SlideShare a Scribd company logo
BUILT FOR THE SPEED OF BUSINESS
Python Powered Data
Science at Pivotal
How do we use the PyData stack in real
engagements?
Srivatsan Ramanujam, @being_bayesian
Ian Huston, @ianhuston
Data Scientists, Pivotal

© Copyright 2013 Pivotal. All rights reserved.

2
Agenda
Ÿ  Introduction to Pivotal
Ÿ  Pivotal Data Science Toolkit
Ÿ  PL/Python
Ÿ  In-database Machine Learning with MADlib
Ÿ  Live Demos
–  Topic Analysis and Sentiment Analysis Engine
–  Traffic Disruption Prediction

© Copyright 2013 Pivotal. All rights reserved.

3
Pivotal Platform Stack
Data-Driven
Application
Development

Pivotal Data
Science Labs

Cloud
Application
Platform
Data &
Analytics
Platform

Virtualization

Cloud Storage

© Copyright 2013 Pivotal. All rights reserved.

4
What do our customers look like?
Ÿ  Large enterprises with lots of data collected
–  Work with 10s of TBs to PBs of data, structured & unstructured

Ÿ  Not able to get what they want out of their data
–  Old Legacy systems with high cost and no flexibility
–  Response times are too slow for interactive data analysis
–  Can only deal with small samples of data locally

Ÿ  They want to transform into data driven enterprises

© Copyright 2013 Pivotal. All rights reserved.

5
MPP Architectural Overview

Think of it as multiple
PostGreSQL servers
Master

Segments/Workers
Rows are distributed across segments by
a particular field (or randomly)

© Copyright 2013 Pivotal. All rights reserved.

6
Typical Engagement Tech Setup
Ÿ  Platform:

–  Greenplum Analytics Database (GPDB)
–  Pivotal HD Hadoop Distribution + HAWQ (SQL DB on Hadoop)

Ÿ  Open Source Options (http://gopivotal.com):
–  Greenplum Community Edition
–  Pivotal HD Community Edition (HAWQ not included)
–  MADlib in-database machine learning library (http://madlib.net)

Ÿ  Where Python fits in:
–  PL/Python running in-database, with nltk, scikit-learn etc
–  IPython for exploratory analysis
–  Pandas, Matplotlib etc.

© Copyright 2013 Pivotal. All rights reserved.

7
PIVOTAL DATA SCIENCE
TOOLKIT
1

Find Data

Platforms
•  Greenplum DB
•  Pivotal HD
•  Hadoop (other)
•  SAS HPA
•  AWS

2

3

Run Code

Interfaces
•  pgAdminIII
•  psql
•  psycopg2
•  Terminal
•  Cygwin
•  Putty
•  Winscp

Write Code

Editing Tools
•  Vi/Vim
•  Emacs
•  Smultron
•  TextWrangler
•  Eclipse
•  Notepad++
•  IPython
•  Sublime

Languages
•  SQL
•  Bash scripting
•  C
•  C++
•  C#
•  Java
•  Python
•  R

© Copyright 2013 Pivotal. All rights reserved.

4

Write Code for Big Data

In-Database
•  SQL
•  PL/Python
•  PL/Java
•  PL/R
•  PL/pgSQL
5

Hadoop
•  HAWQ
•  Pig
•  Hive
•  Java

6

Visualization
•  python-matplotlib
•  python-networkx
•  D3.js
•  Tableau

Implement Algorithms

Libraries
•  MADlib
Java
•  Mahout
R
•  (Too many to list!)
Text
•  OpenNLP
•  NLTK
•  GPText
C++
•  opencv

Show Results

Python
•  NumPy
•  SciPy
•  scikit-learn
•  Pandas
Programs
•  Alpine Miner
•  Rstudio
•  MATLAB
•  SAS
•  Stata

•  GraphViz
•  Gephi
•  R (ggplot2, lattice,
shiny)
•  Excel
7

Collaborate

Sharing Tools
•  Chorus
•  Confluence
•  Socialcast
•  Github
•  Google Drive &
Hangouts

A large and
varied tool box!

8
Data Parallelism
Ÿ  Little or no effort is required to break up the problem into a
number of parallel tasks, and there exists no dependency (or
communication) between those parallel tasks.
Ÿ  Examples:
–  Measure the height of each student in a classroom (explicitly
parallelizable by student)
–  MapReduce
–  map() function in Python

© Copyright 2013 Pivotal. All rights reserved.

9
User-Defined Functions (UDFs)
Ÿ  PostgreSQL/Greenplum provide lots of flexibility in defining your own functions.
Ÿ  Simple UDFs are SQL queries with calling arguments and return types.

Definition:

Execution:

CREATE	
  FUNCTION	
  times2(INT)	
  
RETURNS	
  INT	
  
AS	
  $$	
  
	
  	
  	
  	
  SELECT	
  2	
  *	
  $1	
  
$$	
  LANGUAGE	
  sql;	
  

SELECT	
  times2(1);	
  
	
  times2	
  	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
	
  	
  	
  	
  	
  	
  2	
  
(1	
  row)	
  

© Copyright 2013 Pivotal. All rights reserved.

10
PL/X : X in {pgsql, R, Python, Java, Perl, C etc.}
•  Allows users to write Greenplum/
PostgreSQL functions in the R/Python/
Java, Perl, pgsql or C languages

SQL
Master
Host

Ÿ  The interpreter/VM of the language ‘X’ is
installed on each node of the Greenplum
Database Cluster
•  Data Parallelism:
-  PL/X piggybacks on
Greenplum’s MPP architecture

© Copyright 2013 Pivotal. All rights reserved.

Standby
Master

Interconnect

Segment Host
Segment
Segment

Segment Host
Segment
Segment

Segment Host
Segment
Segment

Segment Host
Segment
Segment

…
11
Intro to PL/Python
Ÿ  Procedural languages need to be installed on each database used.
Ÿ  Name in SQL is plpythonu, ‘u’ means untrusted so need to be superuser to install.
Ÿ  Syntax is like normal Python function with function definition line replaced by SQL wrapper.
Alternatively like a SQL User Defined Function with Python inside.

SQL wrapper
Normal Python
SQL wrapper

© Copyright 2013 Pivotal. All rights reserved.

CREATE	
  FUNCTION	
  pymax	
  (a	
  integer,	
  b	
  integer)	
  
	
  	
  RETURNS	
  integer	
  
AS	
  $$	
  
	
  	
  if	
  a	
  >	
  b:	
  
	
  	
  	
  	
  return	
  a	
  
	
  	
  return	
  b	
  
$$	
  LANGUAGE	
  plpythonu;	
  

12
Returning Results
Ÿ  Postgres primitive types (int, bigint, text, float8, double precision, date, NULL etc.)
Ÿ  Composite types can be returned by creating a composite type in the database:	
  
CREATE	
  TYPE	
  named_value	
  AS	
  (	
  
	
  	
  name	
  	
  text,	
  
	
  	
  value	
  	
  integer	
  
);	
  

Ÿ  Then you can return a list, tuple or dict (not sets) which reference the same structure as the table:
CREATE	
  FUNCTION	
  make_pair	
  (name	
  text,	
  value	
  integer)	
  
	
  	
  RETURNS	
  named_value	
  
AS	
  $$	
  
	
  	
  return	
  [	
  name,	
  value	
  ]	
  
	
  	
  #	
  or	
  alternatively,	
  as	
  tuple:	
  return	
  (	
  name,	
  value	
  )	
  
	
  	
  #	
  or	
  as	
  dict:	
  return	
  {	
  "name":	
  name,	
  "value":	
  value	
  }	
  
	
  	
  #	
  or	
  as	
  an	
  object	
  with	
  attributes	
  .name	
  and	
  .value	
  
$$	
  LANGUAGE	
  plpythonu;	
  

Ÿ  For functions which return multiple rows, prefix “setof” before the return type

© Copyright 2013 Pivotal. All rights reserved.

13
Returning more results
You can return multiple results by wrapping them in a sequence (tuple, list or set),
an iterator or a generator:

Sequence

Generator

© Copyright 2013 Pivotal. All rights reserved.

CREATE	
  FUNCTION	
  make_pair	
  (name	
  text)	
  
	
  	
  RETURNS	
  SETOF	
  named_value	
  
AS	
  $$	
  
	
  	
  return	
  ([	
  name,	
  1	
  ],	
  [	
  name,	
  2	
  ],	
  [	
  name,	
  3])	
  	
  
$$	
  LANGUAGE	
  plpythonu;	
  
CREATE	
  FUNCTION	
  make_pair	
  (name	
  text)	
  
	
  	
  RETURNS	
  SETOF	
  named_value	
  	
  AS	
  $$	
  
	
  	
  for	
  i	
  in	
  range(3):	
  
	
  	
  	
  	
  	
  	
  yield	
  (name,	
  i)	
  	
  
$$	
  LANGUAGE	
  plpythonu;	
  

14
Accessing Packages
Ÿ  On Greenplum DB: To be available packages must be installed on the
individual segment nodes.
–  Can use “parallel ssh” tool gpssh to conda/pip install
–  Currently Greenplum DB ships with Python 2.6 (!)

Ÿ  Then just import as usual inside function:

	
  	
  

CREATE	
  FUNCTION	
  make_pair	
  (name	
  text)	
  
	
  	
  RETURNS	
  named_value	
  
AS	
  $$	
  
	
  	
  import	
  numpy	
  as	
  np	
  
	
  	
  return	
  ((name,i)	
  for	
  i	
  in	
  np.arange(3))	
  
$$	
  LANGUAGE	
  plpythonu;	
  

© Copyright 2013 Pivotal. All rights reserved.

15
Benefits of PL/Python
Ÿ  Easy to bring your code to the data.
Ÿ  When SQL falls short leverage your Python (or R/Java/C)
experience quickly.
Ÿ  Apply Python across terabytes of data with minimal
overhead or additional requirements.
Ÿ  Results are already in the database system, ready for further
analysis or storage.

© Copyright 2013 Pivotal. All rights reserved.

16
Going Beyond Data Parallelism
Ÿ  Data Parallel computation via PL/Python libraries only allow
us to run ‘n’ models in parallel.
Ÿ  This works great when we are building one model for each
value of the group by column, but we need parallelized
algorithms to be able to build a single model on all the
available data
Ÿ  For this, we use MADlib – an open source library of parallel
in-database machine learning algorithms.

© Copyright 2013 Pivotal. All rights reserved.

17
MADlib: The Origin
UrbanDictionary
mad (adj.): an adjective used to enhance a noun.
1- dude, you got skills.
2- dude, you got mad skills

•  First mention of MAD analytics was at VLDB 2009
MAD Skills: New Analysis Practices for Big Data
J. Hellerstein, J. Cohen, B. Dolan, M. Dunlap, C. Welton
(with help from: Noelle Sio, David Hubbard, James Marca)
http://db.cs.berkeley.edu/papers/vldb09-madskills.pdf

•  MADlib project initiated in late 2010:
Greenplum Analytics team and Prof. Joe Hellerstein

© Copyright 2013 Pivotal. All rights reserved.

• 

Open Source!
https://github.com/madlib/madlib

• 
• 

Works on Greenplum DB and
PostgreSQL
Active development by Pivotal
- 

• 

Latest Release : v1.3 (Oct 2013)

Downloads and Docs:
http://madlib.net/

18
MADlib Executes Algorithms In-Place
MADlib User

MADlib Advantages
Master
Processor

Ø 

SQL

SQL

SQL

M

M

M

No Data Movement

Ø 

M

Use MPP architecture’s
full compute power

Ø 

Use MPP architecture’s
entire memory to
process data sets

Segment
Processors

© Copyright 2013 Pivotal. All rights reserved.

19
MADlib In-Database
Functions
Descriptive Statistics

Predictive Modeling Library
Generalized Linear Models
•  Linear Regression
•  Logistic Regression
•  Multinomial Logistic Regression
•  Cox Proportional Hazards
•  Regression
•  Elastic Net Regularization
•  Sandwich Estimators (Huber white,
clustered, marginal effects)

Matrix Factorization
•  Single Value Decomposition (SVD)
•  Low-Rank

© Copyright 2013 Pivotal. All rights reserved.

Machine Learning Algorithms
•  Principal Component Analysis (PCA)
•  Association Rules (Affinity Analysis, Market
Basket)
•  Topic Modeling (Parallel LDA)
•  Decision Trees
•  Ensemble Learners (Random Forests)
•  Support Vector Machines
•  Conditional Random Field (CRF)
•  Clustering (K-means)
•  Cross Validation
Linear Systems
•  Sparse and Dense Solvers

Sketch-based Estimators
•  CountMin (CormodeMuthukrishnan)
•  FM (Flajolet-Martin)
•  MFV (Most Frequent
Values)
Correlation
Summary
Support Modules
Array Operations
Sparse Vectors
Random Sampling
Probability Functions

20
Architecture
User Interface
“Driver” Functions
(outer loops of iterative algorithms, optimizer invocations)
High-level Abstraction Layer
(iteration controller, ...)

RDBMS
Built-in
Functions

SQL, generated from
specification

Python with
templated SQL
Python

Functions for Inner Loops
(for streaming algorithms)
Low-level Abstraction Layer
(matrix operations, C++ to RDBMS
type bridge, …)

C++

RDBMS Query Processing
(Greenplum, PostgreSQL, …)
© Copyright 2013 Pivotal. All rights reserved.

21
How does it work ? : A Linear Regression Example
Ÿ  Finding linear dependencies between variables
–  y ≈ c0 + c1 · x1 + c2 · x2 ?
# select y, x1, x2

Vector of dependent
variables y

© Copyright 2013 Pivotal. All rights reserved.

y
| x1 | x2
-------+------+----10.14 |
0 | 0.3
11.93 | 0.69 | 0.6
13.57 | 1.1 | 0.9
14.17 | 1.39 | 1.2
15.25 | 1.61 | 1.5
16.15 | 1.79 | 1.8

from unm limit 6;

Design Matrix X

22
Reminder: Linear-Regression Model
• 
•  If residuals i.i.d. Gaussians with standard deviation σ:
–  max likelihood ⇔ min sum of squared residuals

f (y | x) ∝ exp

−

1
· (y − xT c)2
2σ 2

•  First-order conditions for the following quadratic objective (in c)
yield the minimizer

© Copyright 2013 Pivotal. All rights reserved.

23
Linear Regression: Streaming Algorithm
•  How to compute with a single table scan?
-1

XT

XT

X

XTX
© Copyright 2013 Pivotal. All rights reserved.

y

XTy
24
Linear Regression: Parallel Computation
XT
y

Segment 1

T
X1

y1

Segment 2

T
T
X T y = X 1 X2

© Copyright 2013 Pivotal. All rights reserved.

Master

T
X2 y2

y1
y2

=

XTy

T
Xi y i

25
Demos
Ÿ  We built demos to showcase our technology pipeline, using
Python technology.
Ÿ  Two use cases:
–  Topic and Sentiment Analysis of Tweets
–  London Road Traffic Disruption prediction

© Copyright 2013 Pivotal. All rights reserved.

26
Topic and Sentiment Analysis Pipeline

Tweet
Stream

D3.js
Stored on
HDFS
Topic Analysis through
MADlib pLDA
(gpfdist)
Loaded as
external tables
into GPDB

© Copyright 2013 Pivotal. All rights reserved.

Parallel Parsing of
JSON and extraction
of fields using PL/
Python

Sentiment Analysis
through custom
PL/Python functions

27
Transport Disruption Prediction Pipeline

Transport for London
Traffic Disruption feed

Pivotal Greenplum
Database

d3.js	
  &	
  NVD3	
  
Interactive SVG figures

© Copyright 2013 Pivotal. All rights reserved.

Deduplication

Feature Creation

Modelling & Machine Learning

28
Pivotal’s Open Source Contributions
http://gopivotal.com/pivotal-products/open-source-software

•  PyMADlib – Python Wrapper for MADlib
-  https://github.com/gopivotal/pymadlib

•  PivotalR – R wrapper for MADlib
-  https://github.com/madlib-internal/PivotalR

•  Part-of-speech tagger for Twitter via SQL
-  http://vatsan.github.io/gp-ark-tweet-nlp/

Questions?
@being_bayesian
@ianhuston
© Copyright 2013 Pivotal. All rights reserved.

29
BUILT FOR THE SPEED OF BUSINESS

More Related Content

What's hot (20)

PDF
Massively Parallel Processing with Procedural Python by Ronert Obst PyData Be...
PyData
 
PPTX
MADlib Architecture and Functional Demo on How to Use MADlib/PivotalR
PivotalOpenSourceHub
 
PDF
High-level Programming Languages: Apache Pig and Pig Latin
Pietro Michiardi
 
PDF
Hopsworks at Google AI Huddle, Sunnyvale
Jim Dowling
 
PDF
Simple, Modular and Extensible Big Data Platform Concept
Satish Mohan
 
PPTX
Arun Rathinasabapathy, Senior Software Engineer, LexisNexis at MLconf ATL 2016
MLconf
 
PDF
Summary machine learning and model deployment
Novita Sari
 
PPTX
Introduction to Mahout
Ted Dunning
 
PDF
Hopsworks in the cloud Berlin Buzzwords 2019
Jim Dowling
 
PPTX
Machine Learning and Hadoop
Josh Patterson
 
PPTX
2011.10.14 Apache Giraph - Hortonworks
Avery Ching
 
PPTX
Machine Learning with Hadoop
Sangchul Song
 
PDF
Python in an Evolving Enterprise System (PyData SV 2013)
PyData
 
PDF
An Introduction to Apache Hadoop, Mahout and HBase
Lukas Vlcek
 
PDF
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
Jim Dowling
 
PPT
Map Reduce introduction
Muralidharan Deenathayalan
 
PDF
The MADlib Analytics Library
EMC
 
PDF
A sql implementation on the map reduce framework
eldariof
 
PDF
Apache Pig: Making data transformation easy
Victor Sanchez Anguix
 
Massively Parallel Processing with Procedural Python by Ronert Obst PyData Be...
PyData
 
MADlib Architecture and Functional Demo on How to Use MADlib/PivotalR
PivotalOpenSourceHub
 
High-level Programming Languages: Apache Pig and Pig Latin
Pietro Michiardi
 
Hopsworks at Google AI Huddle, Sunnyvale
Jim Dowling
 
Simple, Modular and Extensible Big Data Platform Concept
Satish Mohan
 
Arun Rathinasabapathy, Senior Software Engineer, LexisNexis at MLconf ATL 2016
MLconf
 
Summary machine learning and model deployment
Novita Sari
 
Introduction to Mahout
Ted Dunning
 
Hopsworks in the cloud Berlin Buzzwords 2019
Jim Dowling
 
Machine Learning and Hadoop
Josh Patterson
 
2011.10.14 Apache Giraph - Hortonworks
Avery Ching
 
Machine Learning with Hadoop
Sangchul Song
 
Python in an Evolving Enterprise System (PyData SV 2013)
PyData
 
An Introduction to Apache Hadoop, Mahout and HBase
Lukas Vlcek
 
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
Jim Dowling
 
Map Reduce introduction
Muralidharan Deenathayalan
 
The MADlib Analytics Library
EMC
 
A sql implementation on the map reduce framework
eldariof
 
Apache Pig: Making data transformation easy
Victor Sanchez Anguix
 

Viewers also liked (7)

PPTX
Climate Data Lake: Empowering Citizen Scientists in Acadia National Park
Srivatsan Ramanujam
 
PDF
Using Machine Learning to aid Journalism at the New York Times
Vivian S. Zhang
 
PDF
Germin8 - Social Media Analytics
Germin8
 
PDF
Real-time Big Data Processing with Storm
viirya
 
PDF
R server and spark
BAINIDA
 
PDF
microsoft r server for distributed computing
BAINIDA
 
PDF
Greenplum Database Overview
EMC
 
Climate Data Lake: Empowering Citizen Scientists in Acadia National Park
Srivatsan Ramanujam
 
Using Machine Learning to aid Journalism at the New York Times
Vivian S. Zhang
 
Germin8 - Social Media Analytics
Germin8
 
Real-time Big Data Processing with Storm
viirya
 
R server and spark
BAINIDA
 
microsoft r server for distributed computing
BAINIDA
 
Greenplum Database Overview
EMC
 
Ad

Similar to Python Powered Data Science at Pivotal (PyData 2013) (20)

PDF
Massively Parallel Process with Prodedural Python by Ian Huston
PyData
 
PDF
Data Science Amsterdam - Massively Parallel Processing with Procedural Languages
Ian Huston
 
PPT
A Hands-on Intro to Data Science and R Presentation.ppt
Sanket Shikhar
 
PDF
AI on Greenplum Using
 Apache MADlib and MADlib Flow - Greenplum Summit 2019
VMware Tanzu
 
PDF
Pl/Python
Command Prompt., Inc
 
PDF
Python + MPP Database = Large Scale AI/ML Projects in Production Faster
Paige_Roberts
 
PDF
Machine Learning, Graph, Text and Geospatial on Postgres and Greenplum - Gree...
VMware Tanzu
 
PDF
Exploring and Using the Python Ecosystem
Adam Cook
 
PDF
Data Science as a Commodity: Use MADlib, R, & other OSS Tools for Data Scienc...
Sarah Aerni
 
PDF
Data meets AI - AICUG - Santa Clara
Sandesh Rao
 
PDF
How to Build Modern Data Architectures Both On Premises and in the Cloud
VMware Tanzu
 
PPT
Os Lonergan
oscon2007
 
PPTX
machinelearningwithpythonppt-230605123325-8b1d6277.pptx
geethar79
 
PDF
An Analytics Platform for Connected Vehicles
Data Engineers Guild Meetup Group
 
PPT
Data science and OSS
Kevin Crocker
 
PDF
Data Analysis with TensorFlow in PostgreSQL
EDB
 
PDF
Python webinar 4th june
Edureka!
 
PPTX
Python tool to data analysis and artificial intelligence
Md Aksam VK
 
PDF
Samsung SDS OpeniT - The possibility of Python
Insuk (Chris) Cho
 
PDF
Data meets AI - ATP Roadshow India
Sandesh Rao
 
Massively Parallel Process with Prodedural Python by Ian Huston
PyData
 
Data Science Amsterdam - Massively Parallel Processing with Procedural Languages
Ian Huston
 
A Hands-on Intro to Data Science and R Presentation.ppt
Sanket Shikhar
 
AI on Greenplum Using
 Apache MADlib and MADlib Flow - Greenplum Summit 2019
VMware Tanzu
 
Python + MPP Database = Large Scale AI/ML Projects in Production Faster
Paige_Roberts
 
Machine Learning, Graph, Text and Geospatial on Postgres and Greenplum - Gree...
VMware Tanzu
 
Exploring and Using the Python Ecosystem
Adam Cook
 
Data Science as a Commodity: Use MADlib, R, & other OSS Tools for Data Scienc...
Sarah Aerni
 
Data meets AI - AICUG - Santa Clara
Sandesh Rao
 
How to Build Modern Data Architectures Both On Premises and in the Cloud
VMware Tanzu
 
Os Lonergan
oscon2007
 
machinelearningwithpythonppt-230605123325-8b1d6277.pptx
geethar79
 
An Analytics Platform for Connected Vehicles
Data Engineers Guild Meetup Group
 
Data science and OSS
Kevin Crocker
 
Data Analysis with TensorFlow in PostgreSQL
EDB
 
Python webinar 4th june
Edureka!
 
Python tool to data analysis and artificial intelligence
Md Aksam VK
 
Samsung SDS OpeniT - The possibility of Python
Insuk (Chris) Cho
 
Data meets AI - ATP Roadshow India
Sandesh Rao
 
Ad

Recently uploaded (20)

PPTX
Building and Operating a Private Cloud with CloudStack and LINBIT CloudStack ...
ShapeBlue
 
PPTX
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
PDF
Upskill to Agentic Automation 2025 - Kickoff Meeting
DianaGray10
 
PDF
HR agent at Mediq: Lessons learned on Agent Builder & Maestro by Tacstone Tec...
UiPathCommunity
 
PPTX
The Yotta x CloudStack Advantage: Scalable, India-First Cloud
ShapeBlue
 
PDF
Are there government-backed agri-software initiatives in Limerick.pdf
giselawagner2
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PDF
Bitcoin+ Escalando sin concesiones - Parte 1
Fernando Paredes García
 
PDF
Building Resilience with Digital Twins : Lessons from Korea
SANGHEE SHIN
 
PPTX
Simplifying End-to-End Apache CloudStack Deployment with a Web-Based Automati...
ShapeBlue
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PPTX
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
PDF
NewMind AI Journal - Weekly Chronicles - July'25 Week II
NewMind AI
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
PPTX
Top Managed Service Providers in Los Angeles
Captain IT
 
PDF
Ampere Offers Energy-Efficient Future For AI And Cloud
ShapeBlue
 
PDF
2025-07-15 EMEA Volledig Inzicht Dutch Webinar
ThousandEyes
 
PDF
HydITEx corporation Booklet 2025 English
Георгий Феодориди
 
PDF
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
Building and Operating a Private Cloud with CloudStack and LINBIT CloudStack ...
ShapeBlue
 
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
Upskill to Agentic Automation 2025 - Kickoff Meeting
DianaGray10
 
HR agent at Mediq: Lessons learned on Agent Builder & Maestro by Tacstone Tec...
UiPathCommunity
 
The Yotta x CloudStack Advantage: Scalable, India-First Cloud
ShapeBlue
 
Are there government-backed agri-software initiatives in Limerick.pdf
giselawagner2
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
Bitcoin+ Escalando sin concesiones - Parte 1
Fernando Paredes García
 
Building Resilience with Digital Twins : Lessons from Korea
SANGHEE SHIN
 
Simplifying End-to-End Apache CloudStack Deployment with a Web-Based Automati...
ShapeBlue
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
NewMind AI Journal - Weekly Chronicles - July'25 Week II
NewMind AI
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Top Managed Service Providers in Los Angeles
Captain IT
 
Ampere Offers Energy-Efficient Future For AI And Cloud
ShapeBlue
 
2025-07-15 EMEA Volledig Inzicht Dutch Webinar
ThousandEyes
 
HydITEx corporation Booklet 2025 English
Георгий Феодориди
 
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 

Python Powered Data Science at Pivotal (PyData 2013)

  • 1. BUILT FOR THE SPEED OF BUSINESS
  • 2. Python Powered Data Science at Pivotal How do we use the PyData stack in real engagements? Srivatsan Ramanujam, @being_bayesian Ian Huston, @ianhuston Data Scientists, Pivotal © Copyright 2013 Pivotal. All rights reserved. 2
  • 3. Agenda Ÿ  Introduction to Pivotal Ÿ  Pivotal Data Science Toolkit Ÿ  PL/Python Ÿ  In-database Machine Learning with MADlib Ÿ  Live Demos –  Topic Analysis and Sentiment Analysis Engine –  Traffic Disruption Prediction © Copyright 2013 Pivotal. All rights reserved. 3
  • 4. Pivotal Platform Stack Data-Driven Application Development Pivotal Data Science Labs Cloud Application Platform Data & Analytics Platform Virtualization Cloud Storage © Copyright 2013 Pivotal. All rights reserved. 4
  • 5. What do our customers look like? Ÿ  Large enterprises with lots of data collected –  Work with 10s of TBs to PBs of data, structured & unstructured Ÿ  Not able to get what they want out of their data –  Old Legacy systems with high cost and no flexibility –  Response times are too slow for interactive data analysis –  Can only deal with small samples of data locally Ÿ  They want to transform into data driven enterprises © Copyright 2013 Pivotal. All rights reserved. 5
  • 6. MPP Architectural Overview Think of it as multiple PostGreSQL servers Master Segments/Workers Rows are distributed across segments by a particular field (or randomly) © Copyright 2013 Pivotal. All rights reserved. 6
  • 7. Typical Engagement Tech Setup Ÿ  Platform: –  Greenplum Analytics Database (GPDB) –  Pivotal HD Hadoop Distribution + HAWQ (SQL DB on Hadoop) Ÿ  Open Source Options (http://gopivotal.com): –  Greenplum Community Edition –  Pivotal HD Community Edition (HAWQ not included) –  MADlib in-database machine learning library (http://madlib.net) Ÿ  Where Python fits in: –  PL/Python running in-database, with nltk, scikit-learn etc –  IPython for exploratory analysis –  Pandas, Matplotlib etc. © Copyright 2013 Pivotal. All rights reserved. 7
  • 8. PIVOTAL DATA SCIENCE TOOLKIT 1 Find Data Platforms •  Greenplum DB •  Pivotal HD •  Hadoop (other) •  SAS HPA •  AWS 2 3 Run Code Interfaces •  pgAdminIII •  psql •  psycopg2 •  Terminal •  Cygwin •  Putty •  Winscp Write Code Editing Tools •  Vi/Vim •  Emacs •  Smultron •  TextWrangler •  Eclipse •  Notepad++ •  IPython •  Sublime Languages •  SQL •  Bash scripting •  C •  C++ •  C# •  Java •  Python •  R © Copyright 2013 Pivotal. All rights reserved. 4 Write Code for Big Data In-Database •  SQL •  PL/Python •  PL/Java •  PL/R •  PL/pgSQL 5 Hadoop •  HAWQ •  Pig •  Hive •  Java 6 Visualization •  python-matplotlib •  python-networkx •  D3.js •  Tableau Implement Algorithms Libraries •  MADlib Java •  Mahout R •  (Too many to list!) Text •  OpenNLP •  NLTK •  GPText C++ •  opencv Show Results Python •  NumPy •  SciPy •  scikit-learn •  Pandas Programs •  Alpine Miner •  Rstudio •  MATLAB •  SAS •  Stata •  GraphViz •  Gephi •  R (ggplot2, lattice, shiny) •  Excel 7 Collaborate Sharing Tools •  Chorus •  Confluence •  Socialcast •  Github •  Google Drive & Hangouts A large and varied tool box! 8
  • 9. Data Parallelism Ÿ  Little or no effort is required to break up the problem into a number of parallel tasks, and there exists no dependency (or communication) between those parallel tasks. Ÿ  Examples: –  Measure the height of each student in a classroom (explicitly parallelizable by student) –  MapReduce –  map() function in Python © Copyright 2013 Pivotal. All rights reserved. 9
  • 10. User-Defined Functions (UDFs) Ÿ  PostgreSQL/Greenplum provide lots of flexibility in defining your own functions. Ÿ  Simple UDFs are SQL queries with calling arguments and return types. Definition: Execution: CREATE  FUNCTION  times2(INT)   RETURNS  INT   AS  $$          SELECT  2  *  $1   $$  LANGUAGE  sql;   SELECT  times2(1);    times2     -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐              2   (1  row)   © Copyright 2013 Pivotal. All rights reserved. 10
  • 11. PL/X : X in {pgsql, R, Python, Java, Perl, C etc.} •  Allows users to write Greenplum/ PostgreSQL functions in the R/Python/ Java, Perl, pgsql or C languages SQL Master Host Ÿ  The interpreter/VM of the language ‘X’ is installed on each node of the Greenplum Database Cluster •  Data Parallelism: -  PL/X piggybacks on Greenplum’s MPP architecture © Copyright 2013 Pivotal. All rights reserved. Standby Master Interconnect Segment Host Segment Segment Segment Host Segment Segment Segment Host Segment Segment Segment Host Segment Segment … 11
  • 12. Intro to PL/Python Ÿ  Procedural languages need to be installed on each database used. Ÿ  Name in SQL is plpythonu, ‘u’ means untrusted so need to be superuser to install. Ÿ  Syntax is like normal Python function with function definition line replaced by SQL wrapper. Alternatively like a SQL User Defined Function with Python inside. SQL wrapper Normal Python SQL wrapper © Copyright 2013 Pivotal. All rights reserved. CREATE  FUNCTION  pymax  (a  integer,  b  integer)      RETURNS  integer   AS  $$      if  a  >  b:          return  a      return  b   $$  LANGUAGE  plpythonu;   12
  • 13. Returning Results Ÿ  Postgres primitive types (int, bigint, text, float8, double precision, date, NULL etc.) Ÿ  Composite types can be returned by creating a composite type in the database:   CREATE  TYPE  named_value  AS  (      name    text,      value    integer   );   Ÿ  Then you can return a list, tuple or dict (not sets) which reference the same structure as the table: CREATE  FUNCTION  make_pair  (name  text,  value  integer)      RETURNS  named_value   AS  $$      return  [  name,  value  ]      #  or  alternatively,  as  tuple:  return  (  name,  value  )      #  or  as  dict:  return  {  "name":  name,  "value":  value  }      #  or  as  an  object  with  attributes  .name  and  .value   $$  LANGUAGE  plpythonu;   Ÿ  For functions which return multiple rows, prefix “setof” before the return type © Copyright 2013 Pivotal. All rights reserved. 13
  • 14. Returning more results You can return multiple results by wrapping them in a sequence (tuple, list or set), an iterator or a generator: Sequence Generator © Copyright 2013 Pivotal. All rights reserved. CREATE  FUNCTION  make_pair  (name  text)      RETURNS  SETOF  named_value   AS  $$      return  ([  name,  1  ],  [  name,  2  ],  [  name,  3])     $$  LANGUAGE  plpythonu;   CREATE  FUNCTION  make_pair  (name  text)      RETURNS  SETOF  named_value    AS  $$      for  i  in  range(3):              yield  (name,  i)     $$  LANGUAGE  plpythonu;   14
  • 15. Accessing Packages Ÿ  On Greenplum DB: To be available packages must be installed on the individual segment nodes. –  Can use “parallel ssh” tool gpssh to conda/pip install –  Currently Greenplum DB ships with Python 2.6 (!) Ÿ  Then just import as usual inside function:     CREATE  FUNCTION  make_pair  (name  text)      RETURNS  named_value   AS  $$      import  numpy  as  np      return  ((name,i)  for  i  in  np.arange(3))   $$  LANGUAGE  plpythonu;   © Copyright 2013 Pivotal. All rights reserved. 15
  • 16. Benefits of PL/Python Ÿ  Easy to bring your code to the data. Ÿ  When SQL falls short leverage your Python (or R/Java/C) experience quickly. Ÿ  Apply Python across terabytes of data with minimal overhead or additional requirements. Ÿ  Results are already in the database system, ready for further analysis or storage. © Copyright 2013 Pivotal. All rights reserved. 16
  • 17. Going Beyond Data Parallelism Ÿ  Data Parallel computation via PL/Python libraries only allow us to run ‘n’ models in parallel. Ÿ  This works great when we are building one model for each value of the group by column, but we need parallelized algorithms to be able to build a single model on all the available data Ÿ  For this, we use MADlib – an open source library of parallel in-database machine learning algorithms. © Copyright 2013 Pivotal. All rights reserved. 17
  • 18. MADlib: The Origin UrbanDictionary mad (adj.): an adjective used to enhance a noun. 1- dude, you got skills. 2- dude, you got mad skills •  First mention of MAD analytics was at VLDB 2009 MAD Skills: New Analysis Practices for Big Data J. Hellerstein, J. Cohen, B. Dolan, M. Dunlap, C. Welton (with help from: Noelle Sio, David Hubbard, James Marca) http://db.cs.berkeley.edu/papers/vldb09-madskills.pdf •  MADlib project initiated in late 2010: Greenplum Analytics team and Prof. Joe Hellerstein © Copyright 2013 Pivotal. All rights reserved. •  Open Source! https://github.com/madlib/madlib •  •  Works on Greenplum DB and PostgreSQL Active development by Pivotal -  •  Latest Release : v1.3 (Oct 2013) Downloads and Docs: http://madlib.net/ 18
  • 19. MADlib Executes Algorithms In-Place MADlib User MADlib Advantages Master Processor Ø  SQL SQL SQL M M M No Data Movement Ø  M Use MPP architecture’s full compute power Ø  Use MPP architecture’s entire memory to process data sets Segment Processors © Copyright 2013 Pivotal. All rights reserved. 19
  • 20. MADlib In-Database Functions Descriptive Statistics Predictive Modeling Library Generalized Linear Models •  Linear Regression •  Logistic Regression •  Multinomial Logistic Regression •  Cox Proportional Hazards •  Regression •  Elastic Net Regularization •  Sandwich Estimators (Huber white, clustered, marginal effects) Matrix Factorization •  Single Value Decomposition (SVD) •  Low-Rank © Copyright 2013 Pivotal. All rights reserved. Machine Learning Algorithms •  Principal Component Analysis (PCA) •  Association Rules (Affinity Analysis, Market Basket) •  Topic Modeling (Parallel LDA) •  Decision Trees •  Ensemble Learners (Random Forests) •  Support Vector Machines •  Conditional Random Field (CRF) •  Clustering (K-means) •  Cross Validation Linear Systems •  Sparse and Dense Solvers Sketch-based Estimators •  CountMin (CormodeMuthukrishnan) •  FM (Flajolet-Martin) •  MFV (Most Frequent Values) Correlation Summary Support Modules Array Operations Sparse Vectors Random Sampling Probability Functions 20
  • 21. Architecture User Interface “Driver” Functions (outer loops of iterative algorithms, optimizer invocations) High-level Abstraction Layer (iteration controller, ...) RDBMS Built-in Functions SQL, generated from specification Python with templated SQL Python Functions for Inner Loops (for streaming algorithms) Low-level Abstraction Layer (matrix operations, C++ to RDBMS type bridge, …) C++ RDBMS Query Processing (Greenplum, PostgreSQL, …) © Copyright 2013 Pivotal. All rights reserved. 21
  • 22. How does it work ? : A Linear Regression Example Ÿ  Finding linear dependencies between variables –  y ≈ c0 + c1 · x1 + c2 · x2 ? # select y, x1, x2 Vector of dependent variables y © Copyright 2013 Pivotal. All rights reserved. y | x1 | x2 -------+------+----10.14 | 0 | 0.3 11.93 | 0.69 | 0.6 13.57 | 1.1 | 0.9 14.17 | 1.39 | 1.2 15.25 | 1.61 | 1.5 16.15 | 1.79 | 1.8 from unm limit 6; Design Matrix X 22
  • 23. Reminder: Linear-Regression Model •  •  If residuals i.i.d. Gaussians with standard deviation σ: –  max likelihood ⇔ min sum of squared residuals f (y | x) ∝ exp − 1 · (y − xT c)2 2σ 2 •  First-order conditions for the following quadratic objective (in c) yield the minimizer © Copyright 2013 Pivotal. All rights reserved. 23
  • 24. Linear Regression: Streaming Algorithm •  How to compute with a single table scan? -1 XT XT X XTX © Copyright 2013 Pivotal. All rights reserved. y XTy 24
  • 25. Linear Regression: Parallel Computation XT y Segment 1 T X1 y1 Segment 2 T T X T y = X 1 X2 © Copyright 2013 Pivotal. All rights reserved. Master T X2 y2 y1 y2 = XTy T Xi y i 25
  • 26. Demos Ÿ  We built demos to showcase our technology pipeline, using Python technology. Ÿ  Two use cases: –  Topic and Sentiment Analysis of Tweets –  London Road Traffic Disruption prediction © Copyright 2013 Pivotal. All rights reserved. 26
  • 27. Topic and Sentiment Analysis Pipeline Tweet Stream D3.js Stored on HDFS Topic Analysis through MADlib pLDA (gpfdist) Loaded as external tables into GPDB © Copyright 2013 Pivotal. All rights reserved. Parallel Parsing of JSON and extraction of fields using PL/ Python Sentiment Analysis through custom PL/Python functions 27
  • 28. Transport Disruption Prediction Pipeline Transport for London Traffic Disruption feed Pivotal Greenplum Database d3.js  &  NVD3   Interactive SVG figures © Copyright 2013 Pivotal. All rights reserved. Deduplication Feature Creation Modelling & Machine Learning 28
  • 29. Pivotal’s Open Source Contributions http://gopivotal.com/pivotal-products/open-source-software •  PyMADlib – Python Wrapper for MADlib -  https://github.com/gopivotal/pymadlib •  PivotalR – R wrapper for MADlib -  https://github.com/madlib-internal/PivotalR •  Part-of-speech tagger for Twitter via SQL -  http://vatsan.github.io/gp-ark-tweet-nlp/ Questions? @being_bayesian @ianhuston © Copyright 2013 Pivotal. All rights reserved. 29
  • 30. BUILT FOR THE SPEED OF BUSINESS