SlideShare a Scribd company logo
Python Programming
D. Sheefa Ruby Grace
Department of Computer Science
Sarah Tucker College
Uses of Python
 shell tools
 system admin tools, command line programs
 extension-language work
 rapid prototyping and development
 language-based modules
 instead of special-purpose parsers
 graphical user interfaces
 database access
 distributed programming
 Internet scripting
Basic operations
 Assignment:
 size = 40
 a = b = c = 3
 Numbers
 integer, float
 complex numbers: 1j+3, abs(z)
 Strings
 'hello world', 'it's hot'
 "bye world"
 continuation via  or use """ long text """"
String operations
 concatenate with + or neighbors
 word = 'Help' + x
 word = 'Help' 'a'
 subscripting of strings
 'Hello'[2]  'l'
 slice: 'Hello'[1:2]  'el'
 word[-1]  last character
 len(word)  5
 immutable: cannot assign to subscript
Lists
 lists can be heterogeneous
 a = ['spam', 'eggs', 100, 1234, 2*2]
 Lists can be indexed and sliced:
 a[0]  spam
 a[:2]  ['spam', 'eggs']
 Lists can be manipulated
 a[2] = a[2] + 23
 a[0:2] = [1,12]
 a[0:0] = []
 len(a)  5
Basic programming
a,b = 0, 1
# non-zero = true
while b < 10:
# formatted output, without 
n
print b,
# multiple assignment
a,b = b, a+b
Control flow: if
x = int(raw_input("Please enter #:"))
if x < 0:
x = 0
print 'Negative changed to zero'
elif x == 0:
print 'Zero'
elif x == 1:
print 'Single'
else:
print 'More'
 no case statement
Control flow: for
a = ['cat', 'window', 'defenestrate']
for x in a:
print x, len(x)
 no arithmetic progression, but
 range(10)  [0, 1, 2, 3, 4, 5, 6, 7, 8,
9]
 for i in range(len(a)):
print i, a[i]
 do not modify the sequence being
iterated over
Loops: break, continue, else
 break and continue like C
 else after loop exhaustion
for n in range(2,10):
for x in range(2,n):
if n % x == 0:
print n, 'equals', x, '*', n/x
break
else:
# loop fell through without finding a
factor
print n, 'is prime'
Defining functions
def fib(n):
"""Print a Fibonacci series up to n."""
a, b = 0, 1
while b < n:
print b,
a, b = b, a+b
>>> fib(2000)
 First line is docstring
 first look for variables in local, then global
 need global to assign global variables
Functions: default argument
values
def ask_ok(prompt, retries=4,
complaint='Yes or no, please!'):
while 1:
ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'): return 1
if ok in ('n', 'no'): return 0
retries = retries - 1
if retries < 0: raise IOError,
'refusenik error'
print complaint
>>> ask_ok('Really?')
Keyword arguments
 last arguments can be given as keywords
def parrot(voltage, state='a stiff', action='voom',
type='Norwegian blue'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "Volts through it."
print "Lovely plumage, the ", type
print "-- It's", state, "!"
parrot(1000)
parrot(action='VOOOM', voltage=100000)
Lambda forms
 anonymous functions
 may not work in older versions
def make_incrementor(n):
return lambda x: x + n
f = make_incrementor(42)
f(0)
f(1)
List methods
 append(x)
 extend(L)
 append all items in list (like Tcl lappend)
 insert(i,x)
 remove(x)
 pop([i]), pop()
 create stack (FIFO), or queue (LIFO)  pop(0)
 index(x)
 return the index for value x
List methods
 count(x)
 how many times x appears in list
 sort()
 sort items in place
 reverse()
 reverse list
Functional programming tools
 filter(function, sequence)
def f(x): return x%2 != 0 and x%3 0
filter(f, range(2,25))
 map(function, sequence)
 call function for each item
 return list of return values
 reduce(function, sequence)
 return a single value
 call binary function on the first two items
 then on the result and next item
 iterate
List comprehensions (2.0)
 Create lists without map(), filter(), lambda
 = expression followed by for clause + zero or more for or
of clauses
>>> vec = [2,4,6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [{x: x**2} for x in vec}
[{2: 4}, {4: 16}, {6: 36}]
List comprehensions
 cross products:
>>> vec1 = [2,4,6]
>>> vec2 = [4,3,-9]
>>> [x*y for x in vec1 for y in vec2]
[8,6,-18, 16,12,-36, 24,18,-54]
>>> [x+y for x in vec1 and y in vec2]
[6,5,-7,8,7,-5,10,9,-3]
>>> [vec1[i]*vec2[i] for i in
range(len(vec1))]
[8,12,-54]
List comprehensions
 can also use if:
>>> [3*x for x in vec if x >
3]
[12, 18]
>>> [3*x for x in vec if x <
2]
[]
del – removing list items
 remove by index, not value
 remove slices from list (rather than by
assigning an empty list)
>>> a = [-1,1,66.6,333,333,1234.5]
>>> del a[0]
>>> a
[1,66.6,333,333,1234.5]
>>> del a[2:4]
>>> a
[1,66.6,1234.5]
Tuples and sequences
 lists, strings, tuples: examples of sequence type
 tuple = values separated by commas
>>> t = 123, 543, 'bar'
>>> t[0]
123
>>> t
(123, 543, 'bar')
Tuples
 Tuples may be nested
>>> u = t, (1,2)
>>> u
((123, 542, 'bar'), (1,2))
 kind of like structs, but no element
names:
 (x,y) coordinates
 database records
 like strings, immutable  can't assign to
individual items
Tuples
 Empty tuples: ()
>>> empty = ()
>>> len(empty)
0
 one item  trailing comma
>>> singleton = 'foo',
Tuples
 sequence unpacking  distribute elements across
variables
>>> t = 123, 543, 'bar'
>>> x, y, z = t
>>> x
123
 packing always creates tuple
 unpacking works for any sequence
Dictionaries
 like Tcl or awk associative arrays
 indexed by keys
 keys are any immutable type: e.g., tuples
 but not lists (mutable!)
 uses 'key: value' notation
>>> tel = {'hgs' : 7042, 'lennox': 7018}
>>> tel['cs'] = 7000
>>> tel
Dictionaries
 no particular order
 delete elements with del
>>> del tel['foo']
 keys() method  unsorted list of keys
>>> tel.keys()
['cs', 'lennox', 'hgs']
 use has_key() to check for existence
>>> tel.has_key('foo')
0
Conditions
 can check for sequence membership
with is and is not:
>>> if (4 in vec):
... print '4 is'
 chained comparisons: a less than b
AND b equals c:
a < b == c
 and and or are short-circuit operators:
 evaluated from left to right
 stop evaluation as soon as outcome clear
Conditions
 Can assign comparison to variable:
>>> s1,s2,s3='', 'foo', 'bar'
>>> non_null = s1 or s2 or s3
>>> non_null
foo
 Unlike C, no assignment within expression
Comparing sequences
(1,2,3) < (1,2,4)
[1,2,3] < [1,2,4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1,2,3) == (1.0,2.0,3.0)
(1,2) < (1,2,-1)
Modules
 collection of functions and variables, typically in scripts
 definitions can be imported
 file name is module name + .py
 e.g., create module fibo.py
def fib(n): # write Fib. series up to n
...
def fib2(n): # return Fib. series up to n
Modules
 import module:
import fibo
 Use modules via "name space":
>>> fibo.fib(1000)
>>> fibo.__name__
'fibo'
 can give it a local name:
>>> fib = fibo.fib
>>> fib(500)
Modules
 function definition + executable
statements
 executed only when module is imported
 modules have private symbol tables
 avoids name clash for global variables
 accessible as module.globalname
 can import into name space:
>>> from fibo import fib, fib2
>>> fib(500)
 can import all names defined by module:
>>> from fibo import *
Module search path
 current directory
 list of directories specified in PYTHONPATH
environment variable
 uses installation-default if not defined,
e.g., .:/usr/local/lib/python
 uses sys.path
>>> import sys
>>> sys.path
['', 'C:PROGRA~1Python2.2', 'C:Program Files
Python2.2DLLs', 'C:Program FilesPython2.2lib', 'C:
Program FilesPython2.2liblib-tk', 'C:Program Files
Python2.2', 'C:Program FilesPython2.2libsite-
packages']
Classes
 mixture of C++ and Modula-3
 multiple base classes
 derived class can override any methods of
its base class(es)
 method can call the method of a base
class with the same name
 objects have private data
 C++ terms:
 all class members are public
 all member functions are virtual
 no constructors or destructors (not needed)
Classes
 classes (and data types) are objects
 built-in types cannot be used as base classes by user
 arithmetic operators, subscripting can be redefined for
class instances (like C++, unlike Java)
Class definitions
Class ClassName:
<statement-1>
...
<statement-N>
 must be executed
 can be executed conditionally (see Tcl)
 creates new namespace
Namespaces
 mapping from name to object:
 built-in names (abs())
 global names in module
 local names in function invocation
 attributes = any following a dot
 z.real, z.imag
 attributes read-only or writable
 module attributes are writeable
Namespaces
 scope = textual region of Python program
where a namespace is directly accessible
(without dot)
 innermost scope (first) = local names
 middle scope = current module's global names
 outermost scope (last) = built-in names
 assignments always affect innermost
scope
 don't copy, just create name bindings to
objects
 global indicates name is in global scope
Class objects
 obj.name references (plus module!):
class MyClass:
"A simple example class"
i = 123
def f(self):
return 'hello world'
>>> MyClass.i
123
 MyClass.f is method object
Class objects
 class instantiation:
>>> x = MyClass()
>>> x.f()
'hello world'
 creates new instance of class
 note x = MyClass vs. x = MyClass()
 ___init__() special method for
initialization of object
def __init__(self,realpart,imagpart):
self.r = realpart
self.i = imagpart
Instance objects
 attribute references
 data attributes (C++/Java data members)
 created dynamically
x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print x.counter
del x.counter
Method objects
 Called immediately:
x.f()
 can be referenced:
xf = x.f
while 1:
print xf()
 object is passed as first argument of function  'self'
 x.f() is equivalent to MyClass.f(x)
Inheritance
class
DerivedClassName(BaseClassName)
<statement-1>
...
<statement-N>
 search class attribute, descending chain of base classes
 may override methods in the base class
 call directly via
BaseClassName.method
Multiple inheritance
class
DerivedClass(Base1,Base2,Base3)
:
<statement>
 depth-first, left-to-right
 problem: class derived from two classes with a common
base class
Private variables
 No real support, but textual replacement (name
mangling)
 __var is replaced by _classname_var
 prevents only accidental modification, not true
protection
Exceptions
 syntax (parsing) errors
while 1 print 'Hello World'
File "<stdin>", line 1
while 1 print 'Hello World'
^
SyntaxError: invalid syntax
 exceptions
 run-time errors
 e.g., ZeroDivisionError, NameError, TypeError
Handling exceptions
while 1:
try:
x = int(raw_input("Please enter a number: "))
break
except ValueError:
print "Not a valid number"
 First, execute try clause
 if no exception, skip except clause
 if exception, skip rest of try clause and use
except clause
 if no matching exception, attempt outer try
statement
Handling exceptions
 try.py
import sys
for arg in sys.argv[1:]:
try:
f = open(arg, 'r')
except IOError:
print 'cannot open', arg
else:
print arg, 'lines:',
len(f.readlines())
f.close
 e.g., as python try.py *.py

More Related Content

Similar to python language programming presentation (20)

PDF
Introduction to Python Programming | InsideAIML
VijaySharma802
 
PDF
Python Part 1
Mohamed Ramadan
 
PPT
FALLSEM2022-23_ITA3007_ETH_VL2022230100613_Reference_Material_I_23-09-2022_py...
admin369652
 
PPT
python within 50 page .ppt
sushil155005
 
PPT
Python
Vishal Sancheti
 
PPT
python presentation lists,strings,operation
ManjuRaghavan1
 
PPTX
scripting in Python
Team-VLSI-ITMU
 
PPTX
Python programming workshop
BAINIDA
 
PPT
Pythonintroduction
-jyothish kumar sirigidi
 
PPT
Python scripting kick off
Andrea Gangemi
 
PDF
Python: An introduction A summer workshop
ForrayFerenc
 
PPT
Python tutorialfeb152012
Shani729
 
PPTX
PYTHON PPT.pptx python is very useful for day to day life
NaitikSingh33
 
PDF
Python cheatsheat.pdf
HimoZZZ
 
PPT
python.ppt
shreyas_test_1234
 
PPT
Python basics to advanced in on ppt is available
nexasbravo2000sep
 
PDF
Python lecture 05
Tanwir Zaman
 
PPTX
Python Workshop
Assem CHELLI
 
PPT
Python Training v2
ibaydan
 
PDF
Q-Step_WS_02102019_Practical_introduction_to_Python.pdf
Michpice
 
Introduction to Python Programming | InsideAIML
VijaySharma802
 
Python Part 1
Mohamed Ramadan
 
FALLSEM2022-23_ITA3007_ETH_VL2022230100613_Reference_Material_I_23-09-2022_py...
admin369652
 
python within 50 page .ppt
sushil155005
 
python presentation lists,strings,operation
ManjuRaghavan1
 
scripting in Python
Team-VLSI-ITMU
 
Python programming workshop
BAINIDA
 
Pythonintroduction
-jyothish kumar sirigidi
 
Python scripting kick off
Andrea Gangemi
 
Python: An introduction A summer workshop
ForrayFerenc
 
Python tutorialfeb152012
Shani729
 
PYTHON PPT.pptx python is very useful for day to day life
NaitikSingh33
 
Python cheatsheat.pdf
HimoZZZ
 
python.ppt
shreyas_test_1234
 
Python basics to advanced in on ppt is available
nexasbravo2000sep
 
Python lecture 05
Tanwir Zaman
 
Python Workshop
Assem CHELLI
 
Python Training v2
ibaydan
 
Q-Step_WS_02102019_Practical_introduction_to_Python.pdf
Michpice
 

Recently uploaded (20)

PPTX
Introduction to Design of Machine Elements
PradeepKumarS27
 
PPTX
The Role of Information Technology in Environmental Protectio....pptx
nallamillisriram
 
DOC
MRRS Strength and Durability of Concrete
CivilMythili
 
PPTX
Presentation 2.pptx AI-powered home security systems Secure-by-design IoT fr...
SoundaryaBC2
 
PDF
Biomechanics of Gait: Engineering Solutions for Rehabilitation (www.kiu.ac.ug)
publication11
 
PPTX
How Industrial Project Management Differs From Construction.pptx
jamespit799
 
PDF
Data structures notes for unit 2 in computer science.pdf
sshubhamsingh265
 
PPTX
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
PPTX
Worm gear strength and wear calculation as per standard VB Bhandari Databook.
shahveer210504
 
PPTX
GitOps_Without_K8s_Training_detailed git repository
DanialHabibi2
 
PDF
Electrical Engineer operation Supervisor
ssaruntatapower143
 
PDF
Viol_Alessandro_Presentazione_prelaurea.pdf
dsecqyvhbowrzxshhf
 
PPT
Footbinding.pptmnmkjkjkknmnnjkkkkkkkkkkkkkk
mamadoundiaye42742
 
PDF
AI TECHNIQUES FOR IDENTIFYING ALTERATIONS IN THE HUMAN GUT MICROBIOME IN MULT...
vidyalalltv1
 
PPTX
Water Resources Engineering (CVE 728)--Slide 3.pptx
mohammedado3
 
PPTX
2025 CGI Congres - Surviving agile v05.pptx
Derk-Jan de Grood
 
PPT
Carmon_Remote Sensing GIS by Mahesh kumar
DhananjayM6
 
PPTX
fatigue in aircraft structures-221113192308-0ad6dc8c.pptx
aviatecofficial
 
PDF
Basic_Concepts_in_Clinical_Biochemistry_2018كيمياء_عملي.pdf
AdelLoin
 
PPTX
Arduino Based Gas Leakage Detector Project
CircuitDigest
 
Introduction to Design of Machine Elements
PradeepKumarS27
 
The Role of Information Technology in Environmental Protectio....pptx
nallamillisriram
 
MRRS Strength and Durability of Concrete
CivilMythili
 
Presentation 2.pptx AI-powered home security systems Secure-by-design IoT fr...
SoundaryaBC2
 
Biomechanics of Gait: Engineering Solutions for Rehabilitation (www.kiu.ac.ug)
publication11
 
How Industrial Project Management Differs From Construction.pptx
jamespit799
 
Data structures notes for unit 2 in computer science.pdf
sshubhamsingh265
 
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
Worm gear strength and wear calculation as per standard VB Bhandari Databook.
shahveer210504
 
GitOps_Without_K8s_Training_detailed git repository
DanialHabibi2
 
Electrical Engineer operation Supervisor
ssaruntatapower143
 
Viol_Alessandro_Presentazione_prelaurea.pdf
dsecqyvhbowrzxshhf
 
Footbinding.pptmnmkjkjkknmnnjkkkkkkkkkkkkkk
mamadoundiaye42742
 
AI TECHNIQUES FOR IDENTIFYING ALTERATIONS IN THE HUMAN GUT MICROBIOME IN MULT...
vidyalalltv1
 
Water Resources Engineering (CVE 728)--Slide 3.pptx
mohammedado3
 
2025 CGI Congres - Surviving agile v05.pptx
Derk-Jan de Grood
 
Carmon_Remote Sensing GIS by Mahesh kumar
DhananjayM6
 
fatigue in aircraft structures-221113192308-0ad6dc8c.pptx
aviatecofficial
 
Basic_Concepts_in_Clinical_Biochemistry_2018كيمياء_عملي.pdf
AdelLoin
 
Arduino Based Gas Leakage Detector Project
CircuitDigest
 
Ad

python language programming presentation

  • 1. Python Programming D. Sheefa Ruby Grace Department of Computer Science Sarah Tucker College
  • 2. Uses of Python  shell tools  system admin tools, command line programs  extension-language work  rapid prototyping and development  language-based modules  instead of special-purpose parsers  graphical user interfaces  database access  distributed programming  Internet scripting
  • 3. Basic operations  Assignment:  size = 40  a = b = c = 3  Numbers  integer, float  complex numbers: 1j+3, abs(z)  Strings  'hello world', 'it's hot'  "bye world"  continuation via or use """ long text """"
  • 4. String operations  concatenate with + or neighbors  word = 'Help' + x  word = 'Help' 'a'  subscripting of strings  'Hello'[2]  'l'  slice: 'Hello'[1:2]  'el'  word[-1]  last character  len(word)  5  immutable: cannot assign to subscript
  • 5. Lists  lists can be heterogeneous  a = ['spam', 'eggs', 100, 1234, 2*2]  Lists can be indexed and sliced:  a[0]  spam  a[:2]  ['spam', 'eggs']  Lists can be manipulated  a[2] = a[2] + 23  a[0:2] = [1,12]  a[0:0] = []  len(a)  5
  • 6. Basic programming a,b = 0, 1 # non-zero = true while b < 10: # formatted output, without n print b, # multiple assignment a,b = b, a+b
  • 7. Control flow: if x = int(raw_input("Please enter #:")) if x < 0: x = 0 print 'Negative changed to zero' elif x == 0: print 'Zero' elif x == 1: print 'Single' else: print 'More'  no case statement
  • 8. Control flow: for a = ['cat', 'window', 'defenestrate'] for x in a: print x, len(x)  no arithmetic progression, but  range(10)  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]  for i in range(len(a)): print i, a[i]  do not modify the sequence being iterated over
  • 9. Loops: break, continue, else  break and continue like C  else after loop exhaustion for n in range(2,10): for x in range(2,n): if n % x == 0: print n, 'equals', x, '*', n/x break else: # loop fell through without finding a factor print n, 'is prime'
  • 10. Defining functions def fib(n): """Print a Fibonacci series up to n.""" a, b = 0, 1 while b < n: print b, a, b = b, a+b >>> fib(2000)  First line is docstring  first look for variables in local, then global  need global to assign global variables
  • 11. Functions: default argument values def ask_ok(prompt, retries=4, complaint='Yes or no, please!'): while 1: ok = raw_input(prompt) if ok in ('y', 'ye', 'yes'): return 1 if ok in ('n', 'no'): return 0 retries = retries - 1 if retries < 0: raise IOError, 'refusenik error' print complaint >>> ask_ok('Really?')
  • 12. Keyword arguments  last arguments can be given as keywords def parrot(voltage, state='a stiff', action='voom', type='Norwegian blue'): print "-- This parrot wouldn't", action, print "if you put", voltage, "Volts through it." print "Lovely plumage, the ", type print "-- It's", state, "!" parrot(1000) parrot(action='VOOOM', voltage=100000)
  • 13. Lambda forms  anonymous functions  may not work in older versions def make_incrementor(n): return lambda x: x + n f = make_incrementor(42) f(0) f(1)
  • 14. List methods  append(x)  extend(L)  append all items in list (like Tcl lappend)  insert(i,x)  remove(x)  pop([i]), pop()  create stack (FIFO), or queue (LIFO)  pop(0)  index(x)  return the index for value x
  • 15. List methods  count(x)  how many times x appears in list  sort()  sort items in place  reverse()  reverse list
  • 16. Functional programming tools  filter(function, sequence) def f(x): return x%2 != 0 and x%3 0 filter(f, range(2,25))  map(function, sequence)  call function for each item  return list of return values  reduce(function, sequence)  return a single value  call binary function on the first two items  then on the result and next item  iterate
  • 17. List comprehensions (2.0)  Create lists without map(), filter(), lambda  = expression followed by for clause + zero or more for or of clauses >>> vec = [2,4,6] >>> [3*x for x in vec] [6, 12, 18] >>> [{x: x**2} for x in vec} [{2: 4}, {4: 16}, {6: 36}]
  • 18. List comprehensions  cross products: >>> vec1 = [2,4,6] >>> vec2 = [4,3,-9] >>> [x*y for x in vec1 for y in vec2] [8,6,-18, 16,12,-36, 24,18,-54] >>> [x+y for x in vec1 and y in vec2] [6,5,-7,8,7,-5,10,9,-3] >>> [vec1[i]*vec2[i] for i in range(len(vec1))] [8,12,-54]
  • 19. List comprehensions  can also use if: >>> [3*x for x in vec if x > 3] [12, 18] >>> [3*x for x in vec if x < 2] []
  • 20. del – removing list items  remove by index, not value  remove slices from list (rather than by assigning an empty list) >>> a = [-1,1,66.6,333,333,1234.5] >>> del a[0] >>> a [1,66.6,333,333,1234.5] >>> del a[2:4] >>> a [1,66.6,1234.5]
  • 21. Tuples and sequences  lists, strings, tuples: examples of sequence type  tuple = values separated by commas >>> t = 123, 543, 'bar' >>> t[0] 123 >>> t (123, 543, 'bar')
  • 22. Tuples  Tuples may be nested >>> u = t, (1,2) >>> u ((123, 542, 'bar'), (1,2))  kind of like structs, but no element names:  (x,y) coordinates  database records  like strings, immutable  can't assign to individual items
  • 23. Tuples  Empty tuples: () >>> empty = () >>> len(empty) 0  one item  trailing comma >>> singleton = 'foo',
  • 24. Tuples  sequence unpacking  distribute elements across variables >>> t = 123, 543, 'bar' >>> x, y, z = t >>> x 123  packing always creates tuple  unpacking works for any sequence
  • 25. Dictionaries  like Tcl or awk associative arrays  indexed by keys  keys are any immutable type: e.g., tuples  but not lists (mutable!)  uses 'key: value' notation >>> tel = {'hgs' : 7042, 'lennox': 7018} >>> tel['cs'] = 7000 >>> tel
  • 26. Dictionaries  no particular order  delete elements with del >>> del tel['foo']  keys() method  unsorted list of keys >>> tel.keys() ['cs', 'lennox', 'hgs']  use has_key() to check for existence >>> tel.has_key('foo') 0
  • 27. Conditions  can check for sequence membership with is and is not: >>> if (4 in vec): ... print '4 is'  chained comparisons: a less than b AND b equals c: a < b == c  and and or are short-circuit operators:  evaluated from left to right  stop evaluation as soon as outcome clear
  • 28. Conditions  Can assign comparison to variable: >>> s1,s2,s3='', 'foo', 'bar' >>> non_null = s1 or s2 or s3 >>> non_null foo  Unlike C, no assignment within expression
  • 29. Comparing sequences (1,2,3) < (1,2,4) [1,2,3] < [1,2,4] 'ABC' < 'C' < 'Pascal' < 'Python' (1,2,3) == (1.0,2.0,3.0) (1,2) < (1,2,-1)
  • 30. Modules  collection of functions and variables, typically in scripts  definitions can be imported  file name is module name + .py  e.g., create module fibo.py def fib(n): # write Fib. series up to n ... def fib2(n): # return Fib. series up to n
  • 31. Modules  import module: import fibo  Use modules via "name space": >>> fibo.fib(1000) >>> fibo.__name__ 'fibo'  can give it a local name: >>> fib = fibo.fib >>> fib(500)
  • 32. Modules  function definition + executable statements  executed only when module is imported  modules have private symbol tables  avoids name clash for global variables  accessible as module.globalname  can import into name space: >>> from fibo import fib, fib2 >>> fib(500)  can import all names defined by module: >>> from fibo import *
  • 33. Module search path  current directory  list of directories specified in PYTHONPATH environment variable  uses installation-default if not defined, e.g., .:/usr/local/lib/python  uses sys.path >>> import sys >>> sys.path ['', 'C:PROGRA~1Python2.2', 'C:Program Files Python2.2DLLs', 'C:Program FilesPython2.2lib', 'C: Program FilesPython2.2liblib-tk', 'C:Program Files Python2.2', 'C:Program FilesPython2.2libsite- packages']
  • 34. Classes  mixture of C++ and Modula-3  multiple base classes  derived class can override any methods of its base class(es)  method can call the method of a base class with the same name  objects have private data  C++ terms:  all class members are public  all member functions are virtual  no constructors or destructors (not needed)
  • 35. Classes  classes (and data types) are objects  built-in types cannot be used as base classes by user  arithmetic operators, subscripting can be redefined for class instances (like C++, unlike Java)
  • 36. Class definitions Class ClassName: <statement-1> ... <statement-N>  must be executed  can be executed conditionally (see Tcl)  creates new namespace
  • 37. Namespaces  mapping from name to object:  built-in names (abs())  global names in module  local names in function invocation  attributes = any following a dot  z.real, z.imag  attributes read-only or writable  module attributes are writeable
  • 38. Namespaces  scope = textual region of Python program where a namespace is directly accessible (without dot)  innermost scope (first) = local names  middle scope = current module's global names  outermost scope (last) = built-in names  assignments always affect innermost scope  don't copy, just create name bindings to objects  global indicates name is in global scope
  • 39. Class objects  obj.name references (plus module!): class MyClass: "A simple example class" i = 123 def f(self): return 'hello world' >>> MyClass.i 123  MyClass.f is method object
  • 40. Class objects  class instantiation: >>> x = MyClass() >>> x.f() 'hello world'  creates new instance of class  note x = MyClass vs. x = MyClass()  ___init__() special method for initialization of object def __init__(self,realpart,imagpart): self.r = realpart self.i = imagpart
  • 41. Instance objects  attribute references  data attributes (C++/Java data members)  created dynamically x.counter = 1 while x.counter < 10: x.counter = x.counter * 2 print x.counter del x.counter
  • 42. Method objects  Called immediately: x.f()  can be referenced: xf = x.f while 1: print xf()  object is passed as first argument of function  'self'  x.f() is equivalent to MyClass.f(x)
  • 43. Inheritance class DerivedClassName(BaseClassName) <statement-1> ... <statement-N>  search class attribute, descending chain of base classes  may override methods in the base class  call directly via BaseClassName.method
  • 44. Multiple inheritance class DerivedClass(Base1,Base2,Base3) : <statement>  depth-first, left-to-right  problem: class derived from two classes with a common base class
  • 45. Private variables  No real support, but textual replacement (name mangling)  __var is replaced by _classname_var  prevents only accidental modification, not true protection
  • 46. Exceptions  syntax (parsing) errors while 1 print 'Hello World' File "<stdin>", line 1 while 1 print 'Hello World' ^ SyntaxError: invalid syntax  exceptions  run-time errors  e.g., ZeroDivisionError, NameError, TypeError
  • 47. Handling exceptions while 1: try: x = int(raw_input("Please enter a number: ")) break except ValueError: print "Not a valid number"  First, execute try clause  if no exception, skip except clause  if exception, skip rest of try clause and use except clause  if no matching exception, attempt outer try statement
  • 48. Handling exceptions  try.py import sys for arg in sys.argv[1:]: try: f = open(arg, 'r') except IOError: print 'cannot open', arg else: print arg, 'lines:', len(f.readlines()) f.close  e.g., as python try.py *.py