The document provides an extensive overview of ST segment abnormalities in ECG readings, detailing causes of ST segment elevation and depression, such as myocardial ischemia, infarction, and various cardiac conditions. It also discusses treatment options including anti-ischemic therapy, antiplatelet and anticoagulation therapy, and surgical interventions like CABG and PCI. Key patterns and their clinical implications are described, with an emphasis on recognizing and differentiating conditions based on ECG morphology.
Presentation by Mr. Aby Thankachan, M.Sc(N), Ph.D on repolarization ST wave abnormalities.
The ST segment is an isoelectric interval representing ventricular depolarization and repolarization, crucial for diagnosing myocardial ischemia or infarction.
Elevation causes include acute myocardial infarction, coronary vasospasm, and pericarditis among others.
Acute STEMI presents with varied ST elevation morphology: concave, convex or straight.
Introduction to different morphology patterns associated with abnormal ST segments.
Acute STEMI features ST elevation in various leads, such as septal (V1-2) and inferior (II, III, aVF).
Identifies anteroseptal STEMI with associated ECG features.
Prinzmetal's angina shows similar ST elevation to STEMI but is typically transient and reversible.
Acute pericarditis causes widespread ST elevation with specific lead involvement, plus PR segment depression.
BER presents mild ST elevation in young patients, often showing a characteristic fish-hook pattern.
LBBB shows discordance between ST segments/T waves and QRS complexes, affecting ST elevation and depression.
LVH causes similar repolarization abnormality as LBBB, with specific ST elevation/depression patterns.
Ventricular aneurysms post-myocardial infarction can demonstrate ST elevation with deep Q waves.
Brugada syndrome features ST elevation with partial RBBB, often leading to serious arrhythmias.
Includes pulmonary embolism and conditions like hyperkalemia and J-waves leading to ST elevation.
ST depression can indicate various conditions such as myocardial ischemia or specific heart block scenarios.
ST depression is categorized by morphology (upsloping, downsloping, or horizontal) affecting lead interpretations.
ST depression patterns recognizable in leads opposite to the site of myocardial infarction.
Variable ST depression patterns indicative of myocardial ischemia, particularly in left precordial leads.
Reciprocal ST depression occurs simultaneously with ST elevation during STEMI at opposing leads.
Posterior STEMI is characterized by ST depression in anterior leads and ST elevation in posterior leads.
Digoxin use results in characteristic downsloping ST depression impacting the ECG morphology.
Hypokalemia leads to widespread ST depression with additional unique T-wave changes.
Various treatments include fibrinolytic therapy and medications like ACE inhibitors for managing ischemic conditions.
Involves monitoring, nitroglycerin use, and symptomatic treatment for ongoing ischemia.
Administering oxygen to patients with respiratory distress while monitoring arterial oxygen saturation.
Usage of morphine is indicated when NTG fails to relieve severe symptoms accompanying ischemia.
Nondihydropyridine calcium antagonists are recommended for recurrent ischemia in specific patient scenarios.
ACEI administration is indicated for persistent hypertension in patients with specific risk factors.
Used for severe ischemia or hemodynamic instability despite aggressive medical therapy.
Immediate initiation of aspirin and additional thienopyridine therapy for patients intolerant to aspirin.
Parenteral anticoagulation alongside antiplatelet therapy is recommended for managing acute coronary events.
Recommended for certain patient categories lacking acute ST elevation or posterior MI conditions.
CABG and PCI indicated for specific coronary artery diseases with substantial ischemic risk.
PCI is recommended for patients meeting certain criteria, optimizing coronary anatomy interventions.
S-T Segment
• TheST segment is the flat, isoelectric section
of the ECG between the end of the S wave
(the J point) and the beginning of the T
wave.
• The ST Segment represents the interval
between ventricular depolarization and
repolarization.
• The most important cause of ST segment
abnormality (elevation or depression) is
myocardial ischaemia or infarction.
Patterns of STElevation
• Acute ST elevation myocardial infarction (STEMI)
• ST segment elevation and Q-wave formation in
contiguous leads. Follow the links above to find out
more about the different STEMI patterns.:
• Septal (V1-2)
• Anterior (V3-4)
• Lateral (I + aVL, V5-6)
• Inferior (II, III, aVF)
• Right ventricular (V1, V4R)
• Posterior (V7-9)
Coronary Vasospasm (Prinzmetal’s
angina)
•This causes a pattern of ST elevation that is
very similar to acute STEMI — i.e. localised
ST elevation with reciprocal ST depression
occurring during episodes of chest pain.
• However, unlike acute STEMI the ECG
changes are transient, reversible with
vasodilators and not usually associated with
myocardial necrosis.
• It may be impossible to differentiate these
two conditions based on the ECG alone.
14.
Pericarditis
• Acute Pericarditiscauses widespread
concave (“saddleback”) ST segment
elevation with PR segment depression in
multiple leads, typically involving I, II, III, aVF,
aVL, and V2-6.
• Concave “saddleback” ST elevation in leads I,
II, III, aVF, V5-6 with depressed PR segments.
• There is reciprocal ST depression and PR
elevation in leads aVR and V1.
16.
Benign Early Repolarization
•Benign Early Repolarization (BER) causes
mild ST elevation with tall T-waves mainly in
the precordial leads. BER is a normal variant
commonly seen in young, healthy patients.
There is often notching of the J-point — the
“fish-hook” pattern.
• The ST changes may be more prominent at
slower heart rates and disappear in the
presence of tachycardia.
18.
Left Bundle BranchBlock (LBBB)
• In Left bundle branch block (LBBB), the ST
segments and T waves show “appropriate
discordance” — i.e. they are directed
opposite to the main vector of the QRS
complex.
• This produces ST elevation and upright T
waves in leads with a negative QRS complex
(dominant S wave), while producing ST
depression and T wave inversion in leads
with a positive QRS complex (dominant R
wave).
19.
• ST elevationin leads with deep S waves — most apparent in
V1-3.
• ST depression in leads with tall R waves — most apparent in I
and aVL.
21.
Left Ventricular Hypertrophy(LVH)
• Left Ventricular Hypertrophy (LVH) causes
a similar pattern of repolarization
abnormalities as LBBB, with ST elevation
in the leads with deep S-waves (usually
V1-3) and ST depression/T-wave
inversion in the leads with tall R waves (I,
aVL, V5-6).
22.
Deep S waveswith ST elevation in V1-3
ST depression and T-wave inversion in the lateral leads V5-6
23.
Ventricular Aneurysm
• Ventricularaneurysms are one of the many complications
that may occur after a heart attack. The word aneurysm
refers to a bulge or 'pocketing' of the wall or lining of a vessel
commonly occurring in the blood vessels at the base of the
septum, or within the aorta.
• In the heart, they usually arise from a patch of weakened
tissue in a ventricular wall, which swells into a bubble filled
with blood.This, in turn, may block the passageways leading
out of the heart, leading to severely constricted blood flow to
the body.
• A left ventricular aneurysm can be associated with ST
elevation . ST elevation and deep Q waves will be observed in
patients with previous myocardial infarction.
Brugada Syndrome
• BrugadaSyndrome is an inherited
channelopathy (a disease of myocardial
sodium channels) that leads to paroxysmal
ventricular arrhythmias and sudden
cardiac death in young patients.
• The tell-tale sign on the resting ECG is the
“Brugada sign” — ST elevation and partial
RBBB in V1-2 with a “coved” morphology.
26.
ST elevation andpartial RBBB in V1-2 with a
coved morphology — the “Brugada sign”.
27.
Less Common Causesof ST segment
Elevation
• Pulmonary embolism and acute cor pulmonale
(usually in lead III)
• Acute aortic dissection (classically causes inferior
STEMI due to RCA dissection)
• Hyperkalaemia
• Sodium-channel blocking drugs (secondary to QRS
widening)
• J-waves (hypothermia, hypercalcaemia)
• Following electrical cardioversion
• Others: Cardiac tumour, myocarditis, pancreas or
gallbladder disease
28.
Causes of STDepression
• Myocardial ischaemia / NSTEMI
• Reciprocal change in STEMI Posterior MI
• Digoxin effect
• Hypokalaemia
• Supraventricular tachycardia
• Right bundle branch block
• Right ventricular hypertrophy
• Left bundle branch block
• Left ventricular hypertrophy
• Ventricular paced rhythm
29.
Morphology of STDepression
• ST depression can be either upsloping, downsloping, or
horizontal.
• Horizontal or downsloping ST depression ≥ 0.5 mm at
the J-point in ≥ 2 leads indicates myocardial ischaemia.
• Upsloping ST depression in the precordial leads with
prominent De Winter T waves is highly specific for
occlusion of the LAD.
• Reciprocal change has a morphology that resembles
“upside down” ST elevation and is seen in leads
electrically opposite to the site of infarction.
• Posterior MI manifests as horizontal ST depression in
V1-3 and is associated with upright T waves and tall R
waves.
Patterns of STdepression
• Myocardial Ischaemia
• ST depression due to subendocardial
ischaemia may be present in a variable
number of leads and with variable
morphology. It is often most prominent in
the left precordial leads V4-6 plus leads I, II
and aVL.
• Widespread ST depression with ST elevation
in aVR is seen in left main coronary artery
occlusion and severe triple vessel disease.
34.
Reciprocal Change
• STelevation during acute STEMI is
associated with simultaneous ST depression
in the electrically opposite leads:
• Inferior STEMI produces reciprocal ST
depression in aVL (± lead I).
• Lateral or anterolateral STEMI produces
reciprocal ST depression in III and aVF (± lead
II).
• Reciprocal ST depression in V1-3 occurs with
posterior infarction
Posterior Myocardial Infarction
•Acute posterior STEMI causes ST
depression in the anterior leads V1-3,
along with dominant R waves (“Q-wave
equivalent”) and upright T waves. There is
ST elevation in the posterior leads V7-9.
• Hypokalaemia causeswidespread downsloping
ST depression with T-wave flattening/inversion,
prominent U waves and a prolonged QU interval.
• Right ventricular hypertrophy (RVH) causes ST
depression and T-wave inversion in the right
precordial leads V1-3.
• Right Bundle Branch Block (RBBB) produce a
similar pattern of repolarisation abnormalities to
RVH, with ST depression and T wave inversion in
V1-3.
• Supraventricular tachycardia causes horizontal
ST depression, most prominent in the left
precordial leads (V4-6).
Anti-Ischemic Therapy
• Bedrest with continuous ECG
monitoring for ischemia and arrhythmia
detection in patients with ongoing rest
pain.
• Nitroglycerin (NTG), sublingual tablet or
spray, followed by intravenous
administration, for immediate relief of
ischemia and associated symptoms.
42.
• Supplemental oxygenfor patients with
cyanosis or respiratory distress; finger
pulse oximetry or arterial blood gas
determination to confirm adequate
arterial oxygen saturation (Sao2>90%)
and continued need for supplemental
oxygen in the presence of hypoxemia.
43.
• Morphine sulfateintravenously when
symptoms are not immediately relieved
with NTG or when acute pulmonary
congestion and/or severe agitation is
present.
• A β-blocker, with the first dose
administered intravenously if there is
ongoing chest pain, followed by oral
administration, in the absence of
contraindications.
44.
• In patientswith continuing or frequently
recurring ischemia when β-blockers are
contraindicated, a nondihydropyridine
calcium antagonist (eg, verapamil or
diltiazem), followed by oral therapy, as
initial therapy in the absence of severe
LV dysfunction or other
contraindications.
45.
• An ACEIwhen hypertension persists
despite treatment with NTG and a β-
blocker in patients with LV systolic
dysfunction or CHF and in ACS patients
with diabetes.
• Oral long-acting calcium antagonists for
recurrent ischemia in the absence of
contraindications and when β-blockers
and nitrates are fully used.
46.
• Intra-aortic balloonpump
counterpulsation for severe ischemia
that is continuing or recurs frequently
despite intensive medical therapy or for
hemodynamic instability in patients
before or after coronary angiography.
47.
Antiplatelet and AnticoagulationTherapy
• Antiplatelet therapy should be initiated
promptly. Aspirin (ASA - acetylsalicylic acid)
is the first choice and is administered as
soon as possible after presentation and
continued indefinitely.
• A thienopyridine (clopidogrel or ticlopidine)
should be administered to patients who are
unable to take ASA because of
hypersensitivity or major gastrointestinal
intolerance.
48.
• Parenteral anticoagulationwith intravenous
unfractionated heparin (UFH) or with
subcutaneous LMWH should be added to
antiplatelet therapy with ASA, or a
thienopyridine.
• A platelet GP IIb/IIIa receptor antagonist should
be administered, in addition to ASA and UFH, to
patients with continuing ischemia or with other
high-risk features (see Table 2) and to patients in
whom a percutaneous coronary intervention (PCI)
is planned. Eptifibatide and tirofiban are approved
for this use. (Level of Evidence: A) Abciximab can
also be used for 12 to 24 hours in patients with
UA/NSTEMI in whom a PCI is planned within the
next 24 hours.
49.
• Intravenous thrombolytictherapy in
patients without acute ST-segment
elevation, a true posterior MI, or a
presumed new left bundle-branch block.
50.
Coronary Revascularization (CABG/ PCI)
• CABG – for left main CAD, 3-vessel disease,
2-vessel disease with significant proximal
left anterior descending CAD and either
abnormal LV function (EF <0.50) or
demonstrable ischemia on noninvasive
testing.
• PCI or CABG for patients with 1- or 2-vessel
CAD without significant proximal left
anterior descending CAD but with a large
area of viable myocardium and high-risk
criteria on noninvasive testing.
51.
• PCI forpatients with multivessel
coronary disease with suitable coronary
anatomy, with normal LV function, and
without diabetes.