Requirements	
  Engineering	
  	
  
Werkcollege	
  Spring	
  2012	
  
	
  
Session	
  5:	
  EsBmaBng	
  &	
  Planning	
  



                             Christoph Johann Stettina (stettina@liacs.nl)




                               	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.
                                                                                                                                                   	
  
Session	
  5:	
  EsBmaBng	
  &	
  Planning	
  
Today:	
  
	
  



•  Es$ma$ng:	
  Planning	
  Poker	
  
•  Planning:	
  Backlogs	
  

Why	
  is	
  it	
  important?	
  
•  Projects	
  o5en	
  overrun	
  cost	
  es$mates	
  
•  Effort	
  es$ma$on	
  difficult	
  in	
  prac$ce	
  due	
  to	
  
   complexity	
  of	
  tasks	
  and	
  differences	
  in	
  
   implementa$on	
  speed	
  of	
  teams	
  

                                 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
 
             	
  
Part	
  1	
  –	
  EsBmaBon	
  
  Planning	
  Poker




               	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Session	
  5:	
  EsBmaBon	
  &	
  Planning	
  
Interface	
  between	
  crea$ng	
  requirements	
  and	
  
laying	
  out	
  the	
  so5ware	
  development	
  process	
  
	
  
	
  


EsBmaBng	
  –	
  Es$ma$ng	
  the	
  [resources,	
  $me,	
  
size]	
  required	
  to	
  develop	
  a	
  [user	
  story,	
  feature,	
  
or	
  requirement]	
  	
  
	
  



Planning	
  –	
  PuIng	
  the	
  es$mates	
  together	
  to	
  
formulate	
  a	
  project	
  plan	
  and	
  schedule	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐-­‐	
  Cohn	
  (2005)	
  

                                                                                                                                      	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Concepts	
  of	
  EsBmaBng	
  Size	
  (Cohn,	
  2005)	
  
Story	
  Points	
  
•  Unit	
  of	
  measure	
  for	
  the	
  overall	
  size	
  of	
  a	
  user	
  story	
  	
  
•  Not	
  related	
  to	
  the	
  amount	
  of	
  $me	
  or	
  people	
  
Ideal	
  Bme	
  
•  The	
  amount	
  of	
  $me	
  excluding	
  peripheral	
  ac$vi$es	
  
•  Example:	
  American	
  football	
  game	
  =	
  60	
  minutes	
  
Elapsed	
  Bme	
  
•  Time	
  that	
  passes	
  on	
  the	
  clock	
  to	
  complete	
  it	
  
•  Example:	
  American	
  football	
  game	
  =	
  3	
  hours	
  
Velocity	
  
•  Measure	
  of	
  a	
  team’s	
  rate	
  of	
  progress	
  

                                               	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Deriving	
  a	
  plan	
  (Cohn,	
  2005)	
  

    Desired
    Features
                                           Divide by
Story                                      Velocity
   Story
                   Story                                                                                                      Create
                           Estimate                                        Derive
                                                                                                                             Iteration
                             Size                                          Duration
                                                                                                                                Plan

  Story
     Story
           Story                                                           Prioritize




                                	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Deriving	
  a	
  plan	
  (Cohn,	
  2005)	
  
                                                               5 Story Points /
    Desired                                                    Iteration
    Features
                                                 Divide by                                                                    ≈ May 10
Story                                            Velocity
   Story
                   Story                                                                                                            Create
                               Estimate                                          Derive
                                                                                                                                   Iteration
                                 Size                                            Duration
                                                                                                                                      Plan

                           30 Story Points                                              ≈ 6 Iterations
  Story
     Story
           Story                                                                 Prioritize




                                      	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
How	
  to	
  esBmate?	
  
Accuracy
                                                                        Pragma$c	
  view:	
  
                                                                        	
  

                                                                        Beyond	
  a	
  certain	
  point	
  
                                                                        addi$onal	
  effort	
  spent	
  
                                                                        on	
  es$ma$on	
  yields	
  
                                                                        liZle	
  addi$onal	
  value	
  
                                                                        	
  
                                                                        -­‐-­‐	
  Cohn	
  (2005)	
  




                                                                               Effort

                               	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
EsBmaBng	
  Story	
  Points	
  (Cohn,	
  2005)	
  
Take	
  a	
  medium-­‐size	
  story	
  and	
  assign	
  it	
  a	
  “5”	
  
EsBmate	
  the	
  other	
  stories	
  accordingly	
  
•  Twice	
  as	
  big	
  
•  Half	
  as	
  big	
  
•  Almost	
  but	
  not	
  quite	
  as	
  big	
  
•  A	
  liZle	
  bit	
  bigger	
  

Use	
  the	
  following	
  sizes	
  for	
  the	
  stories:	
  
	
  

•  0,	
  1,	
  2,	
  3,	
  5,	
  8,	
  	
  13,	
  20,	
  40,	
  100	
  
	
  
Close to one iteration                         Few iterations large
         “story”                                        “epic”

                                                          	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Planning	
  Poker	
  (Fægri,	
  2010)	
  



Planning	
  Poker	
  Cards             	
  


•  0,	
  1,	
  2,	
  3,	
  5,	
  8,	
  13,	
  20,	
  40,	
  100	
  
•  Fibonacci	
  sequence:	
  Reflect	
  on	
  uncertainty	
  in	
  
   es$ma$ng	
  larger	
  items	
  
Special	
  Cards        	
  


•  Zero:	
  “Just	
  a	
  few	
  minutes	
  of	
  work”	
  
•  Ques$on	
  mark:	
  “No	
  Idea	
  at	
  all”	
  
•  Coffee:	
  “I’m	
  too	
  7red	
  to	
  think.	
  Let’s	
  take	
  a	
  break.”	
  

                                              	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Planning	
  Poker:	
  Rules                                                                                        	
  

•  Each	
  task	
  to	
  be	
  es$mated	
  is	
  presented	
  by	
  the	
  Product	
  
   Owner.	
  	
  
•  The	
  group	
  members	
  ask	
  for	
  clarifica$ons	
  in	
  order	
  to	
  
   es$mate	
  the	
  task	
  effort.	
  (Timeboxed	
  discussion)                                                                                                                            	
  




•  Upon	
  no$fica$on	
  from	
  the	
  Scrum	
  Master	
  each	
  
   member	
  presents	
  the	
  card	
  showing	
  the	
  es$mate	
  
   believed	
  to	
  best	
  approximate	
  the	
  task	
  effort.	
  
•  If	
  the	
  es$mates	
  are	
  roughly	
  similar	
  the	
  Scrum	
  Master	
  
   uses	
  the	
  most	
  frequent	
  es$mate	
  as	
  the	
  task	
  es$mate.	
  
•  If	
  there	
  is	
  wide	
  disagreement	
  in	
  the	
  es$mates	
  the	
  task	
  
   is	
  discussed	
  again	
  and	
  the	
  group	
  members	
  present	
  
   updated	
  es$mates.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Fægri,	
  2010)
                                                                                                   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
EsBmaBon:	
  In-­‐class	
  assignment                                                                           	
  



Planning	
  Poker	
  Exercise          	
  


•  Create	
  groups	
  of	
  4-­‐9	
  
•  Discuss	
  the	
  received	
  case	
  study	
  
•  Es$mate	
  the	
  size	
  of	
  user	
  stories	
  
•  Goal:	
  Create	
  a	
  list	
  according	
  to	
  size	
                                            	
  




                                       	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Planning	
  Poker	
          	
  



Advantages     	
  


•  Mul$ple	
  expert	
  opinions	
  
•  Discussion	
  leads	
  to	
  more	
  accurate	
  es$ma$ons	
  
•  More	
  fun!	
  
Disadvantages         	
  


•  Mee$ngs	
  with	
  en$re	
  team	
  more	
  expensive	
  
•  Moderator	
  needs	
  to	
  $mebox	
  discussions	
  
•  Dominant	
  personali$es	
  and	
  poli$cs	
  can	
  
   interfere	
  

                                    	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
 
             	
  
Part	
  2	
  –	
  Planning	
  
    Backlogs




               	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
,$373'$6)',+)7;'4$)*8',$234$6)2+:7+',$6)*<7473=$:&'$;2,7+$,':06"$%&*,'$2)'$:&'$4'>73'4$)*8',$
                                                 ,#(,2*3#4(&56&7+8#9'#)%,)#,7,-89*9:#3&9*;7:#+'3*7;#,73#)&9)*7;#%,22&79#,-/'9)#9*/6-),7&'69
                                                 )%*9#*9#*/2-&/&7)&3#)%('6;%#9/,--#*)&(,)*'7#-&7;)%9#'4#/,?*/,-#'7&#/'7)%#0%*-&#3'*7;
'21?$:&'$/+)01@2,:')$234$()*40+:$AB3')?$:&'$:&)''$+'3:)28$1'':73=$:C6',$2,$:&'$/6)73:$
                                                 &A&(8)%*7;#0*)%*7#&,+%#*)&(,)*'7"#=>#3&9*;7&3#4'(#)&,/9#4('/#!#)'#BC#/&/@&(9#3&4*7&9#3
 1'':73=?$:&'$D278C$/+)01$234$:&'$/6)73:$)'<7'B?$2,$B'88$2,$:&'$)'E07)'4$;2,7+$2):7>2+:,$
                                                 2%,9&9#'4#,#2('D&+):#('-&9#,73#(&92'79*@*-*)*&9#,++'/2,7*&3#@8#2(,+)*+&9#96+%#,9#2,*(#2(';

         Planning:	
  Agile	
  Development	
  Cycle	
  
                                                 E)0'#2&'2-&#0(*)*7;#+'3&#'7#)%&#9,/&#+'/26)&(#(&A*&0*7;#&,+%#')%&(F:#+'--&+)*A&#+'3&#'
 '$()*40+:$F2+G8*=?$:&'$/6)73:$F2+G8*=$234$:&'$F0)34*B3$+&2):$HI37;')=?$!JJKL"
                                                 E&A&(8'7&#*9#(&92'79*@-&#4'(#,--#)%&#+'3&:#&A&(8'7&#*9#,--'0&3#)'#+%,7;&#*)F:#)&9)G3(*A&7#3&A
                                                                   E9%'()#*)&(,)*'79#,73#2(&G0(*))&7#)&9)#+,9&9F:#'7G9*)&#+69)'/&(:#+'7)*76'69#*7)&;(,)*'7:#(&4,+)
                                                                   9*/2-&#3&9*;7#EH&+1:#!CCIF"




                                                                                                    !""#$%&'%()*+,-+./+"(01232"1+456)&1+'*7+8'&71*9+:;;<=

                                                                   J?)(&/&#2(';(,//*7;#*9#EK8@L#,73#K*7;9M8(:#!CCNF#)%&#/'9)#0*3&-8#9)63*&3#,;*-&#/&)%'
                                                                   (&9&,(+%"#O7&#'4#=>#2(&/*9&9#*9#)%&#&-*/*7,)*'7#'4#(&56*(&/&7)9:#%&,A80&*;%)#3&9*;7#,7
                                                                   2%,9&9 # ,73 # 4'(/,- # 3'+6/&7),)*'7 # )%('6;% # 9&,/-&99 # *7)&;(,)*'7 # 0*)% # *74'(/,- # ,73 # +
                                                                   ,3'2)&3#(&56*(&/&7)9"#P(*)*+9#%'0&A&(:#,(;6&#)%,)#@8#%,A*7;#)%&#'7G9*)&#+69)'/&(#+,7#-&,3
                                                                   (&0'(1#,73#2('D&+)#9+'2&#+(&&2#@&8'73#,--#,;(&&3#/&,79"

                                                                   !"#$%&'(!')&"
                                                                   P(89),- # P-&,( # *9 # '7& # /&/@&( # '4 # ,# (,7;& # '4 # /&)%'3'-';*&9 # +'79*9)*7; # '4 # P(89),- # P-&,
                                                                   Q&--'0:#P(89),-#O(,7;&#,73#P(89),-#R&3"#S&-&+)&3#,++'(3*7;#)'#)%&#9*T&#,73#+(*)*+,-*)8#'4#)%
                                                                   )%&# P(89),-#4,/*-8# (,7;&9#4('/#P(89),-#P-&,(# ,9#/'9)#96*),@-&# 4'(#9/,--# ,73#9*/2-&# 2
                                                                   P(89),- # R&3 # ),(;&)*7; # @*; # ,73 # +(*)*+,- # 2('D&+)9" # O7-8 # P(89),- # P-&,( # ,73 # P(89),- # O(,
                                                                   92&+*4*&3#*7#3&),*-#EP'+1@6(7:#!CCBF"
                                                                   P(89),-#P-&,(#%,9#@&&7#3&A&-'2&3#4'(#9/,--#2('D&+)9#'4#62#)'#9*?#3&A&-'2&(9#,73#3&9+(*
                                                                   0'(1 # 2('36+)9 # ,73 # 2'-*+*&9: # @6) # ,A'*39 # 2('+&99&9 # '( # ,()*4,+)9" # $%& # /&)%'3'-';8 # (&5
                                                                   4'--'0*7; #2('2&()*&9U#4(&56&7)#3&-*A&(8#'4#69,@-&#+'3&#)'#69&(9#0*)%#*7+(&/&7)9#@&)0&&
                                                                   /'7)%9#EI#/,?*/6/F:#(&4-&+)*A&#*/2('A&/&7)#E2(&G#,73#2'9)G*7+(&/&7)#0'(19%'29F#,73#&
                                                                   '9/')*+#+'//67*+,)*'7#0*)%#+'-'+,)*'7#2(&4&((&3"#P(89),-#P-&,(:#%'0&A&(:#3'&9#7')#(&
                                                                   3'+6/&7),)*'7#)'#@&#7&+&99,(*-8#+(&,)&3"
                                 !""#$%&'%()*+,-+./0+12&#3+4&)20$$
                                                                        	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
                                                         *+),(-,./.)0(1"23)$$(4*+),-15
Planning:	
  Backlogs	
  
Product	
  Backlog     	
  


•  All	
  func$onality	
  required	
  in	
  the	
  product	
  
•  User	
  stories	
  and	
  requirements	
  created	
  by	
  team	
  
•  Priori$zed	
  according	
  to	
  Return	
  on	
  Investment	
  	
  
Sprint	
  /	
  IteraBon	
  Backlog       	
  


•  Contents	
  of	
  a	
  Product	
  Backlog	
  selected	
  for	
  a	
  
   “poten$ally	
  shippable	
  product	
  increment”	
  




                                  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Product	
  Backlog	
  (Schwaber,	
  2004)	
  
   •  Repriori$zed	
  every	
  itera$on	
  
   •  Evolves	
  with	
  the	
  product	
  
   •  Owned	
  by	
  the	
  sponsor,	
  Product	
  Owner                                                                          	
  




Story	
  Name	
             Init	
   Adj.	
     Adj.	
                  	
                    	
                   	
                    	
                  	
  
	
                          Est.	
   Factor	
   Est.	
                  1	
                   2	
                  3	
                   4	
                 5	
  
Story	
  1	
                  3	
      0.2	
      3.6	
               3.6	
                   0	
                  0	
                   0	
                 0	
  

Story	
  2	
                  2	
      0.2	
      2.4	
               2.4	
                   0	
                  0	
                   0	
                 0	
  

Story	
  3	
                  3	
      0.2	
      3.6	
               3.6	
                   0	
                  0	
                   0	
                 0	
  

Story	
  4	
                  3	
      0.2	
      3.4	
               3.4	
                   0	
                  0	
                   0	
                 0	
  

-­‐-­‐	
  SPRINT	
  1	
      11	
      0.2	
       13	
                13	
                   0	
                  0	
                   0	
                 0	
  

Story	
  5	
                  3	
      0.2	
      3.6	
               3.6	
                3.6	
                   0	
                   0	
                 0	
  
                                                 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Product	
  Backlog                               	
             Adjusted
                                                                   Estimate
                                                                                                                                Sprints
                            Initial
                            Estimate
Story	
  Name	
                        Init	
   Adj.	
     Adj.	
                  	
                    	
                   	
                   	
                   	
  
	
                                     Est.	
   Factor	
   Est.	
                  1	
                   2	
                  3	
                  4	
                  5	
  
Story	
  1	
                             3	
      0.2	
   3.6	
                  3.6	
                   0	
                  0	
                  0	
                  0	
  
                                                  Complexity
                                                  factor
Story	
  2	
                             2	
      0.2	
   2.4	
                  2.4	
                   0	
                  0	
                  0	
                  0	
  

Story	
  3	
                             3	
      0.2	
      3.6	
               3.6	
                   0	
                  0	
                  0	
                  0	
  

Story	
  4	
                             3	
      0.2	
      3.4	
               3.4	
                   0	
                  0	
                  0	
                  0	
  

-­‐-­‐	
  SPRINT	
  1	
                 11	
      0.2	
       13	
                13	
                   0	
                  0	
                  0	
                  0	
  

Story	
  5	
                             3	
      0.2	
      3.6	
               3.6	
                3.6	
                   0	
                  0	
                  0	
  

Story	
  6	
                             2	
      0.2	
      2.4	
               2.4	
                2.4	
                   0	
                  0	
                  0	
  




                                                            	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
IteraBon	
  Backlog                    	
  



  •  Each	
  itera$on	
  the	
  team	
  picks	
  the	
  top	
  priority	
  
     items	
  from	
  the	
  Product	
  Backlog	
  
  •  Contents	
  of	
  a	
  Sprint	
  Backlog	
  should	
  be	
  a	
  part	
  	
  
     presentable	
  at	
  the	
  end	
  of	
  a	
  sprint	
  
Task	
  Name	
      Originator	
   Responsible	
                      Status	
                       	
     	
     	
     	
                                      	
  
	
                                                                                                  Mo	
   Tu	
   We	
   Th	
                                     Fr	
  
Task	
  1	
           Danielle	
     Danielle	
                 Completed	
   20	
                                    0	
            0	
            0	
            0	
  

Task	
  2	
              Jim	
         Allen	
                  NotStarted	
                           8	
            8	
            8	
            8	
            8	
  

Task	
  3	
                            Tom	
                    Completed	
   12	
                                    0	
            0	
            0	
            0	
  

Task	
  4	
                           George	
                  In	
  Progress	
   24	
                             24	
           24	
            24	
   12	
  

Task	
  5	
                             Tim	
                   Completed	
   12	
                                  12	
           12	
            12	
   12	
  
                                                   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
IteraBon	
  Backlog	
  (Schwaber,	
  2004)
                                           Days                                                                              	
  



Task	
  Name	
     Originator	
   Responsible	
                      Status	
                       	
     	
     	
     	
                                      	
  
	
                                                                                                 Mo	
   Tu	
   We	
   Th	
                                     Fr	
  
Task	
  1	
         Danielle	
      Danielle	
                 Completed	
   20	
                                    0	
             0	
           0	
            0	
  

Task	
  2	
            Jim	
          Allen	
                  NotStarted	
                           8	
            8	
             8	
           8	
            8	
  

Task	
  3	
                           Tom	
                    Completed	
   12	
                                    0	
             0	
           0	
            0	
  

Task	
  4	
                          George	
                  In	
  Progress	
   24	
                             24	
             24	
          24	
   12	
  

Task	
  5	
                            Tim	
                   Completed	
   12	
                                  12	
             12	
          12	
   12	
  

Task	
  6	
                            Josh	
                  In	
  Progress	
                                                     12	
          10	
   10	
  

Task	
  7	
                         Danielle	
                 In	
  Progress	
   24	
                             24	
             24	
          24	
   12	
  




                                                  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Planning:	
  In-­‐class	
  assignment                                                             	
  



Product	
  and	
  IteraBon	
  Backlogs                                	
  


1.  Priori$ze	
  stories	
  according	
  to	
  business	
  needs	
  
2.  Create	
  a	
  Product	
  Backlog	
  
	
  


3.  Select	
  top	
  priority	
  Product	
  Backlog	
  items	
  
4.  Think	
  of	
  actual	
  tasks	
  evolving	
  from	
  the	
  stories	
  
5.  Create	
  a	
  Itera$on	
  Backlog                     	
  




                                     	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  
Bibliography	
  
•    Cohn,	
  M.	
  (2005).	
  Agile	
  Es$ma$ng	
  and	
  Planning.	
  Pren$ce	
  Hall	
  PTR.	
  

•    Fægri,	
  T.	
  E.	
  (2010)	
  “Adop$on	
  of	
  team	
  es$ma$on	
  in	
  a	
  specialist	
  organiza$onal	
  environment,”	
  in	
  In	
  proceedings	
  
     of	
  XP2010,	
  11th	
  Interna$onal	
  Conference,	
  Trondheim,	
  Norway,	
  ser.	
  LNBIP,	
  vol.	
  48	
  

•    Fowler,	
  M.	
  (2004),	
  UML	
  dis$lled:	
  a	
  brief	
  guide	
  to	
  the	
  standard	
  object	
  modeling	
  language	
  (3	
  ed.),	
  Addison-­‐
     Wesley,	
  p.	
  131,	
  ISBN	
  9780321193681	
  

•    Hammer,	
  M.	
  &	
  Champy,	
  J.	
  (1994).	
  Reengineering	
  the	
  corpora$on:	
  A	
  manifesto	
  for	
  business	
  revolu$on.	
  New	
  
     York:	
  Harper.	
  	
  

•    IEEE,	
  So5ware	
  Engineering	
  CommiZee	
  (1998)	
  IEEE	
  Recommended	
  Prac$ce	
  for	
  So5ware	
  Design	
  Descrip$ons.	
  
     ANSI/IEEE	
  Std	
  830,	
  October	
  1998	
  

•    Keil,	
  M.,	
  Carmel,	
  E.	
  Customer-­‐Developer	
  Links	
  in	
  So5ware	
  Development.	
  Communica$ons	
  of	
  the	
  ACM,	
  38	
  (5):	
  
     33–44,	
  1995.	
  

•     van	
  Lamsweerde,	
  A.	
  (2009)	
  Requirements	
  Engineering:	
  From	
  System	
  Goals	
  to	
  UML	
  Models	
  to	
  So5ware	
  
      Specifica$ons.	
  Wiley,	
  March	
  2009.	
  

•     Schwaber,	
  K.,	
  Agile	
  Project	
  Management	
  with	
  Scrum,	
  Microso5	
  Press,	
  2004	
  




                                                                                	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leiden	
  University.	
  The	
  university	
  to	
  discover.	
  

More Related Content

PDF
SDPM - Lecture 4a - MS Project – High Level Introduction
PDF
SDPM - Lecture 4 - Activity planning and resource allocation
PDF
"Hybrid" KT & Project Planning Template
PDF
Step 7: Participatory Planning
PPT
Participatory project planning
PPT
5 project management project planning
PPTX
Participatory planning
PDF
SDPM - Lecture 2 -The STEP WISE Approach to Project Planning
SDPM - Lecture 4a - MS Project – High Level Introduction
SDPM - Lecture 4 - Activity planning and resource allocation
"Hybrid" KT & Project Planning Template
Step 7: Participatory Planning
Participatory project planning
5 project management project planning
Participatory planning
SDPM - Lecture 2 -The STEP WISE Approach to Project Planning

Viewers also liked (14)

PPT
4 Project Pre-Planning & Stakeholder Analysis
DOC
Policy & Procedure Manual (sample)
PDF
SE_Lec 12_ Project Planning
PPT
Project Management, Planning And Analysis Tools
PPT
3 Project Cycle and Planning (4-6 hours)
PPT
Project Planning Basics - Everything you need to start managing a project
PPT
Project Planning
PPT
5 The Logical Framework - a short course for NGOs
PPTX
ppt on data collection , processing , analysis of data & report writing
PDF
SE2_Lec 16_ Software Design
PPT
Project Planning
PPT
Project planning and control
PPTX
Project planning and project work plan
PPTX
10 Project Proposal Writing
4 Project Pre-Planning & Stakeholder Analysis
Policy & Procedure Manual (sample)
SE_Lec 12_ Project Planning
Project Management, Planning And Analysis Tools
3 Project Cycle and Planning (4-6 hours)
Project Planning Basics - Everything you need to start managing a project
Project Planning
5 The Logical Framework - a short course for NGOs
ppt on data collection , processing , analysis of data & report writing
SE2_Lec 16_ Software Design
Project Planning
Project planning and control
Project planning and project work plan
10 Project Proposal Writing
Ad

More from OpenLearningLab (20)

PDF
Requirements Engineering - Werkcollege 2012: 04-Documentation
PDF
Requirements Engineering - Werkcollege 2012: 03-Elicitation
PDF
Requirements Engineering - Werkcollege 2012: 02-Stakeholders
PDF
Re werkcollege12-02-stakeholders
PDF
Requirements Engineering - Werkcollege 2012: 01-introduction
PPT
Managing Innovation_innovation governance
PPTX
Managing Innovation_innovation system
PPTX
Managing Innovation_entrepreneurship and transformation
PPTX
Managing Innovation_organization of innovation
PPTX
Managing Innovation_innovation concepts
PPTX
Managing Innovation_Introduction to Innovation
PDF
SDPM - Lecture 10 - Contract management
PDF
SDPM - Lecture 9 - Managing people and organizing teams
PDF
SDPM - Lecture 8 - Software quality assurance
PDF
SDPM - Lecture 7 - Project monitoring and control
PDF
SDPM - Lecture 6 - Risk management and project escalation
PDF
SDPM - Lecture 5 - Software effort estimation
PDF
SDPM - Lecture 3 - Selecting an appropriate software development approach.pdf
PDF
SDPM - Lecture 2a - Project evaluation – for the buyer, and for the vendor
PDF
SDPM - Lecture 1 - Introduction
Requirements Engineering - Werkcollege 2012: 04-Documentation
Requirements Engineering - Werkcollege 2012: 03-Elicitation
Requirements Engineering - Werkcollege 2012: 02-Stakeholders
Re werkcollege12-02-stakeholders
Requirements Engineering - Werkcollege 2012: 01-introduction
Managing Innovation_innovation governance
Managing Innovation_innovation system
Managing Innovation_entrepreneurship and transformation
Managing Innovation_organization of innovation
Managing Innovation_innovation concepts
Managing Innovation_Introduction to Innovation
SDPM - Lecture 10 - Contract management
SDPM - Lecture 9 - Managing people and organizing teams
SDPM - Lecture 8 - Software quality assurance
SDPM - Lecture 7 - Project monitoring and control
SDPM - Lecture 6 - Risk management and project escalation
SDPM - Lecture 5 - Software effort estimation
SDPM - Lecture 3 - Selecting an appropriate software development approach.pdf
SDPM - Lecture 2a - Project evaluation – for the buyer, and for the vendor
SDPM - Lecture 1 - Introduction
Ad

Recently uploaded (20)

PPTX
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
PDF
Physical education and sports and CWSN notes
PDF
Journal of Dental Science - UDMY (2022).pdf
PDF
Compact First Student's Book Cambridge Official
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PPTX
Power Point PR B.Inggris 12 Ed. 2019.pptx
PDF
Farming Based Livelihood Systems English Notes
PDF
African Communication Research: A review
PPTX
PLASMA AND ITS CONSTITUENTS 123.pptx
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
PUBH1000 - Module 6: Global Health Tute Slides
PDF
Health aspects of bilberry: A review on its general benefits
PPTX
UNIT_2-__LIPIDS[1].pptx.................
PDF
Laparoscopic Colorectal Surgery at WLH Hospital
PDF
Journal of Dental Science - UDMY (2021).pdf
PPTX
pharmaceutics-1unit-1-221214121936-550b56aa.pptx
PDF
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
PDF
Hospital Case Study .architecture design
PPTX
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
PDF
Solved Past paper of Pediatric Health Nursing PHN BS Nursing 5th Semester
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
Physical education and sports and CWSN notes
Journal of Dental Science - UDMY (2022).pdf
Compact First Student's Book Cambridge Official
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
Power Point PR B.Inggris 12 Ed. 2019.pptx
Farming Based Livelihood Systems English Notes
African Communication Research: A review
PLASMA AND ITS CONSTITUENTS 123.pptx
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PUBH1000 - Module 6: Global Health Tute Slides
Health aspects of bilberry: A review on its general benefits
UNIT_2-__LIPIDS[1].pptx.................
Laparoscopic Colorectal Surgery at WLH Hospital
Journal of Dental Science - UDMY (2021).pdf
pharmaceutics-1unit-1-221214121936-550b56aa.pptx
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
Hospital Case Study .architecture design
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
Solved Past paper of Pediatric Health Nursing PHN BS Nursing 5th Semester

Requirements Engineering - Werkcollege 2012: 05-Estimating+Planning

  • 1. Requirements  Engineering     Werkcollege  Spring  2012     Session  5:  EsBmaBng  &  Planning   Christoph Johann Stettina ([email protected])                            Leiden  University.  The  university  to  discover.  
  • 2. Session  5:  EsBmaBng  &  Planning   Today:     •  Es$ma$ng:  Planning  Poker   •  Planning:  Backlogs   Why  is  it  important?   •  Projects  o5en  overrun  cost  es$mates   •  Effort  es$ma$on  difficult  in  prac$ce  due  to   complexity  of  tasks  and  differences  in   implementa$on  speed  of  teams                            Leiden  University.  The  university  to  discover.  
  • 3.     Part  1  –  EsBmaBon   Planning  Poker                          Leiden  University.  The  university  to  discover.  
  • 4. Session  5:  EsBmaBon  &  Planning   Interface  between  crea$ng  requirements  and   laying  out  the  so5ware  development  process       EsBmaBng  –  Es$ma$ng  the  [resources,  $me,   size]  required  to  develop  a  [user  story,  feature,   or  requirement]       Planning  –  PuIng  the  es$mates  together  to   formulate  a  project  plan  and  schedule                                                                                                                          -­‐-­‐  Cohn  (2005)                            Leiden  University.  The  university  to  discover.  
  • 5. Concepts  of  EsBmaBng  Size  (Cohn,  2005)   Story  Points   •  Unit  of  measure  for  the  overall  size  of  a  user  story     •  Not  related  to  the  amount  of  $me  or  people   Ideal  Bme   •  The  amount  of  $me  excluding  peripheral  ac$vi$es   •  Example:  American  football  game  =  60  minutes   Elapsed  Bme   •  Time  that  passes  on  the  clock  to  complete  it   •  Example:  American  football  game  =  3  hours   Velocity   •  Measure  of  a  team’s  rate  of  progress                            Leiden  University.  The  university  to  discover.  
  • 6. Deriving  a  plan  (Cohn,  2005)   Desired Features Divide by Story Velocity Story Story Create Estimate Derive Iteration Size Duration Plan Story Story Story Prioritize                          Leiden  University.  The  university  to  discover.  
  • 7. Deriving  a  plan  (Cohn,  2005)   5 Story Points / Desired Iteration Features Divide by ≈ May 10 Story Velocity Story Story Create Estimate Derive Iteration Size Duration Plan 30 Story Points ≈ 6 Iterations Story Story Story Prioritize                          Leiden  University.  The  university  to  discover.  
  • 8. How  to  esBmate?   Accuracy Pragma$c  view:     Beyond  a  certain  point   addi$onal  effort  spent   on  es$ma$on  yields   liZle  addi$onal  value     -­‐-­‐  Cohn  (2005)   Effort                          Leiden  University.  The  university  to  discover.  
  • 9. EsBmaBng  Story  Points  (Cohn,  2005)   Take  a  medium-­‐size  story  and  assign  it  a  “5”   EsBmate  the  other  stories  accordingly   •  Twice  as  big   •  Half  as  big   •  Almost  but  not  quite  as  big   •  A  liZle  bit  bigger   Use  the  following  sizes  for  the  stories:     •  0,  1,  2,  3,  5,  8,    13,  20,  40,  100     Close to one iteration Few iterations large “story” “epic”                          Leiden  University.  The  university  to  discover.  
  • 10. Planning  Poker  (Fægri,  2010)   Planning  Poker  Cards   •  0,  1,  2,  3,  5,  8,  13,  20,  40,  100   •  Fibonacci  sequence:  Reflect  on  uncertainty  in   es$ma$ng  larger  items   Special  Cards   •  Zero:  “Just  a  few  minutes  of  work”   •  Ques$on  mark:  “No  Idea  at  all”   •  Coffee:  “I’m  too  7red  to  think.  Let’s  take  a  break.”                            Leiden  University.  The  university  to  discover.  
  • 11. Planning  Poker:  Rules   •  Each  task  to  be  es$mated  is  presented  by  the  Product   Owner.     •  The  group  members  ask  for  clarifica$ons  in  order  to   es$mate  the  task  effort.  (Timeboxed  discussion)   •  Upon  no$fica$on  from  the  Scrum  Master  each   member  presents  the  card  showing  the  es$mate   believed  to  best  approximate  the  task  effort.   •  If  the  es$mates  are  roughly  similar  the  Scrum  Master   uses  the  most  frequent  es$mate  as  the  task  es$mate.   •  If  there  is  wide  disagreement  in  the  es$mates  the  task   is  discussed  again  and  the  group  members  present   updated  es$mates.                                                                                  (Fægri,  2010)                          Leiden  University.  The  university  to  discover.  
  • 12. EsBmaBon:  In-­‐class  assignment   Planning  Poker  Exercise   •  Create  groups  of  4-­‐9   •  Discuss  the  received  case  study   •  Es$mate  the  size  of  user  stories   •  Goal:  Create  a  list  according  to  size                              Leiden  University.  The  university  to  discover.  
  • 13. Planning  Poker     Advantages   •  Mul$ple  expert  opinions   •  Discussion  leads  to  more  accurate  es$ma$ons   •  More  fun!   Disadvantages   •  Mee$ngs  with  en$re  team  more  expensive   •  Moderator  needs  to  $mebox  discussions   •  Dominant  personali$es  and  poli$cs  can   interfere                            Leiden  University.  The  university  to  discover.  
  • 14.     Part  2  –  Planning   Backlogs                          Leiden  University.  The  university  to  discover.  
  • 15. ,$373'$6)',+)7;'4$)*8',$234$6)2+:7+',$6)*<7473=$:&'$;2,7+$,':06"$%&*,'$2)'$:&'$4'>73'4$)*8',$ ,#(,2*3#4(&56&7+8#9'#)%,)#,7,-89*9:#3&9*;7:#+'3*7;#,73#)&9)*7;#%,22&79#,-/'9)#9*/6-),7&'69 )%*9#*9#*/2-&/&7)&3#)%('6;%#9/,--#*)&(,)*'7#-&7;)%9#'4#/,?*/,-#'7&#/'7)%#0%*-&#3'*7; '21?$:&'$/+)01@2,:')$234$()*40+:$AB3')?$:&'$:&)''$+'3:)28$1'':73=$:C6',$2,$:&'$/6)73:$ &A&(8)%*7;#0*)%*7#&,+%#*)&(,)*'7"#=>#3&9*;7&3#4'(#)&,/9#4('/#!#)'#BC#/&/@&(9#3&4*7&9#3 1'':73=?$:&'$D278C$/+)01$234$:&'$/6)73:$)'<7'B?$2,$B'88$2,$:&'$)'E07)'4$;2,7+$2):7>2+:,$ 2%,9&9#'4#,#2('D&+):#('-&9#,73#(&92'79*@*-*)*&9#,++'/2,7*&3#@8#2(,+)*+&9#96+%#,9#2,*(#2('; Planning:  Agile  Development  Cycle   E)0'#2&'2-&#0(*)*7;#+'3&#'7#)%&#9,/&#+'/26)&(#(&A*&0*7;#&,+%#')%&(F:#+'--&+)*A&#+'3&#' '$()*40+:$F2+G8*=?$:&'$/6)73:$F2+G8*=$234$:&'$F0)34*B3$+&2):$HI37;')=?$!JJKL" E&A&(8'7&#*9#(&92'79*@-&#4'(#,--#)%&#+'3&:#&A&(8'7&#*9#,--'0&3#)'#+%,7;&#*)F:#)&9)G3(*A&7#3&A E9%'()#*)&(,)*'79#,73#2(&G0(*))&7#)&9)#+,9&9F:#'7G9*)&#+69)'/&(:#+'7)*76'69#*7)&;(,)*'7:#(&4,+) 9*/2-&#3&9*;7#EH&+1:#!CCIF" !""#$%&'%()*+,-+./+"(01232"1+456)&1+'*7+8'&71*9+:;;<= J?)(&/&#2(';(,//*7;#*9#EK8@L#,73#K*7;9M8(:#!CCNF#)%&#/'9)#0*3&-8#9)63*&3#,;*-&#/&)%' (&9&,(+%"#O7&#'4#=>#2(&/*9&9#*9#)%&#&-*/*7,)*'7#'4#(&56*(&/&7)9:#%&,A80&*;%)#3&9*;7#,7 2%,9&9 # ,73 # 4'(/,- # 3'+6/&7),)*'7 # )%('6;% # 9&,/-&99 # *7)&;(,)*'7 # 0*)% # *74'(/,- # ,73 # + ,3'2)&3#(&56*(&/&7)9"#P(*)*+9#%'0&A&(:#,(;6&#)%,)#@8#%,A*7;#)%&#'7G9*)&#+69)'/&(#+,7#-&,3 (&0'(1#,73#2('D&+)#9+'2&#+(&&2#@&8'73#,--#,;(&&3#/&,79" !"#$%&'(!')&" P(89),- # P-&,( # *9 # '7& # /&/@&( # '4 # ,# (,7;& # '4 # /&)%'3'-';*&9 # +'79*9)*7; # '4 # P(89),- # P-&, Q&--'0:#P(89),-#O(,7;&#,73#P(89),-#R&3"#S&-&+)&3#,++'(3*7;#)'#)%&#9*T&#,73#+(*)*+,-*)8#'4#)% )%&# P(89),-#4,/*-8# (,7;&9#4('/#P(89),-#P-&,(# ,9#/'9)#96*),@-&# 4'(#9/,--# ,73#9*/2-&# 2 P(89),- # R&3 # ),(;&)*7; # @*; # ,73 # +(*)*+,- # 2('D&+)9" # O7-8 # P(89),- # P-&,( # ,73 # P(89),- # O(, 92&+*4*&3#*7#3&),*-#EP'+1@6(7:#!CCBF" P(89),-#P-&,(#%,9#@&&7#3&A&-'2&3#4'(#9/,--#2('D&+)9#'4#62#)'#9*?#3&A&-'2&(9#,73#3&9+(* 0'(1 # 2('36+)9 # ,73 # 2'-*+*&9: # @6) # ,A'*39 # 2('+&99&9 # '( # ,()*4,+)9" # $%& # /&)%'3'-';8 # (&5 4'--'0*7; #2('2&()*&9U#4(&56&7)#3&-*A&(8#'4#69,@-&#+'3&#)'#69&(9#0*)%#*7+(&/&7)9#@&)0&& /'7)%9#EI#/,?*/6/F:#(&4-&+)*A&#*/2('A&/&7)#E2(&G#,73#2'9)G*7+(&/&7)#0'(19%'29F#,73#& '9/')*+#+'//67*+,)*'7#0*)%#+'-'+,)*'7#2(&4&((&3"#P(89),-#P-&,(:#%'0&A&(:#3'&9#7')#(& 3'+6/&7),)*'7#)'#@&#7&+&99,(*-8#+(&,)&3" !""#$%&'%()*+,-+./0+12&#3+4&)20$$                          Leiden  University.  The  university  to  discover.   *+),(-,./.)0(1"23)$$(4*+),-15
  • 16. Planning:  Backlogs   Product  Backlog   •  All  func$onality  required  in  the  product   •  User  stories  and  requirements  created  by  team   •  Priori$zed  according  to  Return  on  Investment     Sprint  /  IteraBon  Backlog   •  Contents  of  a  Product  Backlog  selected  for  a   “poten$ally  shippable  product  increment”                            Leiden  University.  The  university  to  discover.  
  • 17. Product  Backlog  (Schwaber,  2004)   •  Repriori$zed  every  itera$on   •  Evolves  with  the  product   •  Owned  by  the  sponsor,  Product  Owner   Story  Name   Init   Adj.   Adj.               Est.   Factor   Est.   1   2   3   4   5   Story  1   3   0.2   3.6   3.6   0   0   0   0   Story  2   2   0.2   2.4   2.4   0   0   0   0   Story  3   3   0.2   3.6   3.6   0   0   0   0   Story  4   3   0.2   3.4   3.4   0   0   0   0   -­‐-­‐  SPRINT  1   11   0.2   13   13   0   0   0   0   Story  5   3   0.2   3.6   3.6   3.6   0   0   0                            Leiden  University.  The  university  to  discover.  
  • 18. Product  Backlog   Adjusted Estimate Sprints Initial Estimate Story  Name   Init   Adj.   Adj.               Est.   Factor   Est.   1   2   3   4   5   Story  1   3   0.2   3.6   3.6   0   0   0   0   Complexity factor Story  2   2   0.2   2.4   2.4   0   0   0   0   Story  3   3   0.2   3.6   3.6   0   0   0   0   Story  4   3   0.2   3.4   3.4   0   0   0   0   -­‐-­‐  SPRINT  1   11   0.2   13   13   0   0   0   0   Story  5   3   0.2   3.6   3.6   3.6   0   0   0   Story  6   2   0.2   2.4   2.4   2.4   0   0   0                            Leiden  University.  The  university  to  discover.  
  • 19. IteraBon  Backlog   •  Each  itera$on  the  team  picks  the  top  priority   items  from  the  Product  Backlog   •  Contents  of  a  Sprint  Backlog  should  be  a  part     presentable  at  the  end  of  a  sprint   Task  Name   Originator   Responsible   Status               Mo   Tu   We   Th   Fr   Task  1   Danielle   Danielle   Completed   20   0   0   0   0   Task  2   Jim   Allen   NotStarted   8   8   8   8   8   Task  3   Tom   Completed   12   0   0   0   0   Task  4   George   In  Progress   24   24   24   24   12   Task  5   Tim   Completed   12   12   12   12   12                            Leiden  University.  The  university  to  discover.  
  • 20. IteraBon  Backlog  (Schwaber,  2004) Days   Task  Name   Originator   Responsible   Status               Mo   Tu   We   Th   Fr   Task  1   Danielle   Danielle   Completed   20   0   0   0   0   Task  2   Jim   Allen   NotStarted   8   8   8   8   8   Task  3   Tom   Completed   12   0   0   0   0   Task  4   George   In  Progress   24   24   24   24   12   Task  5   Tim   Completed   12   12   12   12   12   Task  6   Josh   In  Progress   12   10   10   Task  7   Danielle   In  Progress   24   24   24   24   12                            Leiden  University.  The  university  to  discover.  
  • 21. Planning:  In-­‐class  assignment   Product  and  IteraBon  Backlogs   1.  Priori$ze  stories  according  to  business  needs   2.  Create  a  Product  Backlog     3.  Select  top  priority  Product  Backlog  items   4.  Think  of  actual  tasks  evolving  from  the  stories   5.  Create  a  Itera$on  Backlog                            Leiden  University.  The  university  to  discover.  
  • 22. Bibliography   •  Cohn,  M.  (2005).  Agile  Es$ma$ng  and  Planning.  Pren$ce  Hall  PTR.   •  Fægri,  T.  E.  (2010)  “Adop$on  of  team  es$ma$on  in  a  specialist  organiza$onal  environment,”  in  In  proceedings   of  XP2010,  11th  Interna$onal  Conference,  Trondheim,  Norway,  ser.  LNBIP,  vol.  48   •  Fowler,  M.  (2004),  UML  dis$lled:  a  brief  guide  to  the  standard  object  modeling  language  (3  ed.),  Addison-­‐ Wesley,  p.  131,  ISBN  9780321193681   •  Hammer,  M.  &  Champy,  J.  (1994).  Reengineering  the  corpora$on:  A  manifesto  for  business  revolu$on.  New   York:  Harper.     •  IEEE,  So5ware  Engineering  CommiZee  (1998)  IEEE  Recommended  Prac$ce  for  So5ware  Design  Descrip$ons.   ANSI/IEEE  Std  830,  October  1998   •  Keil,  M.,  Carmel,  E.  Customer-­‐Developer  Links  in  So5ware  Development.  Communica$ons  of  the  ACM,  38  (5):   33–44,  1995.   •  van  Lamsweerde,  A.  (2009)  Requirements  Engineering:  From  System  Goals  to  UML  Models  to  So5ware   Specifica$ons.  Wiley,  March  2009.   •  Schwaber,  K.,  Agile  Project  Management  with  Scrum,  Microso5  Press,  2004                            Leiden  University.  The  university  to  discover.