This document provides an overview of building, evaluating, and optimizing a RAG (Retrieve-and-Generate) conversational agent for production. It discusses setting up the development environment, prototyping the initial system, addressing challenges when moving to production like latency, costs, and quality issues. It also covers approaches for systematically evaluating the system, including using LLMs as judges, and experimenting and optimizing components like retrieval and generation through configuration tuning, model fine-tuning, and customizing the pipeline.