This document provides a review of recent trends in incremental clustering algorithms. It discusses clustering methods based on both similarity measures and those not based on similarity measures. Specific incremental clustering algorithms covered include single-pass clustering, k-nearest neighbors clustering, suffix tree clustering, incremental DBSCAN, and ICIB (incremental clustering based on information bottleneck theory). The document also reviews various techniques for clustering, including particle swarm optimization, ant colony optimization, and genetic algorithms. Applications of genetic algorithm based clustering are discussed.