This document summarizes a journal article that proposes using principal component analysis (PCA) for novelty detection in condition monitoring applications. It describes how PCA can be used to reduce the dimensionality of feature spaces while retaining most of the variation in the data. The authors modify the standard PCA technique to maximize the difference between the spread of normal data and the spread of outlier data from the mean of the normal data. They validate the approach on artificial and machinery vibration data and show it can effectively distinguish outliers. Future work could involve extending the technique to non-linear data using kernel methods.