SlideShare a Scribd company logo
Recognizing Human-Object Interactions in
Still Images by Modeling the Mutual
Context
of Objects and Human Poses
Presented By
Arwa Chittalwala
Irfan Shaikh
Heena Patel
1
Robots interact
with objects
Automatic sports
commentary
“Kobe is dunking the ball.”
2
Human-Object Interaction
Medical care
3
Vs.
Human-Object Interaction
Playing
saxophone
Playing
bassoon
Playing
saxophone
Grouplet is a generic feature for structured objects, or interactions
of groups of objects.
(Previous talk: Grouplet)
Caltech101
HOI activity: Tennis Forehand
Holistic image based classification
Detailed understanding and reasoning
Berg & Malik, 2005 Grauman & Darrell, 2005 Gehler & Nowozin, 2009 OURS
48% 59% 77% 62%
4
Human-Object Interaction
Torso
Head
• Human pose estimation
Holistic image based classification
Detailed understanding and reasoning
5
Human-Object Interaction
Tennis
racket
• Human pose estimation
Holistic image based classification
Detailed understanding and reasoning
• Object detection
6
Human-Object Interaction
• Human pose estimation
Holistic image based classification
Detailed understanding and reasoning
• Object detection
Torso
Head
Tennis
racket
HOI activity: Tennis Forehand
• Background and Intuition
• Mutual Context of Object and Human Pose
 Model Representation
 Model Learning
 Model Inference
• Experiments
• Conclusion
Outline
7
• Background and Intuition
• Mutual Context of Object and Human Pose
 Model Representation
 Model Learning
 Model Inference
• Experiments
• Conclusion
Outline
8
• Felzenszwalb & Huttenlocher, 2005
• Ren et al, 2005
• Ramanan, 2006
• Ferrari et al, 2008
• Yang & Mori, 2008
• Andriluka et al, 2009
• Eichner & Ferrari, 2009
Difficult part
appearance
Self-occlusion
Image region looks
like a body part
Human pose estimation & Object detection
9
Human pose
estimation is
challenging.
Human pose estimation & Object detection
10
Human pose
estimation is
challenging.
• Felzenszwalb & Huttenlocher, 2005
• Ren et al, 2005
• Ramanan, 2006
• Ferrari et al, 2008
• Yang & Mori, 2008
• Andriluka et al, 2009
• Eichner & Ferrari, 2009
Human pose estimation & Object detection
11
Facilitate
Given the
object is
detected.
• Viola & Jones, 2001
• Lampert et al, 2008
• Divvala et al, 2009
• Vedaldi et al, 2009
Small, low-resolution,
partially occluded
Image region similar
to detection target
Human pose estimation & Object detection
12
Object
detection is
challenging
Human pose estimation & Object detection
13
Object
detection is
challenging
• Viola & Jones, 2001
• Lampert et al, 2008
• Divvala et al, 2009
• Vedaldi et al, 2009
Human pose estimation & Object detection
14
Facilitate
Given the
pose is
estimated.
Human pose estimation & Object detection
15
Mutual Context
• Hoiem et al, 2006
• Rabinovich et al, 2007
• Oliva & Torralba, 2007
• Heitz & Koller, 2008
• Desai et al, 2009
• Divvala et al, 2009
• Murphy et al, 2003
• Shotton et al, 2006
• Harzallah et al, 2009
• Li, Socher & Fei-Fei, 2009
• Marszalek et al, 2009
• Bao & Savarese, 2010
Context in Computer Vision
~3-4%
with
context
without
context
Helpful, but only moderately
outperform better

Previous work – Use context
cues to facilitate object detection:
• Viola & Jones, 2001
• Lampert et al, 2008

16
Context in Computer Vision
Our approach – Two challenging
tasks serve as mutual context of
each other:
With
mutual
context:
Without
context:
17
~3-4%
with
context
without
context
Helpful, but only moderately
outperform better
Previous work – Use context
cues to facilitate object detection:
• Hoiem et al, 2006
• Rabinovich et al, 2007
• Oliva & Torralba, 2007
• Heitz & Koller, 2008
• Desai et al, 2009
• Divvala et al, 2009
• Murphy et al, 2003
• Shotton et al, 2006
• Harzallah et al, 2009
• Li, Socher & Fei-Fei, 2009
• Marszalek et al, 2009
• Bao & Savarese, 2010
• Background and Intuition
• Mutual Context of Object and Human Pose
 Model Representation
 Model Learning
 Model Inference
• Experiments
• Conclusion
Outline
18
19
H
A
Mutual Context Model Representation
• More than one H for each A;
• Unobserved during training.
A:

Croquet
shot
Volleyball
smash
Tennis
forehand
Intra-class variations
Activity
Object
Human pose
Body parts
lP: location; θP: orientation; sP: scale.
Croquet
mallet
Volleyball

Tennis
racket
O:
H:
P:
f: Shape context. [Belongie et al, 2002]
P1
Image evidence

fO
f1 f2 fN
O
P2 PN
20
Mutual Context Model Representation
( , )e O H
( , )e A O
( , )e A H
e e
e E
w

  
Markov Random Field
Clique
potential
Clique
weight
O
P1 PN

fO
H
A
P2
f1 f2 fN
( , )e A O ( , )e A H ( , )e O H• , , : Frequency
of co-occurrence between A, O, and H.
21
A
f1 f2 fN
Mutual Context Model Representation
( , )e nO P
( , )e m nP P

fO
P1 PNP2
O
H• , , : Spatial
relationship among object and body parts.
( , )e nO P ( , )e m nP P( , )e nH P
     bin binn n nO P O P O Pl l s s    
location orientation size
( , )e nH P
e e
e E
w

  
Markov Random Field
Clique
potential
Clique
weight
( , )e A O ( , )e A H ( , )e O H• , , : Frequency
of co-occurrence between A, O, and H.
22
H
A
f1 f2 fN
Mutual Context Model Representation
Obtained by
structure learning

fO
PNP1 P2
O
• Learn structural connectivity among
the body parts and the object.
( , )e A O ( , )e A H ( , )e O H• , , : Frequency
of co-occurrence between A, O, and H.
• , , : Spatial
relationship among object and body parts.
( , )e nO P ( , )e m nP P( , )e nH P
     bin binn n nO P O P O Pl l s s    
location orientation size ( , )e nO P
( , )e m nP P
( , )e nH P
e e
e E
w

  
Markov Random Field
Clique
potential
Clique
weight
23
H
O
A

fO
f1 f2 fN
P1 P2 PN
Mutual Context Model Representation
• and : Discriminative
part detection scores.
( , )e OO f ( , )ne n PP f
[Andriluka et al, 2009]
Shape context + AdaBoost
• Learn structural connectivity among
the body parts and the object.
[Belongie et al, 2002]
[Viola & Jones, 2001]
( , )e OO f
( , )ne n PP f
( , )e A O ( , )e A H ( , )e O H• , , : Frequency
of co-occurrence between A, O, and H.
• , , : Spatial
relationship among object and body parts.
( , )e nO P ( , )e m nP P( , )e nH P
     bin binn n nO P O P O Pl l s s    
location orientation size
e e
e E
w

  
Markov Random Field
Clique
potential
Clique
weight
• Background and Intuition
• Mutual Context of Object and Human Pose
 Model Representation
 Model Learning
 Model Inference
• Experiments
• Conclusion
Outline
24
25
Model Learning
H
O
A

fO
f1 f2 fN
P1 P2 PN
e e
e E
w

  

cricket
shot
cricket
bowling
Input:
Goals:
Hidden human poses
26
Model Learning
H
O
A

fO
f1 f2 fN
P1 P2 PN

Input:
Goals:
Hidden human poses
Structural connectivity
e e
e E
w

  
cricket
shot
cricket
bowling
e e
e E
w

  
27
Model Learning
Goals:
Hidden human poses
Structural connectivity
Potential parameters
Potential weights
H
O
A

fO
f1 f2 fN
P1 P2 PN

Input:
cricket
shot
cricket
bowling
28
Model Learning
Goals:
Parameter estimation
Hidden variables
Structure learning
H
O
A

fO
f1 f2 fN
P1 P2 PN

Input:
e e
e E
w

  
cricket
shot
cricket
bowling
Hidden human poses
Structural connectivity
Potential parameters
Potential weights
29
Model Learning
Goals:
H
O
A

fO
f1 f2 fN
P1 P2 PN
Approach:
croquet shot
e e
e E
w

  
Hidden human poses
Structural connectivity
Potential parameters
Potential weights
30
Model Learning
Goals:
H
O
A

fO
f1 f2 fN
P1 P2 PN
Approach:
 
 
2
2
max
2
e eeE e
E
w



  
 
  

Joint density
of the model
Gaussian priori of
the edge number











 

Hill-climbing
e e
e E
w

  
Hidden human poses
Structural connectivity
Potential parameters
Potential weights
31
Model Learning
Goals:
H
O
A

fO
f1 f2 fN
P1 P2 PN
Approach:
( , )e O H( , )e A O ( , )e A H
( , )e nO P ( , )e m nP P( , )e nH P
( , )e OO f ( , )ne n PP f
• Maximum likelihood
• Standard AdaBoost
e e
e E
w

  
Hidden human poses
Structural connectivity
Potential parameters
Potential weights
32
Model Learning
Goals:
H
O
A

fO
f1 f2 fN
P1 P2 PN
Approach:
Max-margin learning
2
2,
1
min
2
r i
r i

  w
w
• xi: Potential values of the i-th image.
• wr: Potential weights of the r-th pose.
• y(r): Activity of the r-th pose.
• ξi: A slack variable for the i-th image.
Notations
   s.t. , where ,
1
, 0
i
i
c i r i i
i
i r y r y c
i


 
    
 
w x w x
e e
e E
w

  
Hidden human poses
Structural connectivity
Potential parameters
Potential weights
33
Learning Results
Cricket
defensive
shot
Cricket
bowling
Croquet
shot
34
Learning Results
Tennis
serve
Volleyball
smash
Tennis
forehand
• Background and Intuition
• Mutual Context of Object and Human Pose
 Model Representation
 Model Learning
 Model Inference
• Experiments
• Conclusion
Outline
35
I
 
36
Model Inference
The learned models
I
 
37
Model Inference
The learned models
Head detection
Torso detection
Tennis racket detection

Layout of the object and body parts.
Compositional
Inference
[Chen et al, 2007]
  * *
1 1 1 1,, , , n n
A H O P
I
38
Model Inference
The learned models
 
 
  * *
1 1 1 1,, , , n n
A H O P   * *
,, , ,K K K K n n
A H O P
Output
• Background and Intuition
• Mutual Context of Object and Human Pose
 Model Representation
 Model Learning
 Model Inference
• Experiments
• Conclusion
Outline
39
40
Dataset and Experiment Setup
• Object detection;
• Pose estimation;
• Activity classification.
Tasks:
[Gupta et al, 2009]
Cricket
defensive shot
Cricket
bowling
Croquet
shot
Tennis
forehand
Tennis
serve
Volleyball
smash
Sport data set: 6 classes
180 training (supervised with object and part locations) & 120 testing images
[Gupta et al, 2009]
Cricket
defensive shot
Cricket
bowling
Croquet
shot
Tennis
forehand
Tennis
serve
Volleyball
smash
Sport data set: 6 classes
41
Dataset and Experiment Setup
• Object detection;
• Pose estimation;
• Activity classification.
Tasks:
180 training (supervised with object and part locations) & 120 testing images
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Recall
Precision
Object Detection Results
Cricket bat
42


Valid
region
Croquet mallet Tennis racket Volleyball
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Recall
Precision
Cricket ball
Our
Method
Sliding
window
Pedestrian
context
[Andriluka
et al, 2009]
[Dalal &
Triggs, 2006]
Object Detection Results
43
43
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Recall
Precision
Volleyball
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Recall
Precision
Cricket ball
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
RecallPrecision
Our Method
Pedestrian as context
Scanning window detector
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Recall
Precision
Our Method
Pedestrian as context
Scanning window detector
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Recall
Precision
Our Method
Pedestrian as context
Scanning window detector
Sliding window Pedestrian context Our method
SmallobjectBackgroundclutter
44
Dataset and Experiment Setup
• Object detection;
• Pose estimation;
• Activity classification.
Tasks:
[Gupta et al, 2009]
Cricket
defensive shot
Cricket
bowling
Croquet
shot
Tennis
forehand
Tennis
serve
Volleyball
smash
Sport data set: 6 classes
180 training & 120 testing images
45
Human Pose Estimation Results
Method Torso Upper Leg Lower Leg Upper Arm Lower Arm Head
Ramanan,
2006
.52 .22 .22 .21 .28 .24 .28 .17 .14 .42
Andriluka et
al, 2009
.50 .31 .30 .31 .27 .18 .19 .11 .11 .45
Our full
model
.66 .43 .39 .44 .34 .44 .40 .27 .29 .58
46
Human Pose Estimation Results
Method Torso Upper Leg Lower Leg Upper Arm Lower Arm Head
Ramanan,
2006
.52 .22 .22 .21 .28 .24 .28 .17 .14 .42
Andriluka et
al, 2009
.50 .31 .30 .31 .27 .18 .19 .11 .11 .45
Our full
model
.66 .43 .39 .44 .34 .44 .40 .27 .29 .58
Andriluka
et al, 2009
Our estimation
result
Tennis serve
model
Andriluka
et al, 2009
Our estimation
result
Volleyball
smash model
47
Human Pose Estimation Results
Method Torso Upper Leg Lower Leg Upper Arm Lower Arm Head
Ramanan,
2006
.52 .22 .22 .21 .28 .24 .28 .17 .14 .42
Andriluka et
al, 2009
.50 .31 .30 .31 .27 .18 .19 .11 .11 .45
Our full
model
.66 .43 .39 .44 .34 .44 .40 .27 .29 .58
One pose
per class
.63 .40 .36 .41 .31 .38 .35 .21 .23 .52
Estimation
result
Estimation
result
Estimation
result
Estimation
result
48
Dataset and Experiment Setup
• Object detection;
• Pose estimation;
• Activity classification.
Tasks:
[Gupta et al, 2009]
Cricket
defensive shot
Cricket
bowling
Croquet
shot
Tennis
forehand
Tennis
serve
Volleyball
smash
Sport data set: 6 classes
180 training & 120 testing images
Activity Classification Results
49
Gupta et
al, 2009
Our
model
Bag-of-
Words
83.3%
Classificationaccuracy
78.9%
52.5%
0.9
0.8
0.7
0.6
0.5
No scene
information Scene is
critical!! Cricket
shot
Tennis
forehand
Bag-of-words
SIFT+SVM
Gupta et
al, 2009
Our
model
50
Conclusion
Human-Object Interaction
Next Steps
Vs.
• Pose estimation & Object detection on PPMI images.
• Modeling multiple objects and humans.

Grouplet representation
Mutual context model
51

More Related Content

Similar to Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context of Objects and Human Poses (20)

PDF
IRJET - Human Pose Detection using Deep Learning
IRJET Journal
 
PDF
Human pose detection using machine learning by Grandel
GrandelDsouza
 
PPTX
CVPR2010: modeling mutual context of object and human pose in human-object in...
zukun
 
PDF
HUMAN IDENTIFIER WITH MANNERISM USING DEEP LEARNING
IRJET Journal
 
PPTX
Human Pose Estimation by Deep Learning
Wei Yang
 
PDF
A SURVEY ON HUMAN POSE ESTIMATION AND CLASSIFICATION
IRJET Journal
 
PDF
TRiPODの紹介
Hitoshi Nishimura
 
PPTX
ObjRecog2-17 (1).pptx
ssuserc074dd
 
PDF
hpe3d_report.pdf
gsrawat
 
PPTX
Human Pose estimation project for computer vision
ShivaprasadPatil10
 
PDF
Human Behavior Understanding: From Human-Oriented Analysis to Action Recognit...
Wanjin Yu
 
PPTX
[Mmlab seminar 2016] deep learning for human pose estimation
Wei Yang
 
PDF
Dragos_Papava_dissertation
Dragoș Papavă
 
PPTX
Deep learning-for-pose-estimation-wyang-defense
Wei Yang
 
PDF
Cross-domain complementary learning with synthetic data for multi-person part...
哲东 郑
 
PDF
2D object detection and recognition models algorithms and networks Yali Amit
bojkovmbesso42
 
PDF
”YOGA WITH AI”
IRJET Journal
 
PPTX
Human pose estimation with deep learning
engiyad95
 
PDF
2D object detection and recognition models algorithms and networks Yali Amit
elisnvalesk
 
PDF
ECCV2010 tutorial: statisitcal and structural recognition of human actions pa...
zukun
 
IRJET - Human Pose Detection using Deep Learning
IRJET Journal
 
Human pose detection using machine learning by Grandel
GrandelDsouza
 
CVPR2010: modeling mutual context of object and human pose in human-object in...
zukun
 
HUMAN IDENTIFIER WITH MANNERISM USING DEEP LEARNING
IRJET Journal
 
Human Pose Estimation by Deep Learning
Wei Yang
 
A SURVEY ON HUMAN POSE ESTIMATION AND CLASSIFICATION
IRJET Journal
 
TRiPODの紹介
Hitoshi Nishimura
 
ObjRecog2-17 (1).pptx
ssuserc074dd
 
hpe3d_report.pdf
gsrawat
 
Human Pose estimation project for computer vision
ShivaprasadPatil10
 
Human Behavior Understanding: From Human-Oriented Analysis to Action Recognit...
Wanjin Yu
 
[Mmlab seminar 2016] deep learning for human pose estimation
Wei Yang
 
Dragos_Papava_dissertation
Dragoș Papavă
 
Deep learning-for-pose-estimation-wyang-defense
Wei Yang
 
Cross-domain complementary learning with synthetic data for multi-person part...
哲东 郑
 
2D object detection and recognition models algorithms and networks Yali Amit
bojkovmbesso42
 
”YOGA WITH AI”
IRJET Journal
 
Human pose estimation with deep learning
engiyad95
 
2D object detection and recognition models algorithms and networks Yali Amit
elisnvalesk
 
ECCV2010 tutorial: statisitcal and structural recognition of human actions pa...
zukun
 

More from أحلام انصارى (18)

PPTX
Security issues in cloud database
أحلام انصارى
 
PPTX
Html5 offers 5 times better ways to hijack the website
أحلام انصارى
 
PPTX
Honey pot in cloud computing
أحلام انصارى
 
PPT
grid authentication
أحلام انصارى
 
PPTX
Security As A Service In Cloud(SECaaS)
أحلام انصارى
 
PPTX
Password craking techniques
أحلام انصارى
 
PPT
Operating system vulnerability and control
أحلام انصارى
 
PPT
Network ssecurity toolkit
أحلام انصارى
 
PPTX
Image forgery and security
أحلام انصارى
 
PPTX
Image based authentication
أحلام انصارى
 
PPT
Cryptography
أحلام انصارى
 
PPTX
Website attack n defacement n its control measures
أحلام انصارى
 
PPTX
public cloud security via ids
أحلام انصارى
 
PDF
Grid computing by ahlam ansari
أحلام انصارى
 
PPT
Analysis of Algorithm
أحلام انصارى
 
Security issues in cloud database
أحلام انصارى
 
Html5 offers 5 times better ways to hijack the website
أحلام انصارى
 
Honey pot in cloud computing
أحلام انصارى
 
grid authentication
أحلام انصارى
 
Security As A Service In Cloud(SECaaS)
أحلام انصارى
 
Password craking techniques
أحلام انصارى
 
Operating system vulnerability and control
أحلام انصارى
 
Network ssecurity toolkit
أحلام انصارى
 
Image forgery and security
أحلام انصارى
 
Image based authentication
أحلام انصارى
 
Website attack n defacement n its control measures
أحلام انصارى
 
public cloud security via ids
أحلام انصارى
 
Grid computing by ahlam ansari
أحلام انصارى
 
Analysis of Algorithm
أحلام انصارى
 
Ad

Recently uploaded (20)

PDF
Knee Extensor Mechanism Injuries - Orthopedic Radiologic Imaging
Sean M. Fox
 
PDF
The History of Phone Numbers in Stoke Newington by Billy Thomas
History of Stoke Newington
 
PDF
QNL June Edition hosted by Pragya the official Quiz Club of the University of...
Pragya - UEM Kolkata Quiz Club
 
PDF
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
PPTX
How to Handle Salesperson Commision in Odoo 18 Sales
Celine George
 
PPTX
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
PDF
Biological Bilingual Glossary Hindi and English Medium
World of Wisdom
 
PPT
Talk on Critical Theory, Part II, Philosophy of Social Sciences
Soraj Hongladarom
 
PPTX
Identifying elements in the story. Arrange the events in the story
geraldineamahido2
 
PDF
Stokey: A Jewish Village by Rachel Kolsky
History of Stoke Newington
 
PDF
Generative AI: it's STILL not a robot (CIJ Summer 2025)
Paul Bradshaw
 
PPTX
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
PPTX
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
PDF
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
PDF
Horarios de distribución de agua en julio
pegazohn1978
 
PDF
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PPTX
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
PPTX
care of patient with elimination needs.pptx
Rekhanjali Gupta
 
PDF
Exploring the Different Types of Experimental Research
Thelma Villaflores
 
Knee Extensor Mechanism Injuries - Orthopedic Radiologic Imaging
Sean M. Fox
 
The History of Phone Numbers in Stoke Newington by Billy Thomas
History of Stoke Newington
 
QNL June Edition hosted by Pragya the official Quiz Club of the University of...
Pragya - UEM Kolkata Quiz Club
 
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
How to Handle Salesperson Commision in Odoo 18 Sales
Celine George
 
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
Biological Bilingual Glossary Hindi and English Medium
World of Wisdom
 
Talk on Critical Theory, Part II, Philosophy of Social Sciences
Soraj Hongladarom
 
Identifying elements in the story. Arrange the events in the story
geraldineamahido2
 
Stokey: A Jewish Village by Rachel Kolsky
History of Stoke Newington
 
Generative AI: it's STILL not a robot (CIJ Summer 2025)
Paul Bradshaw
 
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
Horarios de distribución de agua en julio
pegazohn1978
 
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
care of patient with elimination needs.pptx
Rekhanjali Gupta
 
Exploring the Different Types of Experimental Research
Thelma Villaflores
 
Ad

Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context of Objects and Human Poses

  • 1. Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context of Objects and Human Poses Presented By Arwa Chittalwala Irfan Shaikh Heena Patel 1
  • 2. Robots interact with objects Automatic sports commentary “Kobe is dunking the ball.” 2 Human-Object Interaction Medical care
  • 3. 3 Vs. Human-Object Interaction Playing saxophone Playing bassoon Playing saxophone Grouplet is a generic feature for structured objects, or interactions of groups of objects. (Previous talk: Grouplet) Caltech101 HOI activity: Tennis Forehand Holistic image based classification Detailed understanding and reasoning Berg & Malik, 2005 Grauman & Darrell, 2005 Gehler & Nowozin, 2009 OURS 48% 59% 77% 62%
  • 4. 4 Human-Object Interaction Torso Head • Human pose estimation Holistic image based classification Detailed understanding and reasoning
  • 5. 5 Human-Object Interaction Tennis racket • Human pose estimation Holistic image based classification Detailed understanding and reasoning • Object detection
  • 6. 6 Human-Object Interaction • Human pose estimation Holistic image based classification Detailed understanding and reasoning • Object detection Torso Head Tennis racket HOI activity: Tennis Forehand
  • 7. • Background and Intuition • Mutual Context of Object and Human Pose  Model Representation  Model Learning  Model Inference • Experiments • Conclusion Outline 7
  • 8. • Background and Intuition • Mutual Context of Object and Human Pose  Model Representation  Model Learning  Model Inference • Experiments • Conclusion Outline 8
  • 9. • Felzenszwalb & Huttenlocher, 2005 • Ren et al, 2005 • Ramanan, 2006 • Ferrari et al, 2008 • Yang & Mori, 2008 • Andriluka et al, 2009 • Eichner & Ferrari, 2009 Difficult part appearance Self-occlusion Image region looks like a body part Human pose estimation & Object detection 9 Human pose estimation is challenging.
  • 10. Human pose estimation & Object detection 10 Human pose estimation is challenging. • Felzenszwalb & Huttenlocher, 2005 • Ren et al, 2005 • Ramanan, 2006 • Ferrari et al, 2008 • Yang & Mori, 2008 • Andriluka et al, 2009 • Eichner & Ferrari, 2009
  • 11. Human pose estimation & Object detection 11 Facilitate Given the object is detected.
  • 12. • Viola & Jones, 2001 • Lampert et al, 2008 • Divvala et al, 2009 • Vedaldi et al, 2009 Small, low-resolution, partially occluded Image region similar to detection target Human pose estimation & Object detection 12 Object detection is challenging
  • 13. Human pose estimation & Object detection 13 Object detection is challenging • Viola & Jones, 2001 • Lampert et al, 2008 • Divvala et al, 2009 • Vedaldi et al, 2009
  • 14. Human pose estimation & Object detection 14 Facilitate Given the pose is estimated.
  • 15. Human pose estimation & Object detection 15 Mutual Context
  • 16. • Hoiem et al, 2006 • Rabinovich et al, 2007 • Oliva & Torralba, 2007 • Heitz & Koller, 2008 • Desai et al, 2009 • Divvala et al, 2009 • Murphy et al, 2003 • Shotton et al, 2006 • Harzallah et al, 2009 • Li, Socher & Fei-Fei, 2009 • Marszalek et al, 2009 • Bao & Savarese, 2010 Context in Computer Vision ~3-4% with context without context Helpful, but only moderately outperform better  Previous work – Use context cues to facilitate object detection: • Viola & Jones, 2001 • Lampert et al, 2008  16
  • 17. Context in Computer Vision Our approach – Two challenging tasks serve as mutual context of each other: With mutual context: Without context: 17 ~3-4% with context without context Helpful, but only moderately outperform better Previous work – Use context cues to facilitate object detection: • Hoiem et al, 2006 • Rabinovich et al, 2007 • Oliva & Torralba, 2007 • Heitz & Koller, 2008 • Desai et al, 2009 • Divvala et al, 2009 • Murphy et al, 2003 • Shotton et al, 2006 • Harzallah et al, 2009 • Li, Socher & Fei-Fei, 2009 • Marszalek et al, 2009 • Bao & Savarese, 2010
  • 18. • Background and Intuition • Mutual Context of Object and Human Pose  Model Representation  Model Learning  Model Inference • Experiments • Conclusion Outline 18
  • 19. 19 H A Mutual Context Model Representation • More than one H for each A; • Unobserved during training. A:  Croquet shot Volleyball smash Tennis forehand Intra-class variations Activity Object Human pose Body parts lP: location; θP: orientation; sP: scale. Croquet mallet Volleyball  Tennis racket O: H: P: f: Shape context. [Belongie et al, 2002] P1 Image evidence  fO f1 f2 fN O P2 PN
  • 20. 20 Mutual Context Model Representation ( , )e O H ( , )e A O ( , )e A H e e e E w     Markov Random Field Clique potential Clique weight O P1 PN  fO H A P2 f1 f2 fN ( , )e A O ( , )e A H ( , )e O H• , , : Frequency of co-occurrence between A, O, and H.
  • 21. 21 A f1 f2 fN Mutual Context Model Representation ( , )e nO P ( , )e m nP P  fO P1 PNP2 O H• , , : Spatial relationship among object and body parts. ( , )e nO P ( , )e m nP P( , )e nH P      bin binn n nO P O P O Pl l s s     location orientation size ( , )e nH P e e e E w     Markov Random Field Clique potential Clique weight ( , )e A O ( , )e A H ( , )e O H• , , : Frequency of co-occurrence between A, O, and H.
  • 22. 22 H A f1 f2 fN Mutual Context Model Representation Obtained by structure learning  fO PNP1 P2 O • Learn structural connectivity among the body parts and the object. ( , )e A O ( , )e A H ( , )e O H• , , : Frequency of co-occurrence between A, O, and H. • , , : Spatial relationship among object and body parts. ( , )e nO P ( , )e m nP P( , )e nH P      bin binn n nO P O P O Pl l s s     location orientation size ( , )e nO P ( , )e m nP P ( , )e nH P e e e E w     Markov Random Field Clique potential Clique weight
  • 23. 23 H O A  fO f1 f2 fN P1 P2 PN Mutual Context Model Representation • and : Discriminative part detection scores. ( , )e OO f ( , )ne n PP f [Andriluka et al, 2009] Shape context + AdaBoost • Learn structural connectivity among the body parts and the object. [Belongie et al, 2002] [Viola & Jones, 2001] ( , )e OO f ( , )ne n PP f ( , )e A O ( , )e A H ( , )e O H• , , : Frequency of co-occurrence between A, O, and H. • , , : Spatial relationship among object and body parts. ( , )e nO P ( , )e m nP P( , )e nH P      bin binn n nO P O P O Pl l s s     location orientation size e e e E w     Markov Random Field Clique potential Clique weight
  • 24. • Background and Intuition • Mutual Context of Object and Human Pose  Model Representation  Model Learning  Model Inference • Experiments • Conclusion Outline 24
  • 25. 25 Model Learning H O A  fO f1 f2 fN P1 P2 PN e e e E w      cricket shot cricket bowling Input: Goals: Hidden human poses
  • 26. 26 Model Learning H O A  fO f1 f2 fN P1 P2 PN  Input: Goals: Hidden human poses Structural connectivity e e e E w     cricket shot cricket bowling
  • 27. e e e E w     27 Model Learning Goals: Hidden human poses Structural connectivity Potential parameters Potential weights H O A  fO f1 f2 fN P1 P2 PN  Input: cricket shot cricket bowling
  • 28. 28 Model Learning Goals: Parameter estimation Hidden variables Structure learning H O A  fO f1 f2 fN P1 P2 PN  Input: e e e E w     cricket shot cricket bowling Hidden human poses Structural connectivity Potential parameters Potential weights
  • 29. 29 Model Learning Goals: H O A  fO f1 f2 fN P1 P2 PN Approach: croquet shot e e e E w     Hidden human poses Structural connectivity Potential parameters Potential weights
  • 30. 30 Model Learning Goals: H O A  fO f1 f2 fN P1 P2 PN Approach:     2 2 max 2 e eeE e E w             Joint density of the model Gaussian priori of the edge number               Hill-climbing e e e E w     Hidden human poses Structural connectivity Potential parameters Potential weights
  • 31. 31 Model Learning Goals: H O A  fO f1 f2 fN P1 P2 PN Approach: ( , )e O H( , )e A O ( , )e A H ( , )e nO P ( , )e m nP P( , )e nH P ( , )e OO f ( , )ne n PP f • Maximum likelihood • Standard AdaBoost e e e E w     Hidden human poses Structural connectivity Potential parameters Potential weights
  • 32. 32 Model Learning Goals: H O A  fO f1 f2 fN P1 P2 PN Approach: Max-margin learning 2 2, 1 min 2 r i r i    w w • xi: Potential values of the i-th image. • wr: Potential weights of the r-th pose. • y(r): Activity of the r-th pose. • ξi: A slack variable for the i-th image. Notations    s.t. , where , 1 , 0 i i c i r i i i i r y r y c i            w x w x e e e E w     Hidden human poses Structural connectivity Potential parameters Potential weights
  • 35. • Background and Intuition • Mutual Context of Object and Human Pose  Model Representation  Model Learning  Model Inference • Experiments • Conclusion Outline 35
  • 37. I   37 Model Inference The learned models Head detection Torso detection Tennis racket detection  Layout of the object and body parts. Compositional Inference [Chen et al, 2007]   * * 1 1 1 1,, , , n n A H O P
  • 38. I 38 Model Inference The learned models       * * 1 1 1 1,, , , n n A H O P   * * ,, , ,K K K K n n A H O P Output
  • 39. • Background and Intuition • Mutual Context of Object and Human Pose  Model Representation  Model Learning  Model Inference • Experiments • Conclusion Outline 39
  • 40. 40 Dataset and Experiment Setup • Object detection; • Pose estimation; • Activity classification. Tasks: [Gupta et al, 2009] Cricket defensive shot Cricket bowling Croquet shot Tennis forehand Tennis serve Volleyball smash Sport data set: 6 classes 180 training (supervised with object and part locations) & 120 testing images
  • 41. [Gupta et al, 2009] Cricket defensive shot Cricket bowling Croquet shot Tennis forehand Tennis serve Volleyball smash Sport data set: 6 classes 41 Dataset and Experiment Setup • Object detection; • Pose estimation; • Activity classification. Tasks: 180 training (supervised with object and part locations) & 120 testing images
  • 42. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recall Precision Object Detection Results Cricket bat 42   Valid region Croquet mallet Tennis racket Volleyball 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recall Precision Cricket ball Our Method Sliding window Pedestrian context [Andriluka et al, 2009] [Dalal & Triggs, 2006]
  • 43. Object Detection Results 43 43 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recall Precision Volleyball 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recall Precision Cricket ball 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 RecallPrecision Our Method Pedestrian as context Scanning window detector 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recall Precision Our Method Pedestrian as context Scanning window detector 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recall Precision Our Method Pedestrian as context Scanning window detector Sliding window Pedestrian context Our method SmallobjectBackgroundclutter
  • 44. 44 Dataset and Experiment Setup • Object detection; • Pose estimation; • Activity classification. Tasks: [Gupta et al, 2009] Cricket defensive shot Cricket bowling Croquet shot Tennis forehand Tennis serve Volleyball smash Sport data set: 6 classes 180 training & 120 testing images
  • 45. 45 Human Pose Estimation Results Method Torso Upper Leg Lower Leg Upper Arm Lower Arm Head Ramanan, 2006 .52 .22 .22 .21 .28 .24 .28 .17 .14 .42 Andriluka et al, 2009 .50 .31 .30 .31 .27 .18 .19 .11 .11 .45 Our full model .66 .43 .39 .44 .34 .44 .40 .27 .29 .58
  • 46. 46 Human Pose Estimation Results Method Torso Upper Leg Lower Leg Upper Arm Lower Arm Head Ramanan, 2006 .52 .22 .22 .21 .28 .24 .28 .17 .14 .42 Andriluka et al, 2009 .50 .31 .30 .31 .27 .18 .19 .11 .11 .45 Our full model .66 .43 .39 .44 .34 .44 .40 .27 .29 .58 Andriluka et al, 2009 Our estimation result Tennis serve model Andriluka et al, 2009 Our estimation result Volleyball smash model
  • 47. 47 Human Pose Estimation Results Method Torso Upper Leg Lower Leg Upper Arm Lower Arm Head Ramanan, 2006 .52 .22 .22 .21 .28 .24 .28 .17 .14 .42 Andriluka et al, 2009 .50 .31 .30 .31 .27 .18 .19 .11 .11 .45 Our full model .66 .43 .39 .44 .34 .44 .40 .27 .29 .58 One pose per class .63 .40 .36 .41 .31 .38 .35 .21 .23 .52 Estimation result Estimation result Estimation result Estimation result
  • 48. 48 Dataset and Experiment Setup • Object detection; • Pose estimation; • Activity classification. Tasks: [Gupta et al, 2009] Cricket defensive shot Cricket bowling Croquet shot Tennis forehand Tennis serve Volleyball smash Sport data set: 6 classes 180 training & 120 testing images
  • 49. Activity Classification Results 49 Gupta et al, 2009 Our model Bag-of- Words 83.3% Classificationaccuracy 78.9% 52.5% 0.9 0.8 0.7 0.6 0.5 No scene information Scene is critical!! Cricket shot Tennis forehand Bag-of-words SIFT+SVM Gupta et al, 2009 Our model
  • 50. 50 Conclusion Human-Object Interaction Next Steps Vs. • Pose estimation & Object detection on PPMI images. • Modeling multiple objects and humans.  Grouplet representation Mutual context model
  • 51. 51