
import play.api.libs.concurrent._
object TimeoutExampleScala extends Controller {
def index(url: String, timeout: Long) = Action {
val timeout = Promise.timeout(null, timeout, MILLISECONDS)
val future = timeout.either(WS.url(url).get())
future.map {
case Right(response) => // Use the response to build the page
case _ => // Hit a timeout, build the page without the response
}
}
}
Outline
1. A quick intro to Play
2. Basic async code
3. map and flatMap
4. Parallel and sequential
5. Errors and timeouts
6. Coming soon
play-async-plugin
We'll be open sourcing this plugin soon
It is a collection of async utilities, including...
ParSeq integration for Play to make asynchronous
Java code easier
Task<Response> yahoo = Tasks.wrap(WS.url("http://www.yahoo.com"))
Task<Response> google = Tasks.wrap(WS.url("http://www.google.com"))
Task<Response> bing = Tasks.wrap(WS.url("http://www.bing.com"))
// Create a new Task that will run the tasks above one at a time,
// in the order specified, and complete with the return value of the
// last one
Task<Response> sequential = Tasks.seq(yahoo, google, bing)
Config-driven SLAs (timeouts) for any async I/O
sla.plugin.slas = [
{
resources: ["/profile", "/companies"]
timeout: "2s"
},
{
resources: ["/pymk", "/skills/*"],
timeout: "500ms"
}
]
In-browser visualization of all async requests for a
page, including timing, responses, and errors
We're just getting started with Play!
We'll be sharing more as we go.
LinkedIn Engineering Blog
http://engineering.linkedin.com
@LinkedInEng on Twitter
https://twitter.com/LinkedInEng
Thank you!

More Related Content

What's hot (20)

PPTX
JavaScript Event Loop
Designveloper
 
PDF
Java basics mind map
Navinda Dissanayake
 
PDF
[143] Modern C++ 무조건 써야 해?
NAVER D2
 
PDF
Intro To Docker
Jessica Lucci
 
PDF
Docker Introduction
Peng Xiao
 
PPT
Docker introduction
Phuc Nguyen
 
PPTX
Java Server Pages(jsp)
Manisha Keim
 
PPTX
What is Docker
Pavel Klimiankou
 
PPTX
Dockers and containers basics
Sourabh Saxena
 
PPTX
Introduction Node.js
Erik van Appeldoorn
 
PDF
Docker Explained | What Is A Docker Container? | Docker Simplified | Docker T...
Edureka!
 
PDF
Nodejs presentation
Arvind Devaraj
 
PDF
Introduction to docker
Instruqt
 
PPTX
reactJS
Syam Santhosh
 
PPTX
Introduction to node.js
Dinesh U
 
PPTX
Reactjs
Mallikarjuna G D
 
PPTX
What Is Docker? | What Is Docker And How It Works? | Docker Tutorial For Begi...
Simplilearn
 
PPTX
Introduction to NodeJS
Cere Labs Pvt. Ltd
 
JavaScript Event Loop
Designveloper
 
Java basics mind map
Navinda Dissanayake
 
[143] Modern C++ 무조건 써야 해?
NAVER D2
 
Intro To Docker
Jessica Lucci
 
Docker Introduction
Peng Xiao
 
Docker introduction
Phuc Nguyen
 
Java Server Pages(jsp)
Manisha Keim
 
What is Docker
Pavel Klimiankou
 
Dockers and containers basics
Sourabh Saxena
 
Introduction Node.js
Erik van Appeldoorn
 
Docker Explained | What Is A Docker Container? | Docker Simplified | Docker T...
Edureka!
 
Nodejs presentation
Arvind Devaraj
 
Introduction to docker
Instruqt
 
reactJS
Syam Santhosh
 
Introduction to node.js
Dinesh U
 
What Is Docker? | What Is Docker And How It Works? | Docker Tutorial For Begi...
Simplilearn
 
Introduction to NodeJS
Cere Labs Pvt. Ltd
 

Similar to Play Framework: async I/O with Java and Scala (20)

PDF
The Play Framework at LinkedIn
Yevgeniy Brikman
 
PDF
The Play Framework at LinkedIn: productivity and performance at scale - Jim B...
jaxconf
 
PDF
Play framework productivity formula
Sorin Chiprian
 
PDF
Play Framework
mozgkarakaya
 
PDF
Play Framework: The Basics
Philip Langer
 
PDF
Play Framework
Eduard Tudenhoefner
 
PDF
Web application development using Play Framework (with Java)
Saeed Zarinfam
 
ODP
eXo Platform SEA - Play Framework Introduction
vstorm83
 
PDF
Node.js vs Play Framework
Yevgeniy Brikman
 
PPTX
Silicon Valley Code Camp 2011: Play! as you REST
Manish Pandit
 
PDF
Play Framework
Harinath Krishnamoorthy
 
PDF
Play Framework and Activator
Kevin Webber
 
PDF
Play Framework Introduction
m-kurz
 
PDF
Let's Play- Overview
benewu
 
PPTX
Play framework : A Walkthrough
mitesh_sharma
 
PDF
Play 2.0
elizhender
 
PDF
Xebia Knowledge Exchange (feb 2011) - Large Scale Web Development
Michaël Figuière
 
PDF
Play Framework: Intro & High-Level Overview
Josh Padnick
 
PPTX
Why Play Framework is fast
Legacy Typesafe (now Lightbend)
 
PDF
Asynchronous web apps with the Play Framework 2.0
Oscar Renalias
 
The Play Framework at LinkedIn
Yevgeniy Brikman
 
The Play Framework at LinkedIn: productivity and performance at scale - Jim B...
jaxconf
 
Play framework productivity formula
Sorin Chiprian
 
Play Framework
mozgkarakaya
 
Play Framework: The Basics
Philip Langer
 
Play Framework
Eduard Tudenhoefner
 
Web application development using Play Framework (with Java)
Saeed Zarinfam
 
eXo Platform SEA - Play Framework Introduction
vstorm83
 
Node.js vs Play Framework
Yevgeniy Brikman
 
Silicon Valley Code Camp 2011: Play! as you REST
Manish Pandit
 
Play Framework
Harinath Krishnamoorthy
 
Play Framework and Activator
Kevin Webber
 
Play Framework Introduction
m-kurz
 
Let's Play- Overview
benewu
 
Play framework : A Walkthrough
mitesh_sharma
 
Play 2.0
elizhender
 
Xebia Knowledge Exchange (feb 2011) - Large Scale Web Development
Michaël Figuière
 
Play Framework: Intro & High-Level Overview
Josh Padnick
 
Why Play Framework is fast
Legacy Typesafe (now Lightbend)
 
Asynchronous web apps with the Play Framework 2.0
Oscar Renalias
 
Ad

More from Yevgeniy Brikman (20)

PDF
Cloud adoption fails - 5 ways deployments go wrong and 5 solutions
Yevgeniy Brikman
 
PDF
How to test infrastructure code: automated testing for Terraform, Kubernetes,...
Yevgeniy Brikman
 
PDF
Lessons learned from writing over 300,000 lines of infrastructure code
Yevgeniy Brikman
 
PPTX
Gruntwork Executive Summary
Yevgeniy Brikman
 
PPTX
Reusable, composable, battle-tested Terraform modules
Yevgeniy Brikman
 
PPTX
The Truth About Startups: What I wish someone had told me about entrepreneurs...
Yevgeniy Brikman
 
PPTX
An intro to Docker, Terraform, and Amazon ECS
Yevgeniy Brikman
 
PPTX
Comprehensive Terraform Training
Yevgeniy Brikman
 
PPTX
Infrastructure as code: running microservices on AWS using Docker, Terraform,...
Yevgeniy Brikman
 
PPTX
Agility Requires Safety
Yevgeniy Brikman
 
PPTX
Startup Ideas and Validation
Yevgeniy Brikman
 
PPTX
A Guide to Hiring for your Startup
Yevgeniy Brikman
 
PDF
Startup DNA: Speed Wins
Yevgeniy Brikman
 
PDF
Node.js vs Play Framework (with Japanese subtitles)
Yevgeniy Brikman
 
PDF
Rapid prototyping
Yevgeniy Brikman
 
PDF
Composable and streamable Play apps
Yevgeniy Brikman
 
PDF
Kings of Code Hack Battle
Yevgeniy Brikman
 
PDF
Hackdays and [in]cubator
Yevgeniy Brikman
 
PPTX
Startup DNA: the formula behind successful startups in Silicon Valley (update...
Yevgeniy Brikman
 
PDF
Dust.js
Yevgeniy Brikman
 
Cloud adoption fails - 5 ways deployments go wrong and 5 solutions
Yevgeniy Brikman
 
How to test infrastructure code: automated testing for Terraform, Kubernetes,...
Yevgeniy Brikman
 
Lessons learned from writing over 300,000 lines of infrastructure code
Yevgeniy Brikman
 
Gruntwork Executive Summary
Yevgeniy Brikman
 
Reusable, composable, battle-tested Terraform modules
Yevgeniy Brikman
 
The Truth About Startups: What I wish someone had told me about entrepreneurs...
Yevgeniy Brikman
 
An intro to Docker, Terraform, and Amazon ECS
Yevgeniy Brikman
 
Comprehensive Terraform Training
Yevgeniy Brikman
 
Infrastructure as code: running microservices on AWS using Docker, Terraform,...
Yevgeniy Brikman
 
Agility Requires Safety
Yevgeniy Brikman
 
Startup Ideas and Validation
Yevgeniy Brikman
 
A Guide to Hiring for your Startup
Yevgeniy Brikman
 
Startup DNA: Speed Wins
Yevgeniy Brikman
 
Node.js vs Play Framework (with Japanese subtitles)
Yevgeniy Brikman
 
Rapid prototyping
Yevgeniy Brikman
 
Composable and streamable Play apps
Yevgeniy Brikman
 
Kings of Code Hack Battle
Yevgeniy Brikman
 
Hackdays and [in]cubator
Yevgeniy Brikman
 
Startup DNA: the formula behind successful startups in Silicon Valley (update...
Yevgeniy Brikman
 
Ad

Recently uploaded (20)

PDF
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PDF
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
PDF
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PPTX
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PDF
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 

Play Framework: async I/O with Java and Scala