SlideShare a Scribd company logo
Robotics: Current topics
Sabbir Ahmmed
Robotics and Biology Laboratory
Promise, frustration and pessimism
Image source: https://www.slideshare.net/hyderabadscalability/geeknight-artificial-intelligence-and-machine-learning
Deep Learning - from Bust to Boom
► Until recently neural networks were all but shunned
► General AI vs Narrow AI
► Key factors that contributed to deep learning boom
• developments within neural networks and ML domain
• developments around it
Image credit: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
Outline - key factors
► Better NN/ML algorithms/techniques
► Big data
► Large, high quality labeled datasets
► Massive Parallelization/GPU
► Programmability & Accessibility
► Industry driven research
Outline – key factors
► Better NN/ML algorithms/techniques
► Big data
► Large, high quality labeled datasets
► Massive Parallelization/GPU
► Programmability & Accessibility
► Industry driven research
Better Algorithms
► ANNs– essentially new configurations of ANNs
• CNNs,
• DNNs,
• DBNs,
• RNNs,
• LSTMs,
• GANs
• Autoencoder
► Activation functions – e.g.
• Rectifiers
► Regularization techniques
• Dropout
Better Algorithms - ANN
Bengio, Y. (2009). "Learning Deep Architectures for AI"
► Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
Better Algorithms - ANN
► Autoencoder
PCA Autoencoder
Image source: https://www.cs.toronto.edu/~hinton/science.pdf
Better Algorithms - activation function
► Rectifier
• the rectifier is, as of 2015, the most popular activation
function for deep neural networks
• was first introduced to a dynamical network by Hahnloser et
al. in a 2000 paper
Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). Deep sparse rectifier neural networks
Better Algorithms – regularization technique
► Dropout
Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Outline – key factors
► Better NN/ML algorithms/techniques
► Big data
► Large, high quality labeled datasets
► Massive Parallelization/GPU
► Programmability & Accessibility
► Industry driven research
Big Data
Image source: Baidu, https://devblogs.nvidia.com/parallelforall/cuda-spotlight-gpu-accelerated-deep-learning/ ,
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
► Deep learning needed big data
► Big data needed deep learning
Outline – key factors
► Better NN/ML algorithms/techniques
► Big data
► Large, high quality labeled datasets
► Massive Parallelization/GPU
► Programmability & Accessibility
► Industry driven research
Large High Quality Labeled Datasets
Source: https://en.wikipedia.org/wiki/MNIST_database, www.image-net.org/
Source: https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
Large High Quality Labeled Datasets
► MNIST - comprising a mix of handwritten digits
► A team led by Yann LeCun released the MNIST database in 1998
► Since become a benchmark for evaluating handwriting recognition.
Source: https://en.wikipedia.org/wiki/MNIST_database
Large High Quality Labeled Datasets
► ImageNet
• Started by Fei-Fei Li in 2007 (Stanford)
• One of the largest high-quality image datasets in the world
• As of 2016, over ten million URLs of images have been hand-annotated
• One million of the images, bounding boxes are also provided
• Crowdsourced the annotation process
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures#t-1066204
Image credit: www.image-net.org/
Major Milestone (2012)
► Google Brain Project*
Le et Al (2012) - Building High-level Features Using Large Scale Unsupervised Learning
Major milestone (2012)
Image credit: https://medium.com/@johnsmart/your-personal-sim-pt-4-deep-agents-understanding-natural-intelligence-7040ae074b71
► The Google Brain project
Outline – key factors
► Better NN/ML algorithms/techniques
► Big data
► Large, high quality labeled datasets
► Massive Parallelization/GPU
► Programmability & Accessibility
► Industry driven research
Massive parallelism
Image credit: https://medium.com/@johnsmart/your-personal-sim-pt-4-deep-agents-understanding-natural-intelligence-7040ae074b71
► Even the most basic neural networks are very computationally intensive
► Many algorithms were already parallelized
► Bryan Catanzaro in NVIDIA Research teamed with Andrew Ng’s team at Stanford to use GPUs
for deep learning
► 12 NVIDIA GPUs could deliver the deep-learning performance of 2,000 CPUs
► Researchers at NYU, the University of Toronto, and the Swiss AI Lab accelerated their DNNs on
GPUs
GPU
/
Image source: NVIDIA
https://youtu.be/-P28LKWTzrI
GPU
► It’s all about scale (Baidu Research)
1 million
connections
(2007)
10 million
connections
(2008)
1 billion
connections
(2011)
100 billion
connections
(2015)
CPU GPU Cloud GPUCloud CPU
Image source: NVIDIA
GPUs: a Winning Trend
Major milestones (1998/2012)
Image Source: https://image.slidesharecdn.com/lecture29-convolutionalneuralnetworks-visionspring2015-150504114140-conversion-gate02/95/
lecture-29-convolutional-neural-networks-computer-vision-spring2015-27-638.jpg?cb=1430740006
Outline – key factors
► Better NN/ML algorithms/techniques
► Big data
► Large, high quality labeled datasets
► Massive Parallelization/GPU
► Programmability & Accessibility
► Industry driven research
Programmability & Accessibility
Open source platforms
Image credit: NVIDIA, Kaggle, Github.com, Silicon Valley Data Science (SVDS.com)
Outline – key factors
► Better NN/ML algorithms/techniques
► Big data
► Large, high quality labeled datasets
► Massive Parallelization/GPU
► Programmability & Accessibility
► Industry driven research
Industry driven research
► "At the time I joined Google, the biggest neural network
in academia was about 1 million parameters, At Google,
we were able to build something one thousand times
bigger.“ - Andrew Ng
► "I'd quite like to explore neural nets that are a thousand
times bigger than that" - Geoffrey Hinton
Source: Steve Omohundro, What’s Happening with AI? (2016) Slides
Industry driven research
► Deep Learning Race
Source: https://medium.com/intuitionmachine/the-different-ways-that-internet-giants-approach-deep-learning-research-753c9f99d9f1
Discussion – importance ranking of key factors
► Better NN/ML algorithms/techniques **
► Big data ***
► Large, high quality labeled datasets ***
► Massive Parallelization/GPU ****
► Programmability & Accessibility **
► Industry driven research **
Reference
► Bengio, Y. (2009). "Learning Deep Architectures for AI"
► Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). “Deep sparse
rectifier neural networks”
► Le et Al (2012) - Building High-level Features Using Large Scale
Unsupervised Learning
► Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). Deep sparse
rectifier neural networks
► Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks
from Overfitting
► http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
► Alex Krizhevsky, Ilya Sutskever and Geoff Hinton (2012) ImageNet
Classification with Deep Convolutional Neural Networks
► http://cs231n.github.io/convolutional-networks/#case
► Steve Omohundro, What’s Happening with AI? (2016) Slides

More Related Content

PDF
An Obligatory Introduction to Data Science
Wesley Eldridge
 
PDF
The Evolution of Data Science
Kenny Daniel
 
PDF
New Trends and Directions in Data Science - MIT Information Quality Conferenc...
Mario Faria
 
PPTX
Big-Data Computing on the Cloud
Data Driven Innovation
 
PPTX
Intro to Data Science Concepts
University of Washington
 
PPTX
Rabobank - There is something about Data
BigDataExpo
 
PPTX
AI-Driven Science and Engineering with the Global AI and Modeling Supercomput...
Geoffrey Fox
 
PDF
Data Mining and Big Data Challenges and Research Opportunities
Kathirvel Ayyaswamy
 
An Obligatory Introduction to Data Science
Wesley Eldridge
 
The Evolution of Data Science
Kenny Daniel
 
New Trends and Directions in Data Science - MIT Information Quality Conferenc...
Mario Faria
 
Big-Data Computing on the Cloud
Data Driven Innovation
 
Intro to Data Science Concepts
University of Washington
 
Rabobank - There is something about Data
BigDataExpo
 
AI-Driven Science and Engineering with the Global AI and Modeling Supercomput...
Geoffrey Fox
 
Data Mining and Big Data Challenges and Research Opportunities
Kathirvel Ayyaswamy
 

What's hot (19)

PPTX
Introduction of Data Science
Jason Geng
 
PDF
Data Science Introduction - Data Science: What Art Thou?
Gregg Barrett
 
PDF
Introduction on Data Science
Edureka!
 
PPTX
MMDS 2014: Myria (and Scalable Graph Clustering with RelaxMap)
University of Washington
 
PDF
Big Data and Clouds: Research and Education
Geoffrey Fox
 
PDF
From Data Platforms to Dataspaces: Enabling Data Ecosystems for Intelligent S...
Edward Curry
 
PPTX
Massive-Scale Analytics Applied to Real-World Problems
inside-BigData.com
 
DOCX
IEEE 2014 DOTNET DATA MINING PROJECTS Data mining with big data
IEEEMEMTECHSTUDENTPROJECTS
 
PPTX
Machine Learning in Oil and Gas - April 18-19, 2018
Mark Reynolds
 
PPTX
Data mining on big data
Swapnil Chaudhari
 
PPS
Big Data Science: Intro and Benefits
Chandan Rajah
 
PDF
An Overview of the Emerging Graph Landscape (Oct 2013)
Emil Eifrem
 
PDF
Autodiscovery or The long tail of open data
Connected Data World
 
PDF
Towards Lightweight Cyber-Physical Energy Systems using Linked Data, the Web ...
Edward Curry
 
PDF
Key Technology Trends for Big Data in Europe
Edward Curry
 
PDF
Big Data Analytics: A New Business Opportunity
Edward Curry
 
PPTX
Big Data and the Art of Data Science
Andrew Gardner
 
PDF
Data science presentation 2nd CI day
Mohammed Barakat
 
PDF
Data minig with Big data analysis
Poonam Kshirsagar
 
Introduction of Data Science
Jason Geng
 
Data Science Introduction - Data Science: What Art Thou?
Gregg Barrett
 
Introduction on Data Science
Edureka!
 
MMDS 2014: Myria (and Scalable Graph Clustering with RelaxMap)
University of Washington
 
Big Data and Clouds: Research and Education
Geoffrey Fox
 
From Data Platforms to Dataspaces: Enabling Data Ecosystems for Intelligent S...
Edward Curry
 
Massive-Scale Analytics Applied to Real-World Problems
inside-BigData.com
 
IEEE 2014 DOTNET DATA MINING PROJECTS Data mining with big data
IEEEMEMTECHSTUDENTPROJECTS
 
Machine Learning in Oil and Gas - April 18-19, 2018
Mark Reynolds
 
Data mining on big data
Swapnil Chaudhari
 
Big Data Science: Intro and Benefits
Chandan Rajah
 
An Overview of the Emerging Graph Landscape (Oct 2013)
Emil Eifrem
 
Autodiscovery or The long tail of open data
Connected Data World
 
Towards Lightweight Cyber-Physical Energy Systems using Linked Data, the Web ...
Edward Curry
 
Key Technology Trends for Big Data in Europe
Edward Curry
 
Big Data Analytics: A New Business Opportunity
Edward Curry
 
Big Data and the Art of Data Science
Andrew Gardner
 
Data science presentation 2nd CI day
Mohammed Barakat
 
Data minig with Big data analysis
Poonam Kshirsagar
 
Ad

Similar to Robotics: Current Topics (20)

PDF
New Opportunities for Connected Data - Emil Eifrem @ GraphConnect Boston + Ch...
Neo4j
 
PPTX
BIMCV, Banco de Imagen Medica de la Comunidad Valenciana. María de la Iglesia
Maria de la Iglesia
 
PPTX
Foundations of Big Data: Concepts, Techniques, and Applications
hoisala6sludger
 
DOCX
2014 IEEE DOTNET DATA MINING PROJECT Data mining with big data
IEEEMEMTECHSTUDENTSPROJECTS
 
PDF
Using Algorithmia to leverage AI and Machine Learning APIs
Rakuten Group, Inc.
 
PDF
Problem Definition muAoPS | Analytics Problem Solving | Mu Sigma
n40077943
 
PDF
influence of AI in IS
ISACA Riyadh
 
PPTX
Your brain is too small to manage your business
Christopher Bishop
 
PPTX
Big Data By Vijay Bhaskar Semwal
IIIT Allahabad
 
PDF
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...
Mihai Criveti
 
PDF
Crowdsourcing Approaches to Big Data Curation - Rio Big Data Meetup
Edward Curry
 
PDF
Innovations in Information Systems Modeling Methods and Best Practices 1st Ed...
jisixwn554
 
PDF
Innovations in Information Systems Modeling Methods and Best Practices 1st Ed...
turraaroma87
 
PPTX
A Journey Through The Far Side Of Data Science
tlcj97
 
PDF
Keynote: Graphs in Government_Lance Walter, CMO
Neo4j
 
PDF
Big Data at DYNO
Tu Pham
 
PPT
Lecture1
Manish Kumar
 
PPTX
Puja(801),sanghamitra(819),surabhi(844)
puja singh
 
PPT
lecture1.ppt
bayhehua
 
PPTX
Big Data PPT by Rohit Dubey
Rohit Dubey
 
New Opportunities for Connected Data - Emil Eifrem @ GraphConnect Boston + Ch...
Neo4j
 
BIMCV, Banco de Imagen Medica de la Comunidad Valenciana. María de la Iglesia
Maria de la Iglesia
 
Foundations of Big Data: Concepts, Techniques, and Applications
hoisala6sludger
 
2014 IEEE DOTNET DATA MINING PROJECT Data mining with big data
IEEEMEMTECHSTUDENTSPROJECTS
 
Using Algorithmia to leverage AI and Machine Learning APIs
Rakuten Group, Inc.
 
Problem Definition muAoPS | Analytics Problem Solving | Mu Sigma
n40077943
 
influence of AI in IS
ISACA Riyadh
 
Your brain is too small to manage your business
Christopher Bishop
 
Big Data By Vijay Bhaskar Semwal
IIIT Allahabad
 
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...
Mihai Criveti
 
Crowdsourcing Approaches to Big Data Curation - Rio Big Data Meetup
Edward Curry
 
Innovations in Information Systems Modeling Methods and Best Practices 1st Ed...
jisixwn554
 
Innovations in Information Systems Modeling Methods and Best Practices 1st Ed...
turraaroma87
 
A Journey Through The Far Side Of Data Science
tlcj97
 
Keynote: Graphs in Government_Lance Walter, CMO
Neo4j
 
Big Data at DYNO
Tu Pham
 
Lecture1
Manish Kumar
 
Puja(801),sanghamitra(819),surabhi(844)
puja singh
 
lecture1.ppt
bayhehua
 
Big Data PPT by Rohit Dubey
Rohit Dubey
 
Ad

Recently uploaded (20)

PPTX
Introduction to computer chapter one 2017.pptx
mensunmarley
 
PPTX
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
PPTX
Introduction to Biostatistics Presentation.pptx
AtemJoshua
 
PDF
TIC ACTIVIDAD 1geeeeeeeeeeeeeeeeeeeeeeeeeeeeeer3.pdf
Thais Ruiz
 
PPTX
lecture 13 mind test academy it skills.pptx
ggesjmrasoolpark
 
PDF
WISE main accomplishments for ISQOLS award July 2025.pdf
StatsCommunications
 
PDF
SUMMER INTERNSHIP REPORT[1] (AutoRecovered) (6) (1).pdf
pandeydiksha814
 
PPTX
short term internship project on Data visualization
JMJCollegeComputerde
 
PDF
Key_Statistical_Techniques_in_Analytics_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PPT
Real Life Application of Set theory, Relations and Functions
manavparmar205
 
PPTX
Blue and Dark Blue Modern Technology Presentation.pptx
ap177979
 
PPTX
Fluvial_Civilizations_Presentation (1).pptx
alisslovemendoza7
 
PPTX
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
PDF
717629748-Databricks-Certified-Data-Engineer-Professional-Dumps-by-Ball-21-03...
pedelli41
 
PDF
blockchain123456789012345678901234567890
tanvikhunt1003
 
PPTX
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
PPTX
World-population.pptx fire bunberbpeople
umutunsalnsl4402
 
PDF
Classifcation using Machine Learning and deep learning
bhaveshagrawal35
 
PPTX
IP_Journal_Articles_2025IP_Journal_Articles_2025
mishell212144
 
PPTX
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 
Introduction to computer chapter one 2017.pptx
mensunmarley
 
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
Introduction to Biostatistics Presentation.pptx
AtemJoshua
 
TIC ACTIVIDAD 1geeeeeeeeeeeeeeeeeeeeeeeeeeeeeer3.pdf
Thais Ruiz
 
lecture 13 mind test academy it skills.pptx
ggesjmrasoolpark
 
WISE main accomplishments for ISQOLS award July 2025.pdf
StatsCommunications
 
SUMMER INTERNSHIP REPORT[1] (AutoRecovered) (6) (1).pdf
pandeydiksha814
 
short term internship project on Data visualization
JMJCollegeComputerde
 
Key_Statistical_Techniques_in_Analytics_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
Real Life Application of Set theory, Relations and Functions
manavparmar205
 
Blue and Dark Blue Modern Technology Presentation.pptx
ap177979
 
Fluvial_Civilizations_Presentation (1).pptx
alisslovemendoza7
 
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
717629748-Databricks-Certified-Data-Engineer-Professional-Dumps-by-Ball-21-03...
pedelli41
 
blockchain123456789012345678901234567890
tanvikhunt1003
 
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
World-population.pptx fire bunberbpeople
umutunsalnsl4402
 
Classifcation using Machine Learning and deep learning
bhaveshagrawal35
 
IP_Journal_Articles_2025IP_Journal_Articles_2025
mishell212144
 
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 

Robotics: Current Topics

  • 1. Robotics: Current topics Sabbir Ahmmed Robotics and Biology Laboratory
  • 2. Promise, frustration and pessimism Image source: https://www.slideshare.net/hyderabadscalability/geeknight-artificial-intelligence-and-machine-learning
  • 3. Deep Learning - from Bust to Boom ► Until recently neural networks were all but shunned ► General AI vs Narrow AI ► Key factors that contributed to deep learning boom • developments within neural networks and ML domain • developments around it Image credit: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
  • 4. Outline - key factors ► Better NN/ML algorithms/techniques ► Big data ► Large, high quality labeled datasets ► Massive Parallelization/GPU ► Programmability & Accessibility ► Industry driven research
  • 5. Outline – key factors ► Better NN/ML algorithms/techniques ► Big data ► Large, high quality labeled datasets ► Massive Parallelization/GPU ► Programmability & Accessibility ► Industry driven research
  • 6. Better Algorithms ► ANNs– essentially new configurations of ANNs • CNNs, • DNNs, • DBNs, • RNNs, • LSTMs, • GANs • Autoencoder ► Activation functions – e.g. • Rectifiers ► Regularization techniques • Dropout
  • 7. Better Algorithms - ANN Bengio, Y. (2009). "Learning Deep Architectures for AI" ► Autoencoder https://en.wikipedia.org/wiki/Autoencoder
  • 8. Better Algorithms - ANN ► Autoencoder PCA Autoencoder Image source: https://www.cs.toronto.edu/~hinton/science.pdf
  • 9. Better Algorithms - activation function ► Rectifier • the rectifier is, as of 2015, the most popular activation function for deep neural networks • was first introduced to a dynamical network by Hahnloser et al. in a 2000 paper Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). Deep sparse rectifier neural networks
  • 10. Better Algorithms – regularization technique ► Dropout Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  • 11. Outline – key factors ► Better NN/ML algorithms/techniques ► Big data ► Large, high quality labeled datasets ► Massive Parallelization/GPU ► Programmability & Accessibility ► Industry driven research
  • 12. Big Data Image source: Baidu, https://devblogs.nvidia.com/parallelforall/cuda-spotlight-gpu-accelerated-deep-learning/ , http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/ ► Deep learning needed big data ► Big data needed deep learning
  • 13. Outline – key factors ► Better NN/ML algorithms/techniques ► Big data ► Large, high quality labeled datasets ► Massive Parallelization/GPU ► Programmability & Accessibility ► Industry driven research
  • 14. Large High Quality Labeled Datasets Source: https://en.wikipedia.org/wiki/MNIST_database, www.image-net.org/ Source: https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
  • 15. Large High Quality Labeled Datasets ► MNIST - comprising a mix of handwritten digits ► A team led by Yann LeCun released the MNIST database in 1998 ► Since become a benchmark for evaluating handwriting recognition. Source: https://en.wikipedia.org/wiki/MNIST_database
  • 16. Large High Quality Labeled Datasets ► ImageNet • Started by Fei-Fei Li in 2007 (Stanford) • One of the largest high-quality image datasets in the world • As of 2016, over ten million URLs of images have been hand-annotated • One million of the images, bounding boxes are also provided • Crowdsourced the annotation process https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures#t-1066204 Image credit: www.image-net.org/
  • 17. Major Milestone (2012) ► Google Brain Project* Le et Al (2012) - Building High-level Features Using Large Scale Unsupervised Learning
  • 18. Major milestone (2012) Image credit: https://medium.com/@johnsmart/your-personal-sim-pt-4-deep-agents-understanding-natural-intelligence-7040ae074b71 ► The Google Brain project
  • 19. Outline – key factors ► Better NN/ML algorithms/techniques ► Big data ► Large, high quality labeled datasets ► Massive Parallelization/GPU ► Programmability & Accessibility ► Industry driven research
  • 20. Massive parallelism Image credit: https://medium.com/@johnsmart/your-personal-sim-pt-4-deep-agents-understanding-natural-intelligence-7040ae074b71 ► Even the most basic neural networks are very computationally intensive ► Many algorithms were already parallelized ► Bryan Catanzaro in NVIDIA Research teamed with Andrew Ng’s team at Stanford to use GPUs for deep learning ► 12 NVIDIA GPUs could deliver the deep-learning performance of 2,000 CPUs ► Researchers at NYU, the University of Toronto, and the Swiss AI Lab accelerated their DNNs on GPUs
  • 22. GPU ► It’s all about scale (Baidu Research) 1 million connections (2007) 10 million connections (2008) 1 billion connections (2011) 100 billion connections (2015) CPU GPU Cloud GPUCloud CPU Image source: NVIDIA GPUs: a Winning Trend
  • 23. Major milestones (1998/2012) Image Source: https://image.slidesharecdn.com/lecture29-convolutionalneuralnetworks-visionspring2015-150504114140-conversion-gate02/95/ lecture-29-convolutional-neural-networks-computer-vision-spring2015-27-638.jpg?cb=1430740006
  • 24. Outline – key factors ► Better NN/ML algorithms/techniques ► Big data ► Large, high quality labeled datasets ► Massive Parallelization/GPU ► Programmability & Accessibility ► Industry driven research
  • 25. Programmability & Accessibility Open source platforms Image credit: NVIDIA, Kaggle, Github.com, Silicon Valley Data Science (SVDS.com)
  • 26. Outline – key factors ► Better NN/ML algorithms/techniques ► Big data ► Large, high quality labeled datasets ► Massive Parallelization/GPU ► Programmability & Accessibility ► Industry driven research
  • 27. Industry driven research ► "At the time I joined Google, the biggest neural network in academia was about 1 million parameters, At Google, we were able to build something one thousand times bigger.“ - Andrew Ng ► "I'd quite like to explore neural nets that are a thousand times bigger than that" - Geoffrey Hinton Source: Steve Omohundro, What’s Happening with AI? (2016) Slides
  • 28. Industry driven research ► Deep Learning Race Source: https://medium.com/intuitionmachine/the-different-ways-that-internet-giants-approach-deep-learning-research-753c9f99d9f1
  • 29. Discussion – importance ranking of key factors ► Better NN/ML algorithms/techniques ** ► Big data *** ► Large, high quality labeled datasets *** ► Massive Parallelization/GPU **** ► Programmability & Accessibility ** ► Industry driven research **
  • 30. Reference ► Bengio, Y. (2009). "Learning Deep Architectures for AI" ► Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). “Deep sparse rectifier neural networks” ► Le et Al (2012) - Building High-level Features Using Large Scale Unsupervised Learning ► Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). Deep sparse rectifier neural networks ► Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting ► http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf ► Alex Krizhevsky, Ilya Sutskever and Geoff Hinton (2012) ImageNet Classification with Deep Convolutional Neural Networks ► http://cs231n.github.io/convolutional-networks/#case ► Steve Omohundro, What’s Happening with AI? (2016) Slides